Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
b2b1d41d
Commit
b2b1d41d
authored
Aug 09, 2011
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
moved GpuMat class to separate header file
parent
f4f38fcc
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
1189 additions
and
1079 deletions
+1189
-1079
gpu.hpp
modules/gpu/include/opencv2/gpu/gpu.hpp
+1
-177
gpumat.hpp
modules/gpu/include/opencv2/gpu/gpumat.hpp
+274
-0
matrix_operations.hpp
modules/gpu/include/opencv2/gpu/matrix_operations.hpp
+0
-357
gpumat.cpp
modules/gpu/src/gpumat.cpp
+910
-0
matrix_operations.cpp
modules/gpu/src/matrix_operations.cpp
+4
-545
No files found.
modules/gpu/include/opencv2/gpu/gpu.hpp
View file @
b2b1d41d
...
...
@@ -47,8 +47,8 @@
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/gpu/devmem2d.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/gpu/gpumat.hpp"
namespace
cv
{
...
...
@@ -143,182 +143,6 @@ namespace cv
CV_EXPORTS
void
error
(
const
char
*
error_string
,
const
char
*
file
,
const
int
line
,
const
char
*
func
);
CV_EXPORTS
void
nppError
(
int
err
,
const
char
*
file
,
const
int
line
,
const
char
*
func
);
//////////////////////////////// GpuMat ////////////////////////////////
class
Stream
;
class
CudaMem
;
//! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat.
class
CV_EXPORTS
GpuMat
{
public
:
//! default constructor
GpuMat
();
//! constructs GpuMatrix of the specified size and type (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
GpuMat
(
int
rows
,
int
cols
,
int
type
);
GpuMat
(
Size
size
,
int
type
);
//! constucts GpuMatrix and fills it with the specified value _s.
GpuMat
(
int
rows
,
int
cols
,
int
type
,
const
Scalar
&
s
);
GpuMat
(
Size
size
,
int
type
,
const
Scalar
&
s
);
//! copy constructor
GpuMat
(
const
GpuMat
&
m
);
//! constructor for GpuMatrix headers pointing to user-allocated data
GpuMat
(
int
rows
,
int
cols
,
int
type
,
void
*
data
,
size_t
step
=
Mat
::
AUTO_STEP
);
GpuMat
(
Size
size
,
int
type
,
void
*
data
,
size_t
step
=
Mat
::
AUTO_STEP
);
//! creates a matrix header for a part of the bigger matrix
GpuMat
(
const
GpuMat
&
m
,
const
Range
&
rowRange
,
const
Range
&
colRange
);
GpuMat
(
const
GpuMat
&
m
,
const
Rect
&
roi
);
//! builds GpuMat from Mat. Perfom blocking upload to device.
explicit
GpuMat
(
const
Mat
&
m
);
//! destructor - calls release()
~
GpuMat
();
//! assignment operators
GpuMat
&
operator
=
(
const
GpuMat
&
m
);
//! assignment operator. Perfom blocking upload to device.
GpuMat
&
operator
=
(
const
Mat
&
m
);
//! returns lightweight DevMem2D_ structure for passing to nvcc-compiled code.
// Contains just image size, data ptr and step.
template
<
class
T
>
operator
DevMem2D_
<
T
>
()
const
;
template
<
class
T
>
operator
PtrStep_
<
T
>
()
const
;
//! pefroms blocking upload data to GpuMat.
void
upload
(
const
cv
::
Mat
&
m
);
//! upload async
void
upload
(
const
CudaMem
&
m
,
Stream
&
stream
);
//! downloads data from device to host memory. Blocking calls.
operator
Mat
()
const
;
void
download
(
cv
::
Mat
&
m
)
const
;
//! download async
void
download
(
CudaMem
&
m
,
Stream
&
stream
)
const
;
//! returns a new GpuMatrix header for the specified row
GpuMat
row
(
int
y
)
const
;
//! returns a new GpuMatrix header for the specified column
GpuMat
col
(
int
x
)
const
;
//! ... for the specified row span
GpuMat
rowRange
(
int
startrow
,
int
endrow
)
const
;
GpuMat
rowRange
(
const
Range
&
r
)
const
;
//! ... for the specified column span
GpuMat
colRange
(
int
startcol
,
int
endcol
)
const
;
GpuMat
colRange
(
const
Range
&
r
)
const
;
//! returns deep copy of the GpuMatrix, i.e. the data is copied
GpuMat
clone
()
const
;
//! copies the GpuMatrix content to "m".
// It calls m.create(this->size(), this->type()).
void
copyTo
(
GpuMat
&
m
)
const
;
//! copies those GpuMatrix elements to "m" that are marked with non-zero mask elements.
void
copyTo
(
GpuMat
&
m
,
const
GpuMat
&
mask
)
const
;
//! converts GpuMatrix to another datatype with optional scalng. See cvConvertScale.
void
convertTo
(
GpuMat
&
m
,
int
rtype
,
double
alpha
=
1
,
double
beta
=
0
)
const
;
void
assignTo
(
GpuMat
&
m
,
int
type
=-
1
)
const
;
//! sets every GpuMatrix element to s
GpuMat
&
operator
=
(
const
Scalar
&
s
);
//! sets some of the GpuMatrix elements to s, according to the mask
GpuMat
&
setTo
(
const
Scalar
&
s
,
const
GpuMat
&
mask
=
GpuMat
());
//! creates alternative GpuMatrix header for the same data, with different
// number of channels and/or different number of rows. see cvReshape.
GpuMat
reshape
(
int
cn
,
int
rows
=
0
)
const
;
//! allocates new GpuMatrix data unless the GpuMatrix already has specified size and type.
// previous data is unreferenced if needed.
void
create
(
int
rows
,
int
cols
,
int
type
);
void
create
(
Size
size
,
int
type
);
//! decreases reference counter;
// deallocate the data when reference counter reaches 0.
void
release
();
//! swaps with other smart pointer
void
swap
(
GpuMat
&
mat
);
//! locates GpuMatrix header within a parent GpuMatrix. See below
void
locateROI
(
Size
&
wholeSize
,
Point
&
ofs
)
const
;
//! moves/resizes the current GpuMatrix ROI inside the parent GpuMatrix.
GpuMat
&
adjustROI
(
int
dtop
,
int
dbottom
,
int
dleft
,
int
dright
);
//! extracts a rectangular sub-GpuMatrix
// (this is a generalized form of row, rowRange etc.)
GpuMat
operator
()(
Range
rowRange
,
Range
colRange
)
const
;
GpuMat
operator
()(
const
Rect
&
roi
)
const
;
//! returns true iff the GpuMatrix data is continuous
// (i.e. when there are no gaps between successive rows).
// similar to CV_IS_GpuMat_CONT(cvGpuMat->type)
bool
isContinuous
()
const
;
//! returns element size in bytes,
// similar to CV_ELEM_SIZE(cvMat->type)
size_t
elemSize
()
const
;
//! returns the size of element channel in bytes.
size_t
elemSize1
()
const
;
//! returns element type, similar to CV_MAT_TYPE(cvMat->type)
int
type
()
const
;
//! returns element type, similar to CV_MAT_DEPTH(cvMat->type)
int
depth
()
const
;
//! returns element type, similar to CV_MAT_CN(cvMat->type)
int
channels
()
const
;
//! returns step/elemSize1()
size_t
step1
()
const
;
//! returns GpuMatrix size:
// width == number of columns, height == number of rows
Size
size
()
const
;
//! returns true if GpuMatrix data is NULL
bool
empty
()
const
;
//! returns pointer to y-th row
uchar
*
ptr
(
int
y
=
0
);
const
uchar
*
ptr
(
int
y
=
0
)
const
;
//! template version of the above method
template
<
typename
_Tp
>
_Tp
*
ptr
(
int
y
=
0
);
template
<
typename
_Tp
>
const
_Tp
*
ptr
(
int
y
=
0
)
const
;
//! matrix transposition
GpuMat
t
()
const
;
/*! includes several bit-fields:
- the magic signature
- continuity flag
- depth
- number of channels
*/
int
flags
;
//! the number of rows and columns
int
rows
,
cols
;
//! a distance between successive rows in bytes; includes the gap if any
size_t
step
;
//! pointer to the data
uchar
*
data
;
//! pointer to the reference counter;
// when GpuMatrix points to user-allocated data, the pointer is NULL
int
*
refcount
;
//! helper fields used in locateROI and adjustROI
uchar
*
datastart
;
uchar
*
dataend
;
};
//#define TemplatedGpuMat // experimental now, deprecated to use
#ifdef TemplatedGpuMat
#include "GpuMat_BetaDeprecated.hpp"
#endif
//! Creates continuous GPU matrix
CV_EXPORTS
void
createContinuous
(
int
rows
,
int
cols
,
int
type
,
GpuMat
&
m
);
//! Ensures that size of the given matrix is not less than (rows, cols) size
//! and matrix type is match specified one too
CV_EXPORTS
void
ensureSizeIsEnough
(
int
rows
,
int
cols
,
int
type
,
GpuMat
&
m
);
//////////////////////////////// CudaMem ////////////////////////////////
// CudaMem is limited cv::Mat with page locked memory allocation.
// Page locked memory is only needed for async and faster coping to GPU.
...
...
modules/gpu/include/opencv2/gpu/gpumat.hpp
0 → 100644
View file @
b2b1d41d
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPUMAT_HPP__
#define __OPENCV_GPUMAT_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/gpu/devmem2d.hpp"
namespace
cv
{
namespace
gpu
{
class
Stream
;
class
CudaMem
;
//! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat.
class
CV_EXPORTS
GpuMat
{
public
:
//! default constructor
GpuMat
();
//! constructs GpuMatrix of the specified size and type (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
GpuMat
(
int
rows
,
int
cols
,
int
type
);
GpuMat
(
Size
size
,
int
type
);
//! constucts GpuMatrix and fills it with the specified value _s.
GpuMat
(
int
rows
,
int
cols
,
int
type
,
const
Scalar
&
s
);
GpuMat
(
Size
size
,
int
type
,
const
Scalar
&
s
);
//! copy constructor
GpuMat
(
const
GpuMat
&
m
);
//! constructor for GpuMatrix headers pointing to user-allocated data
GpuMat
(
int
rows
,
int
cols
,
int
type
,
void
*
data
,
size_t
step
=
Mat
::
AUTO_STEP
);
GpuMat
(
Size
size
,
int
type
,
void
*
data
,
size_t
step
=
Mat
::
AUTO_STEP
);
//! creates a matrix header for a part of the bigger matrix
GpuMat
(
const
GpuMat
&
m
,
const
Range
&
rowRange
,
const
Range
&
colRange
);
GpuMat
(
const
GpuMat
&
m
,
const
Rect
&
roi
);
//! builds GpuMat from Mat. Perfom blocking upload to device.
explicit
GpuMat
(
const
Mat
&
m
);
//! destructor - calls release()
~
GpuMat
();
//! assignment operators
GpuMat
&
operator
=
(
const
GpuMat
&
m
);
//! assignment operator. Perfom blocking upload to device.
GpuMat
&
operator
=
(
const
Mat
&
m
);
//! returns lightweight DevMem2D_ structure for passing to nvcc-compiled code.
// Contains just image size, data ptr and step.
template
<
class
T
>
operator
DevMem2D_
<
T
>
()
const
;
template
<
class
T
>
operator
PtrStep_
<
T
>
()
const
;
//! pefroms blocking upload data to GpuMat.
void
upload
(
const
cv
::
Mat
&
m
);
//! upload async
void
upload
(
const
CudaMem
&
m
,
Stream
&
stream
);
//! downloads data from device to host memory. Blocking calls.
operator
Mat
()
const
;
void
download
(
cv
::
Mat
&
m
)
const
;
//! download async
void
download
(
CudaMem
&
m
,
Stream
&
stream
)
const
;
//! returns a new GpuMatrix header for the specified row
GpuMat
row
(
int
y
)
const
;
//! returns a new GpuMatrix header for the specified column
GpuMat
col
(
int
x
)
const
;
//! ... for the specified row span
GpuMat
rowRange
(
int
startrow
,
int
endrow
)
const
;
GpuMat
rowRange
(
const
Range
&
r
)
const
;
//! ... for the specified column span
GpuMat
colRange
(
int
startcol
,
int
endcol
)
const
;
GpuMat
colRange
(
const
Range
&
r
)
const
;
//! returns deep copy of the GpuMatrix, i.e. the data is copied
GpuMat
clone
()
const
;
//! copies the GpuMatrix content to "m".
// It calls m.create(this->size(), this->type()).
void
copyTo
(
GpuMat
&
m
)
const
;
//! copies those GpuMatrix elements to "m" that are marked with non-zero mask elements.
void
copyTo
(
GpuMat
&
m
,
const
GpuMat
&
mask
)
const
;
//! converts GpuMatrix to another datatype with optional scalng. See cvConvertScale.
void
convertTo
(
GpuMat
&
m
,
int
rtype
,
double
alpha
=
1
,
double
beta
=
0
)
const
;
void
assignTo
(
GpuMat
&
m
,
int
type
=-
1
)
const
;
//! sets every GpuMatrix element to s
GpuMat
&
operator
=
(
const
Scalar
&
s
);
//! sets some of the GpuMatrix elements to s, according to the mask
GpuMat
&
setTo
(
const
Scalar
&
s
,
const
GpuMat
&
mask
=
GpuMat
());
//! creates alternative GpuMatrix header for the same data, with different
// number of channels and/or different number of rows. see cvReshape.
GpuMat
reshape
(
int
cn
,
int
rows
=
0
)
const
;
//! allocates new GpuMatrix data unless the GpuMatrix already has specified size and type.
// previous data is unreferenced if needed.
void
create
(
int
rows
,
int
cols
,
int
type
);
void
create
(
Size
size
,
int
type
);
//! decreases reference counter;
// deallocate the data when reference counter reaches 0.
void
release
();
//! swaps with other smart pointer
void
swap
(
GpuMat
&
mat
);
//! locates GpuMatrix header within a parent GpuMatrix. See below
void
locateROI
(
Size
&
wholeSize
,
Point
&
ofs
)
const
;
//! moves/resizes the current GpuMatrix ROI inside the parent GpuMatrix.
GpuMat
&
adjustROI
(
int
dtop
,
int
dbottom
,
int
dleft
,
int
dright
);
//! extracts a rectangular sub-GpuMatrix
// (this is a generalized form of row, rowRange etc.)
GpuMat
operator
()(
Range
rowRange
,
Range
colRange
)
const
;
GpuMat
operator
()(
const
Rect
&
roi
)
const
;
//! returns true iff the GpuMatrix data is continuous
// (i.e. when there are no gaps between successive rows).
// similar to CV_IS_GpuMat_CONT(cvGpuMat->type)
bool
isContinuous
()
const
;
//! returns element size in bytes,
// similar to CV_ELEM_SIZE(cvMat->type)
size_t
elemSize
()
const
;
//! returns the size of element channel in bytes.
size_t
elemSize1
()
const
;
//! returns element type, similar to CV_MAT_TYPE(cvMat->type)
int
type
()
const
;
//! returns element type, similar to CV_MAT_DEPTH(cvMat->type)
int
depth
()
const
;
//! returns element type, similar to CV_MAT_CN(cvMat->type)
int
channels
()
const
;
//! returns step/elemSize1()
size_t
step1
()
const
;
//! returns GpuMatrix size:
// width == number of columns, height == number of rows
Size
size
()
const
;
//! returns true if GpuMatrix data is NULL
bool
empty
()
const
;
//! returns pointer to y-th row
uchar
*
ptr
(
int
y
=
0
);
const
uchar
*
ptr
(
int
y
=
0
)
const
;
//! template version of the above method
template
<
typename
_Tp
>
_Tp
*
ptr
(
int
y
=
0
);
template
<
typename
_Tp
>
const
_Tp
*
ptr
(
int
y
=
0
)
const
;
//! matrix transposition
GpuMat
t
()
const
;
/*! includes several bit-fields:
- the magic signature
- continuity flag
- depth
- number of channels
*/
int
flags
;
//! the number of rows and columns
int
rows
,
cols
;
//! a distance between successive rows in bytes; includes the gap if any
size_t
step
;
//! pointer to the data
uchar
*
data
;
//! pointer to the reference counter;
// when GpuMatrix points to user-allocated data, the pointer is NULL
int
*
refcount
;
//! helper fields used in locateROI and adjustROI
uchar
*
datastart
;
uchar
*
dataend
;
};
//! Creates continuous GPU matrix
CV_EXPORTS
void
createContinuous
(
int
rows
,
int
cols
,
int
type
,
GpuMat
&
m
);
CV_EXPORTS
GpuMat
createContinuous
(
int
rows
,
int
cols
,
int
type
);
CV_EXPORTS
void
createContinuous
(
Size
size
,
int
type
,
GpuMat
&
m
);
CV_EXPORTS
GpuMat
createContinuous
(
Size
size
,
int
type
);
//! Ensures that size of the given matrix is not less than (rows, cols) size
//! and matrix type is match specified one too
CV_EXPORTS
void
ensureSizeIsEnough
(
int
rows
,
int
cols
,
int
type
,
GpuMat
&
m
);
CV_EXPORTS
void
ensureSizeIsEnough
(
Size
size
,
int
type
,
GpuMat
&
m
);
////////////////////////////////////////////////////////////////////////
//////////////////////////////// GpuMat ////////////////////////////////
////////////////////////////////////////////////////////////////////////
inline
GpuMat
::
GpuMat
()
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{}
inline
GpuMat
::
GpuMat
(
int
rows_
,
int
cols_
,
int
type_
)
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{
if
(
rows_
>
0
&&
cols_
>
0
)
create
(
rows_
,
cols_
,
type_
);
}
inline
GpuMat
::~
GpuMat
()
{
release
();
}
template
<
class
T
>
inline
GpuMat
::
operator
DevMem2D_
<
T
>
()
const
{
return
DevMem2D_
<
T
>
(
rows
,
cols
,
(
T
*
)
data
,
step
);
}
template
<
class
T
>
inline
GpuMat
::
operator
PtrStep_
<
T
>
()
const
{
return
PtrStep_
<
T
>
(
static_cast
<
DevMem2D_
<
T
>
>
(
*
this
));
}
inline
GpuMat
GpuMat
::
clone
()
const
{
GpuMat
m
;
copyTo
(
m
);
return
m
;
}
inline
void
GpuMat
::
assignTo
(
GpuMat
&
m
,
int
type
)
const
{
if
(
type
<
0
)
m
=
*
this
;
else
convertTo
(
m
,
type
);
}
inline
size_t
GpuMat
::
step1
()
const
{
return
step
/
elemSize1
();
}
inline
bool
GpuMat
::
empty
()
const
{
return
data
==
0
;
}
template
<
typename
_Tp
>
inline
_Tp
*
GpuMat
::
ptr
(
int
y
)
{
return
(
_Tp
*
)
ptr
(
y
);
}
template
<
typename
_Tp
>
inline
const
_Tp
*
GpuMat
::
ptr
(
int
y
)
const
{
return
(
const
_Tp
*
)
ptr
(
y
);
}
inline
void
swap
(
GpuMat
&
a
,
GpuMat
&
b
)
{
a
.
swap
(
b
);
}
}}
#endif // __OPENCV_GPUMAT_HPP__
modules/gpu/include/opencv2/gpu/matrix_operations.hpp
View file @
b2b1d41d
...
...
@@ -48,328 +48,6 @@ namespace cv
namespace
gpu
{
////////////////////////////////////////////////////////////////////////
//////////////////////////////// GpuMat ////////////////////////////////
////////////////////////////////////////////////////////////////////////
inline
GpuMat
::
GpuMat
()
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{}
inline
GpuMat
::
GpuMat
(
int
_rows
,
int
_cols
,
int
_type
)
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{
if
(
_rows
>
0
&&
_cols
>
0
)
create
(
_rows
,
_cols
,
_type
);
}
inline
GpuMat
::
GpuMat
(
Size
_size
,
int
_type
)
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{
if
(
_size
.
height
>
0
&&
_size
.
width
>
0
)
create
(
_size
.
height
,
_size
.
width
,
_type
);
}
inline
GpuMat
::
GpuMat
(
int
_rows
,
int
_cols
,
int
_type
,
const
Scalar
&
_s
)
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{
if
(
_rows
>
0
&&
_cols
>
0
)
{
create
(
_rows
,
_cols
,
_type
);
*
this
=
_s
;
}
}
inline
GpuMat
::
GpuMat
(
Size
_size
,
int
_type
,
const
Scalar
&
_s
)
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{
if
(
_size
.
height
>
0
&&
_size
.
width
>
0
)
{
create
(
_size
.
height
,
_size
.
width
,
_type
);
*
this
=
_s
;
}
}
inline
GpuMat
::
GpuMat
(
const
GpuMat
&
m
)
:
flags
(
m
.
flags
),
rows
(
m
.
rows
),
cols
(
m
.
cols
),
step
(
m
.
step
),
data
(
m
.
data
),
refcount
(
m
.
refcount
),
datastart
(
m
.
datastart
),
dataend
(
m
.
dataend
)
{
if
(
refcount
)
CV_XADD
(
refcount
,
1
);
}
inline
GpuMat
::
GpuMat
(
int
_rows
,
int
_cols
,
int
_type
,
void
*
_data
,
size_t
_step
)
:
flags
(
Mat
::
MAGIC_VAL
+
(
_type
&
TYPE_MASK
)),
rows
(
_rows
),
cols
(
_cols
),
step
(
_step
),
data
((
uchar
*
)
_data
),
refcount
(
0
),
datastart
((
uchar
*
)
_data
),
dataend
((
uchar
*
)
_data
)
{
size_t
minstep
=
cols
*
elemSize
();
if
(
step
==
Mat
::
AUTO_STEP
)
{
step
=
minstep
;
flags
|=
Mat
::
CONTINUOUS_FLAG
;
}
else
{
if
(
rows
==
1
)
step
=
minstep
;
CV_DbgAssert
(
step
>=
minstep
);
flags
|=
step
==
minstep
?
Mat
::
CONTINUOUS_FLAG
:
0
;
}
dataend
+=
step
*
(
rows
-
1
)
+
minstep
;
}
inline
GpuMat
::
GpuMat
(
Size
_size
,
int
_type
,
void
*
_data
,
size_t
_step
)
:
flags
(
Mat
::
MAGIC_VAL
+
(
_type
&
TYPE_MASK
)),
rows
(
_size
.
height
),
cols
(
_size
.
width
),
step
(
_step
),
data
((
uchar
*
)
_data
),
refcount
(
0
),
datastart
((
uchar
*
)
_data
),
dataend
((
uchar
*
)
_data
)
{
size_t
minstep
=
cols
*
elemSize
();
if
(
step
==
Mat
::
AUTO_STEP
)
{
step
=
minstep
;
flags
|=
Mat
::
CONTINUOUS_FLAG
;
}
else
{
if
(
rows
==
1
)
step
=
minstep
;
CV_DbgAssert
(
step
>=
minstep
);
flags
|=
step
==
minstep
?
Mat
::
CONTINUOUS_FLAG
:
0
;
}
dataend
+=
step
*
(
rows
-
1
)
+
minstep
;
}
inline
GpuMat
::
GpuMat
(
const
GpuMat
&
m
,
const
Range
&
rowRange
,
const
Range
&
colRange
)
{
flags
=
m
.
flags
;
step
=
m
.
step
;
refcount
=
m
.
refcount
;
data
=
m
.
data
;
datastart
=
m
.
datastart
;
dataend
=
m
.
dataend
;
if
(
rowRange
==
Range
::
all
()
)
rows
=
m
.
rows
;
else
{
CV_Assert
(
0
<=
rowRange
.
start
&&
rowRange
.
start
<=
rowRange
.
end
&&
rowRange
.
end
<=
m
.
rows
);
rows
=
rowRange
.
size
();
data
+=
step
*
rowRange
.
start
;
}
if
(
colRange
==
Range
::
all
()
)
cols
=
m
.
cols
;
else
{
CV_Assert
(
0
<=
colRange
.
start
&&
colRange
.
start
<=
colRange
.
end
&&
colRange
.
end
<=
m
.
cols
);
cols
=
colRange
.
size
();
data
+=
colRange
.
start
*
elemSize
();
flags
&=
cols
<
m
.
cols
?
~
Mat
::
CONTINUOUS_FLAG
:
-
1
;
}
if
(
rows
==
1
)
flags
|=
Mat
::
CONTINUOUS_FLAG
;
if
(
refcount
)
CV_XADD
(
refcount
,
1
);
if
(
rows
<=
0
||
cols
<=
0
)
rows
=
cols
=
0
;
}
inline
GpuMat
::
GpuMat
(
const
GpuMat
&
m
,
const
Rect
&
roi
)
:
flags
(
m
.
flags
),
rows
(
roi
.
height
),
cols
(
roi
.
width
),
step
(
m
.
step
),
data
(
m
.
data
+
roi
.
y
*
step
),
refcount
(
m
.
refcount
),
datastart
(
m
.
datastart
),
dataend
(
m
.
dataend
)
{
flags
&=
roi
.
width
<
m
.
cols
?
~
Mat
::
CONTINUOUS_FLAG
:
-
1
;
data
+=
roi
.
x
*
elemSize
();
CV_Assert
(
0
<=
roi
.
x
&&
0
<=
roi
.
width
&&
roi
.
x
+
roi
.
width
<=
m
.
cols
&&
0
<=
roi
.
y
&&
0
<=
roi
.
height
&&
roi
.
y
+
roi
.
height
<=
m
.
rows
);
if
(
refcount
)
CV_XADD
(
refcount
,
1
);
if
(
rows
<=
0
||
cols
<=
0
)
rows
=
cols
=
0
;
}
inline
GpuMat
::
GpuMat
(
const
Mat
&
m
)
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{
upload
(
m
);
}
inline
GpuMat
::~
GpuMat
()
{
release
();
}
inline
GpuMat
&
GpuMat
::
operator
=
(
const
GpuMat
&
m
)
{
if
(
this
!=
&
m
)
{
if
(
m
.
refcount
)
CV_XADD
(
m
.
refcount
,
1
);
release
();
flags
=
m
.
flags
;
rows
=
m
.
rows
;
cols
=
m
.
cols
;
step
=
m
.
step
;
data
=
m
.
data
;
datastart
=
m
.
datastart
;
dataend
=
m
.
dataend
;
refcount
=
m
.
refcount
;
}
return
*
this
;
}
inline
GpuMat
&
GpuMat
::
operator
=
(
const
Mat
&
m
)
{
upload
(
m
);
return
*
this
;
}
template
<
class
T
>
inline
GpuMat
::
operator
DevMem2D_
<
T
>
()
const
{
return
DevMem2D_
<
T
>
(
rows
,
cols
,
(
T
*
)
data
,
step
);
}
template
<
class
T
>
inline
GpuMat
::
operator
PtrStep_
<
T
>
()
const
{
return
PtrStep_
<
T
>
(
static_cast
<
DevMem2D_
<
T
>
>
(
*
this
));
}
//CPP: void GpuMat::upload(const Mat& m);
inline
GpuMat
::
operator
Mat
()
const
{
Mat
m
;
download
(
m
);
return
m
;
}
//CPP void GpuMat::download(cv::Mat& m) const;
inline
GpuMat
GpuMat
::
row
(
int
y
)
const
{
return
GpuMat
(
*
this
,
Range
(
y
,
y
+
1
),
Range
::
all
());
}
inline
GpuMat
GpuMat
::
col
(
int
x
)
const
{
return
GpuMat
(
*
this
,
Range
::
all
(),
Range
(
x
,
x
+
1
));
}
inline
GpuMat
GpuMat
::
rowRange
(
int
startrow
,
int
endrow
)
const
{
return
GpuMat
(
*
this
,
Range
(
startrow
,
endrow
),
Range
::
all
());
}
inline
GpuMat
GpuMat
::
rowRange
(
const
Range
&
r
)
const
{
return
GpuMat
(
*
this
,
r
,
Range
::
all
());
}
inline
GpuMat
GpuMat
::
colRange
(
int
startcol
,
int
endcol
)
const
{
return
GpuMat
(
*
this
,
Range
::
all
(),
Range
(
startcol
,
endcol
));
}
inline
GpuMat
GpuMat
::
colRange
(
const
Range
&
r
)
const
{
return
GpuMat
(
*
this
,
Range
::
all
(),
r
);
}
inline
GpuMat
GpuMat
::
clone
()
const
{
GpuMat
m
;
copyTo
(
m
);
return
m
;
}
//CPP void GpuMat::copyTo( GpuMat& m ) const;
//CPP void GpuMat::copyTo( GpuMat& m, const GpuMat& mask ) const;
//CPP void GpuMat::convertTo( GpuMat& m, int rtype, double alpha=1, double beta=0 ) const;
inline
void
GpuMat
::
assignTo
(
GpuMat
&
m
,
int
type
)
const
{
if
(
type
<
0
)
m
=
*
this
;
else
convertTo
(
m
,
type
);
}
//CPP GpuMat& GpuMat::operator = (const Scalar& s);
//CPP GpuMat& GpuMat::setTo(const Scalar& s, const GpuMat& mask=GpuMat());
//CPP GpuMat GpuMat::reshape(int _cn, int _rows=0) const;
inline
void
GpuMat
::
create
(
Size
_size
,
int
_type
)
{
create
(
_size
.
height
,
_size
.
width
,
_type
);
}
//CPP void GpuMat::create(int _rows, int _cols, int _type);
//CPP void GpuMat::release();
inline
void
GpuMat
::
swap
(
GpuMat
&
b
)
{
std
::
swap
(
flags
,
b
.
flags
);
std
::
swap
(
rows
,
b
.
rows
);
std
::
swap
(
cols
,
b
.
cols
);
std
::
swap
(
step
,
b
.
step
);
std
::
swap
(
data
,
b
.
data
);
std
::
swap
(
datastart
,
b
.
datastart
);
std
::
swap
(
dataend
,
b
.
dataend
);
std
::
swap
(
refcount
,
b
.
refcount
);
}
inline
void
GpuMat
::
locateROI
(
Size
&
wholeSize
,
Point
&
ofs
)
const
{
size_t
esz
=
elemSize
(),
minstep
;
ptrdiff_t
delta1
=
data
-
datastart
,
delta2
=
dataend
-
datastart
;
CV_DbgAssert
(
step
>
0
);
if
(
delta1
==
0
)
ofs
.
x
=
ofs
.
y
=
0
;
else
{
ofs
.
y
=
(
int
)(
delta1
/
step
);
ofs
.
x
=
(
int
)((
delta1
-
step
*
ofs
.
y
)
/
esz
);
CV_DbgAssert
(
data
==
datastart
+
ofs
.
y
*
step
+
ofs
.
x
*
esz
);
}
minstep
=
(
ofs
.
x
+
cols
)
*
esz
;
wholeSize
.
height
=
(
int
)((
delta2
-
minstep
)
/
step
+
1
);
wholeSize
.
height
=
std
::
max
(
wholeSize
.
height
,
ofs
.
y
+
rows
);
wholeSize
.
width
=
(
int
)((
delta2
-
step
*
(
wholeSize
.
height
-
1
))
/
esz
);
wholeSize
.
width
=
std
::
max
(
wholeSize
.
width
,
ofs
.
x
+
cols
);
}
inline
GpuMat
&
GpuMat
::
adjustROI
(
int
dtop
,
int
dbottom
,
int
dleft
,
int
dright
)
{
Size
wholeSize
;
Point
ofs
;
size_t
esz
=
elemSize
();
locateROI
(
wholeSize
,
ofs
);
int
row1
=
std
::
max
(
ofs
.
y
-
dtop
,
0
),
row2
=
std
::
min
(
ofs
.
y
+
rows
+
dbottom
,
wholeSize
.
height
);
int
col1
=
std
::
max
(
ofs
.
x
-
dleft
,
0
),
col2
=
std
::
min
(
ofs
.
x
+
cols
+
dright
,
wholeSize
.
width
);
data
+=
(
row1
-
ofs
.
y
)
*
step
+
(
col1
-
ofs
.
x
)
*
esz
;
rows
=
row2
-
row1
;
cols
=
col2
-
col1
;
if
(
esz
*
cols
==
step
||
rows
==
1
)
flags
|=
Mat
::
CONTINUOUS_FLAG
;
else
flags
&=
~
Mat
::
CONTINUOUS_FLAG
;
return
*
this
;
}
inline
GpuMat
GpuMat
::
operator
()(
Range
rowRange
,
Range
colRange
)
const
{
return
GpuMat
(
*
this
,
rowRange
,
colRange
);
}
inline
GpuMat
GpuMat
::
operator
()(
const
Rect
&
roi
)
const
{
return
GpuMat
(
*
this
,
roi
);
}
inline
bool
GpuMat
::
isContinuous
()
const
{
return
(
flags
&
Mat
::
CONTINUOUS_FLAG
)
!=
0
;
}
inline
size_t
GpuMat
::
elemSize
()
const
{
return
CV_ELEM_SIZE
(
flags
);
}
inline
size_t
GpuMat
::
elemSize1
()
const
{
return
CV_ELEM_SIZE1
(
flags
);
}
inline
int
GpuMat
::
type
()
const
{
return
CV_MAT_TYPE
(
flags
);
}
inline
int
GpuMat
::
depth
()
const
{
return
CV_MAT_DEPTH
(
flags
);
}
inline
int
GpuMat
::
channels
()
const
{
return
CV_MAT_CN
(
flags
);
}
inline
size_t
GpuMat
::
step1
()
const
{
return
step
/
elemSize1
();
}
inline
Size
GpuMat
::
size
()
const
{
return
Size
(
cols
,
rows
);
}
inline
bool
GpuMat
::
empty
()
const
{
return
data
==
0
;
}
inline
uchar
*
GpuMat
::
ptr
(
int
y
)
{
CV_DbgAssert
(
(
unsigned
)
y
<
(
unsigned
)
rows
);
return
data
+
step
*
y
;
}
inline
const
uchar
*
GpuMat
::
ptr
(
int
y
)
const
{
CV_DbgAssert
(
(
unsigned
)
y
<
(
unsigned
)
rows
);
return
data
+
step
*
y
;
}
template
<
typename
_Tp
>
inline
_Tp
*
GpuMat
::
ptr
(
int
y
)
{
CV_DbgAssert
(
(
unsigned
)
y
<
(
unsigned
)
rows
);
return
(
_Tp
*
)(
data
+
step
*
y
);
}
template
<
typename
_Tp
>
inline
const
_Tp
*
GpuMat
::
ptr
(
int
y
)
const
{
CV_DbgAssert
(
(
unsigned
)
y
<
(
unsigned
)
rows
);
return
(
const
_Tp
*
)(
data
+
step
*
y
);
}
inline
GpuMat
GpuMat
::
t
()
const
{
GpuMat
tmp
;
transpose
(
*
this
,
tmp
);
return
tmp
;
}
static
inline
void
swap
(
GpuMat
&
a
,
GpuMat
&
b
)
{
a
.
swap
(
b
);
}
inline
GpuMat
createContinuous
(
int
rows
,
int
cols
,
int
type
)
{
GpuMat
m
;
createContinuous
(
rows
,
cols
,
type
,
m
);
return
m
;
}
inline
void
createContinuous
(
Size
size
,
int
type
,
GpuMat
&
m
)
{
createContinuous
(
size
.
height
,
size
.
width
,
type
,
m
);
}
inline
GpuMat
createContinuous
(
Size
size
,
int
type
)
{
GpuMat
m
;
createContinuous
(
size
,
type
,
m
);
return
m
;
}
inline
void
ensureSizeIsEnough
(
Size
size
,
int
type
,
GpuMat
&
m
)
{
ensureSizeIsEnough
(
size
.
height
,
size
.
width
,
type
,
m
);
}
///////////////////////////////////////////////////////////////////////
//////////////////////////////// CudaMem ////////////////////////////////
///////////////////////////////////////////////////////////////////////
...
...
@@ -457,41 +135,6 @@ inline size_t CudaMem::step1() const { return step/elemSize1(); }
inline
Size
CudaMem
::
size
()
const
{
return
Size
(
cols
,
rows
);
}
inline
bool
CudaMem
::
empty
()
const
{
return
data
==
0
;
}
//////////////////////////////////////////////////////////////////////////////
// Arithmetical operations
inline
GpuMat
operator
~
(
const
GpuMat
&
src
)
{
GpuMat
dst
;
bitwise_not
(
src
,
dst
);
return
dst
;
}
inline
GpuMat
operator
|
(
const
GpuMat
&
src1
,
const
GpuMat
&
src2
)
{
GpuMat
dst
;
bitwise_or
(
src1
,
src2
,
dst
);
return
dst
;
}
inline
GpuMat
operator
&
(
const
GpuMat
&
src1
,
const
GpuMat
&
src2
)
{
GpuMat
dst
;
bitwise_and
(
src1
,
src2
,
dst
);
return
dst
;
}
inline
GpuMat
operator
^
(
const
GpuMat
&
src1
,
const
GpuMat
&
src2
)
{
GpuMat
dst
;
bitwise_xor
(
src1
,
src2
,
dst
);
return
dst
;
}
}
/* end of namespace gpu */
}
/* end of namespace cv */
...
...
modules/gpu/src/gpumat.cpp
0 → 100644
View file @
b2b1d41d
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using
namespace
cv
;
using
namespace
cv
::
gpu
;
////////////////////////////////////////////////////////////////////////
//////////////////////////////// GpuMat ////////////////////////////////
////////////////////////////////////////////////////////////////////////
cv
::
gpu
::
GpuMat
::
GpuMat
(
Size
size_
,
int
type_
)
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{
if
(
size_
.
height
>
0
&&
size_
.
width
>
0
)
create
(
size_
.
height
,
size_
.
width
,
type_
);
}
cv
::
gpu
::
GpuMat
::
GpuMat
(
int
rows_
,
int
cols_
,
int
type_
,
const
Scalar
&
s_
)
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{
if
(
rows_
>
0
&&
cols_
>
0
)
{
create
(
rows_
,
cols_
,
type_
);
*
this
=
s_
;
}
}
cv
::
gpu
::
GpuMat
::
GpuMat
(
Size
size_
,
int
type_
,
const
Scalar
&
s_
)
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{
if
(
size_
.
height
>
0
&&
size_
.
width
>
0
)
{
create
(
size_
.
height
,
size_
.
width
,
type_
);
*
this
=
s_
;
}
}
cv
::
gpu
::
GpuMat
::
GpuMat
(
const
GpuMat
&
m
)
:
flags
(
m
.
flags
),
rows
(
m
.
rows
),
cols
(
m
.
cols
),
step
(
m
.
step
),
data
(
m
.
data
),
refcount
(
m
.
refcount
),
datastart
(
m
.
datastart
),
dataend
(
m
.
dataend
)
{
if
(
refcount
)
CV_XADD
(
refcount
,
1
);
}
cv
::
gpu
::
GpuMat
::
GpuMat
(
int
rows_
,
int
cols_
,
int
type_
,
void
*
data_
,
size_t
step_
)
:
flags
(
Mat
::
MAGIC_VAL
+
(
type_
&
TYPE_MASK
)),
rows
(
rows_
),
cols
(
cols_
),
step
(
step_
),
data
((
uchar
*
)
data_
),
refcount
(
0
),
datastart
((
uchar
*
)
data_
),
dataend
((
uchar
*
)
data_
)
{
size_t
minstep
=
cols
*
elemSize
();
if
(
step
==
Mat
::
AUTO_STEP
)
{
step
=
minstep
;
flags
|=
Mat
::
CONTINUOUS_FLAG
;
}
else
{
if
(
rows
==
1
)
step
=
minstep
;
CV_DbgAssert
(
step
>=
minstep
);
flags
|=
step
==
minstep
?
Mat
::
CONTINUOUS_FLAG
:
0
;
}
dataend
+=
step
*
(
rows
-
1
)
+
minstep
;
}
cv
::
gpu
::
GpuMat
::
GpuMat
(
Size
size_
,
int
type_
,
void
*
data_
,
size_t
step_
)
:
flags
(
Mat
::
MAGIC_VAL
+
(
type_
&
TYPE_MASK
)),
rows
(
size_
.
height
),
cols
(
size_
.
width
),
step
(
step_
),
data
((
uchar
*
)
data_
),
refcount
(
0
),
datastart
((
uchar
*
)
data_
),
dataend
((
uchar
*
)
data_
)
{
size_t
minstep
=
cols
*
elemSize
();
if
(
step
==
Mat
::
AUTO_STEP
)
{
step
=
minstep
;
flags
|=
Mat
::
CONTINUOUS_FLAG
;
}
else
{
if
(
rows
==
1
)
step
=
minstep
;
CV_DbgAssert
(
step
>=
minstep
);
flags
|=
step
==
minstep
?
Mat
::
CONTINUOUS_FLAG
:
0
;
}
dataend
+=
step
*
(
rows
-
1
)
+
minstep
;
}
cv
::
gpu
::
GpuMat
::
GpuMat
(
const
GpuMat
&
m
,
const
Range
&
rowRange
,
const
Range
&
colRange
)
{
flags
=
m
.
flags
;
step
=
m
.
step
;
refcount
=
m
.
refcount
;
data
=
m
.
data
;
datastart
=
m
.
datastart
;
dataend
=
m
.
dataend
;
if
(
rowRange
==
Range
::
all
())
rows
=
m
.
rows
;
else
{
CV_Assert
(
0
<=
rowRange
.
start
&&
rowRange
.
start
<=
rowRange
.
end
&&
rowRange
.
end
<=
m
.
rows
);
rows
=
rowRange
.
size
();
data
+=
step
*
rowRange
.
start
;
}
if
(
colRange
==
Range
::
all
())
cols
=
m
.
cols
;
else
{
CV_Assert
(
0
<=
colRange
.
start
&&
colRange
.
start
<=
colRange
.
end
&&
colRange
.
end
<=
m
.
cols
);
cols
=
colRange
.
size
();
data
+=
colRange
.
start
*
elemSize
();
flags
&=
cols
<
m
.
cols
?
~
Mat
::
CONTINUOUS_FLAG
:
-
1
;
}
if
(
rows
==
1
)
flags
|=
Mat
::
CONTINUOUS_FLAG
;
if
(
refcount
)
CV_XADD
(
refcount
,
1
);
if
(
rows
<=
0
||
cols
<=
0
)
rows
=
cols
=
0
;
}
cv
::
gpu
::
GpuMat
::
GpuMat
(
const
GpuMat
&
m
,
const
Rect
&
roi
)
:
flags
(
m
.
flags
),
rows
(
roi
.
height
),
cols
(
roi
.
width
),
step
(
m
.
step
),
data
(
m
.
data
+
roi
.
y
*
step
),
refcount
(
m
.
refcount
),
datastart
(
m
.
datastart
),
dataend
(
m
.
dataend
)
{
flags
&=
roi
.
width
<
m
.
cols
?
~
Mat
::
CONTINUOUS_FLAG
:
-
1
;
data
+=
roi
.
x
*
elemSize
();
CV_Assert
(
0
<=
roi
.
x
&&
0
<=
roi
.
width
&&
roi
.
x
+
roi
.
width
<=
m
.
cols
&&
0
<=
roi
.
y
&&
0
<=
roi
.
height
&&
roi
.
y
+
roi
.
height
<=
m
.
rows
);
if
(
refcount
)
CV_XADD
(
refcount
,
1
);
if
(
rows
<=
0
||
cols
<=
0
)
rows
=
cols
=
0
;
}
cv
::
gpu
::
GpuMat
::
GpuMat
(
const
Mat
&
m
)
:
flags
(
0
),
rows
(
0
),
cols
(
0
),
step
(
0
),
data
(
0
),
refcount
(
0
),
datastart
(
0
),
dataend
(
0
)
{
upload
(
m
);
}
GpuMat
&
cv
::
gpu
::
GpuMat
::
operator
=
(
const
GpuMat
&
m
)
{
if
(
this
!=
&
m
)
{
if
(
m
.
refcount
)
CV_XADD
(
m
.
refcount
,
1
);
release
();
flags
=
m
.
flags
;
rows
=
m
.
rows
;
cols
=
m
.
cols
;
step
=
m
.
step
;
data
=
m
.
data
;
datastart
=
m
.
datastart
;
dataend
=
m
.
dataend
;
refcount
=
m
.
refcount
;
}
return
*
this
;
}
GpuMat
&
cv
::
gpu
::
GpuMat
::
operator
=
(
const
Mat
&
m
)
{
upload
(
m
);
return
*
this
;
}
cv
::
gpu
::
GpuMat
::
operator
Mat
()
const
{
Mat
m
;
download
(
m
);
return
m
;
}
GpuMat
cv
::
gpu
::
GpuMat
::
row
(
int
y
)
const
{
return
GpuMat
(
*
this
,
Range
(
y
,
y
+
1
),
Range
::
all
());
}
GpuMat
cv
::
gpu
::
GpuMat
::
col
(
int
x
)
const
{
return
GpuMat
(
*
this
,
Range
::
all
(),
Range
(
x
,
x
+
1
));
}
GpuMat
cv
::
gpu
::
GpuMat
::
rowRange
(
int
startrow
,
int
endrow
)
const
{
return
GpuMat
(
*
this
,
Range
(
startrow
,
endrow
),
Range
::
all
());
}
GpuMat
cv
::
gpu
::
GpuMat
::
rowRange
(
const
Range
&
r
)
const
{
return
GpuMat
(
*
this
,
r
,
Range
::
all
());
}
GpuMat
cv
::
gpu
::
GpuMat
::
colRange
(
int
startcol
,
int
endcol
)
const
{
return
GpuMat
(
*
this
,
Range
::
all
(),
Range
(
startcol
,
endcol
));
}
GpuMat
cv
::
gpu
::
GpuMat
::
colRange
(
const
Range
&
r
)
const
{
return
GpuMat
(
*
this
,
Range
::
all
(),
r
);
}
void
cv
::
gpu
::
GpuMat
::
create
(
Size
size_
,
int
type_
)
{
create
(
size_
.
height
,
size_
.
width
,
type_
);
}
void
cv
::
gpu
::
GpuMat
::
swap
(
GpuMat
&
b
)
{
std
::
swap
(
flags
,
b
.
flags
);
std
::
swap
(
rows
,
b
.
rows
);
std
::
swap
(
cols
,
b
.
cols
);
std
::
swap
(
step
,
b
.
step
);
std
::
swap
(
data
,
b
.
data
);
std
::
swap
(
datastart
,
b
.
datastart
);
std
::
swap
(
dataend
,
b
.
dataend
);
std
::
swap
(
refcount
,
b
.
refcount
);
}
void
cv
::
gpu
::
GpuMat
::
locateROI
(
Size
&
wholeSize
,
Point
&
ofs
)
const
{
size_t
esz
=
elemSize
(),
minstep
;
ptrdiff_t
delta1
=
data
-
datastart
,
delta2
=
dataend
-
datastart
;
CV_DbgAssert
(
step
>
0
);
if
(
delta1
==
0
)
ofs
.
x
=
ofs
.
y
=
0
;
else
{
ofs
.
y
=
(
int
)(
delta1
/
step
);
ofs
.
x
=
(
int
)((
delta1
-
step
*
ofs
.
y
)
/
esz
);
CV_DbgAssert
(
data
==
datastart
+
ofs
.
y
*
step
+
ofs
.
x
*
esz
);
}
minstep
=
(
ofs
.
x
+
cols
)
*
esz
;
wholeSize
.
height
=
(
int
)((
delta2
-
minstep
)
/
step
+
1
);
wholeSize
.
height
=
std
::
max
(
wholeSize
.
height
,
ofs
.
y
+
rows
);
wholeSize
.
width
=
(
int
)((
delta2
-
step
*
(
wholeSize
.
height
-
1
))
/
esz
);
wholeSize
.
width
=
std
::
max
(
wholeSize
.
width
,
ofs
.
x
+
cols
);
}
GpuMat
&
cv
::
gpu
::
GpuMat
::
adjustROI
(
int
dtop
,
int
dbottom
,
int
dleft
,
int
dright
)
{
Size
wholeSize
;
Point
ofs
;
size_t
esz
=
elemSize
();
locateROI
(
wholeSize
,
ofs
);
int
row1
=
std
::
max
(
ofs
.
y
-
dtop
,
0
),
row2
=
std
::
min
(
ofs
.
y
+
rows
+
dbottom
,
wholeSize
.
height
);
int
col1
=
std
::
max
(
ofs
.
x
-
dleft
,
0
),
col2
=
std
::
min
(
ofs
.
x
+
cols
+
dright
,
wholeSize
.
width
);
data
+=
(
row1
-
ofs
.
y
)
*
step
+
(
col1
-
ofs
.
x
)
*
esz
;
rows
=
row2
-
row1
;
cols
=
col2
-
col1
;
if
(
esz
*
cols
==
step
||
rows
==
1
)
flags
|=
Mat
::
CONTINUOUS_FLAG
;
else
flags
&=
~
Mat
::
CONTINUOUS_FLAG
;
return
*
this
;
}
cv
::
gpu
::
GpuMat
GpuMat
::
operator
()(
Range
rowRange
,
Range
colRange
)
const
{
return
GpuMat
(
*
this
,
rowRange
,
colRange
);
}
cv
::
gpu
::
GpuMat
GpuMat
::
operator
()(
const
Rect
&
roi
)
const
{
return
GpuMat
(
*
this
,
roi
);
}
bool
cv
::
gpu
::
GpuMat
::
isContinuous
()
const
{
return
(
flags
&
Mat
::
CONTINUOUS_FLAG
)
!=
0
;
}
size_t
cv
::
gpu
::
GpuMat
::
elemSize
()
const
{
return
CV_ELEM_SIZE
(
flags
);
}
size_t
cv
::
gpu
::
GpuMat
::
elemSize1
()
const
{
return
CV_ELEM_SIZE1
(
flags
);
}
int
cv
::
gpu
::
GpuMat
::
type
()
const
{
return
CV_MAT_TYPE
(
flags
);
}
int
cv
::
gpu
::
GpuMat
::
depth
()
const
{
return
CV_MAT_DEPTH
(
flags
);
}
int
cv
::
gpu
::
GpuMat
::
channels
()
const
{
return
CV_MAT_CN
(
flags
);
}
Size
cv
::
gpu
::
GpuMat
::
size
()
const
{
return
Size
(
cols
,
rows
);
}
unsigned
char
*
cv
::
gpu
::
GpuMat
::
ptr
(
int
y
)
{
CV_DbgAssert
(
(
unsigned
)
y
<
(
unsigned
)
rows
);
return
data
+
step
*
y
;
}
const
unsigned
char
*
cv
::
gpu
::
GpuMat
::
ptr
(
int
y
)
const
{
CV_DbgAssert
(
(
unsigned
)
y
<
(
unsigned
)
rows
);
return
data
+
step
*
y
;
}
GpuMat
cv
::
gpu
::
GpuMat
::
t
()
const
{
GpuMat
tmp
;
transpose
(
*
this
,
tmp
);
return
tmp
;
}
GpuMat
cv
::
gpu
::
createContinuous
(
int
rows
,
int
cols
,
int
type
)
{
GpuMat
m
;
createContinuous
(
rows
,
cols
,
type
,
m
);
return
m
;
}
void
cv
::
gpu
::
createContinuous
(
Size
size
,
int
type
,
GpuMat
&
m
)
{
createContinuous
(
size
.
height
,
size
.
width
,
type
,
m
);
}
GpuMat
cv
::
gpu
::
createContinuous
(
Size
size
,
int
type
)
{
GpuMat
m
;
createContinuous
(
size
,
type
,
m
);
return
m
;
}
void
cv
::
gpu
::
ensureSizeIsEnough
(
Size
size
,
int
type
,
GpuMat
&
m
)
{
ensureSizeIsEnough
(
size
.
height
,
size
.
width
,
type
,
m
);
}
#if !defined (HAVE_CUDA)
void
cv
::
gpu
::
GpuMat
::
upload
(
const
Mat
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
GpuMat
::
download
(
cv
::
Mat
&
)
const
{
throw_nogpu
();
}
void
cv
::
gpu
::
GpuMat
::
copyTo
(
GpuMat
&
)
const
{
throw_nogpu
();
}
void
cv
::
gpu
::
GpuMat
::
copyTo
(
GpuMat
&
,
const
GpuMat
&
)
const
{
throw_nogpu
();
}
void
cv
::
gpu
::
GpuMat
::
convertTo
(
GpuMat
&
,
int
,
double
,
double
)
const
{
throw_nogpu
();
}
GpuMat
&
cv
::
gpu
::
GpuMat
::
operator
=
(
const
Scalar
&
)
{
throw_nogpu
();
return
*
this
;
}
GpuMat
&
cv
::
gpu
::
GpuMat
::
setTo
(
const
Scalar
&
,
const
GpuMat
&
)
{
throw_nogpu
();
return
*
this
;
}
GpuMat
cv
::
gpu
::
GpuMat
::
reshape
(
int
,
int
)
const
{
throw_nogpu
();
return
GpuMat
();
}
void
cv
::
gpu
::
GpuMat
::
create
(
int
,
int
,
int
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
GpuMat
::
release
()
{}
void
cv
::
gpu
::
createContinuous
(
int
,
int
,
int
,
GpuMat
&
)
{
throw_nogpu
();
}
#else
/* !defined (HAVE_CUDA) */
namespace
cv
{
namespace
gpu
{
namespace
matrix_operations
{
void
copy_to_with_mask
(
const
DevMem2D
&
src
,
DevMem2D
dst
,
int
depth
,
const
DevMem2D
&
mask
,
int
channels
,
const
cudaStream_t
&
stream
=
0
);
template
<
typename
T
>
void
set_to_gpu
(
const
DevMem2D
&
mat
,
const
T
*
scalar
,
int
channels
,
cudaStream_t
stream
);
template
<
typename
T
>
void
set_to_gpu
(
const
DevMem2D
&
mat
,
const
T
*
scalar
,
const
DevMem2D
&
mask
,
int
channels
,
cudaStream_t
stream
);
void
convert_gpu
(
const
DevMem2D
&
src
,
int
sdepth
,
const
DevMem2D
&
dst
,
int
ddepth
,
double
alpha
,
double
beta
,
cudaStream_t
stream
=
0
);
}}}
void
cv
::
gpu
::
GpuMat
::
upload
(
const
Mat
&
m
)
{
CV_DbgAssert
(
!
m
.
empty
());
create
(
m
.
size
(),
m
.
type
());
cudaSafeCall
(
cudaMemcpy2D
(
data
,
step
,
m
.
data
,
m
.
step
,
cols
*
elemSize
(),
rows
,
cudaMemcpyHostToDevice
)
);
}
void
cv
::
gpu
::
GpuMat
::
upload
(
const
CudaMem
&
m
,
Stream
&
stream
)
{
CV_DbgAssert
(
!
m
.
empty
());
stream
.
enqueueUpload
(
m
,
*
this
);
}
void
cv
::
gpu
::
GpuMat
::
download
(
cv
::
Mat
&
m
)
const
{
CV_DbgAssert
(
!
this
->
empty
());
m
.
create
(
size
(),
type
());
cudaSafeCall
(
cudaMemcpy2D
(
m
.
data
,
m
.
step
,
data
,
step
,
cols
*
elemSize
(),
rows
,
cudaMemcpyDeviceToHost
)
);
}
void
cv
::
gpu
::
GpuMat
::
download
(
CudaMem
&
m
,
Stream
&
stream
)
const
{
CV_DbgAssert
(
!
m
.
empty
());
stream
.
enqueueDownload
(
*
this
,
m
);
}
void
cv
::
gpu
::
GpuMat
::
copyTo
(
GpuMat
&
m
)
const
{
CV_DbgAssert
(
!
this
->
empty
());
m
.
create
(
size
(),
type
());
cudaSafeCall
(
cudaMemcpy2D
(
m
.
data
,
m
.
step
,
data
,
step
,
cols
*
elemSize
(),
rows
,
cudaMemcpyDeviceToDevice
)
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
void
cv
::
gpu
::
GpuMat
::
copyTo
(
GpuMat
&
mat
,
const
GpuMat
&
mask
)
const
{
if
(
mask
.
empty
())
{
copyTo
(
mat
);
}
else
{
mat
.
create
(
size
(),
type
());
cv
::
gpu
::
matrix_operations
::
copy_to_with_mask
(
*
this
,
mat
,
depth
(),
mask
,
channels
());
}
}
namespace
{
template
<
int
n
>
struct
NPPTypeTraits
;
template
<>
struct
NPPTypeTraits
<
CV_8U
>
{
typedef
Npp8u
npp_type
;
};
template
<>
struct
NPPTypeTraits
<
CV_16U
>
{
typedef
Npp16u
npp_type
;
};
template
<>
struct
NPPTypeTraits
<
CV_16S
>
{
typedef
Npp16s
npp_type
;
};
template
<>
struct
NPPTypeTraits
<
CV_32S
>
{
typedef
Npp32s
npp_type
;
};
template
<>
struct
NPPTypeTraits
<
CV_32F
>
{
typedef
Npp32f
npp_type
;
};
template
<
int
SDEPTH
,
int
DDEPTH
>
struct
NppConvertFunc
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
typename
NPPTypeTraits
<
DDEPTH
>::
npp_type
dst_t
;
typedef
NppStatus
(
*
func_ptr
)(
const
src_t
*
pSrc
,
int
nSrcStep
,
dst_t
*
pDst
,
int
nDstStep
,
NppiSize
oSizeROI
);
};
template
<
int
DDEPTH
>
struct
NppConvertFunc
<
CV_32F
,
DDEPTH
>
{
typedef
typename
NPPTypeTraits
<
DDEPTH
>::
npp_type
dst_t
;
typedef
NppStatus
(
*
func_ptr
)(
const
Npp32f
*
pSrc
,
int
nSrcStep
,
dst_t
*
pDst
,
int
nDstStep
,
NppiSize
oSizeROI
,
NppRoundMode
eRoundMode
);
};
template
<
int
SDEPTH
,
int
DDEPTH
,
typename
NppConvertFunc
<
SDEPTH
,
DDEPTH
>::
func_ptr
func
>
struct
NppCvt
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
typename
NPPTypeTraits
<
DDEPTH
>::
npp_type
dst_t
;
static
void
cvt
(
const
GpuMat
&
src
,
GpuMat
&
dst
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
nppSafeCall
(
func
(
src
.
ptr
<
src_t
>
(),
static_cast
<
int
>
(
src
.
step
),
dst
.
ptr
<
dst_t
>
(),
static_cast
<
int
>
(
dst
.
step
),
sz
)
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
template
<
int
DDEPTH
,
typename
NppConvertFunc
<
CV_32F
,
DDEPTH
>::
func_ptr
func
>
struct
NppCvt
<
CV_32F
,
DDEPTH
,
func
>
{
typedef
typename
NPPTypeTraits
<
DDEPTH
>::
npp_type
dst_t
;
static
void
cvt
(
const
GpuMat
&
src
,
GpuMat
&
dst
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
nppSafeCall
(
func
(
src
.
ptr
<
Npp32f
>
(),
static_cast
<
int
>
(
src
.
step
),
dst
.
ptr
<
dst_t
>
(),
static_cast
<
int
>
(
dst
.
step
),
sz
,
NPP_RND_NEAR
)
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
void
convertToKernelCaller
(
const
GpuMat
&
src
,
GpuMat
&
dst
)
{
matrix_operations
::
convert_gpu
(
src
.
reshape
(
1
),
src
.
depth
(),
dst
.
reshape
(
1
),
dst
.
depth
(),
1.0
,
0.0
);
}
}
void
cv
::
gpu
::
GpuMat
::
convertTo
(
GpuMat
&
dst
,
int
rtype
,
double
alpha
,
double
beta
)
const
{
CV_Assert
((
depth
()
!=
CV_64F
&&
CV_MAT_DEPTH
(
rtype
)
!=
CV_64F
)
||
(
TargetArchs
::
builtWith
(
NATIVE_DOUBLE
)
&&
DeviceInfo
().
supports
(
NATIVE_DOUBLE
)));
bool
noScale
=
fabs
(
alpha
-
1
)
<
std
::
numeric_limits
<
double
>::
epsilon
()
&&
fabs
(
beta
)
<
std
::
numeric_limits
<
double
>::
epsilon
();
if
(
rtype
<
0
)
rtype
=
type
();
else
rtype
=
CV_MAKETYPE
(
CV_MAT_DEPTH
(
rtype
),
channels
());
int
scn
=
channels
();
int
sdepth
=
depth
(),
ddepth
=
CV_MAT_DEPTH
(
rtype
);
if
(
sdepth
==
ddepth
&&
noScale
)
{
copyTo
(
dst
);
return
;
}
GpuMat
temp
;
const
GpuMat
*
psrc
=
this
;
if
(
sdepth
!=
ddepth
&&
psrc
==
&
dst
)
psrc
=
&
(
temp
=
*
this
);
dst
.
create
(
size
(),
rtype
);
if
(
!
noScale
)
matrix_operations
::
convert_gpu
(
psrc
->
reshape
(
1
),
sdepth
,
dst
.
reshape
(
1
),
ddepth
,
alpha
,
beta
);
else
{
typedef
void
(
*
convert_caller_t
)(
const
GpuMat
&
src
,
GpuMat
&
dst
);
static
const
convert_caller_t
convert_callers
[
8
][
8
][
4
]
=
{
{
{
0
,
0
,
0
,
0
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_8U
,
CV_16U
,
nppiConvert_8u16u_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
NppCvt
<
CV_8U
,
CV_16U
,
nppiConvert_8u16u_C4R
>::
cvt
},
{
NppCvt
<
CV_8U
,
CV_16S
,
nppiConvert_8u16s_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
NppCvt
<
CV_8U
,
CV_16S
,
nppiConvert_8u16s_C4R
>::
cvt
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_8U
,
CV_32F
,
nppiConvert_8u32f_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
NppCvt
<
CV_16U
,
CV_8U
,
nppiConvert_16u8u_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
NppCvt
<
CV_16U
,
CV_8U
,
nppiConvert_16u8u_C4R
>::
cvt
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_16U
,
CV_32S
,
nppiConvert_16u32s_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_16U
,
CV_32F
,
nppiConvert_16u32f_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
NppCvt
<
CV_16S
,
CV_8U
,
nppiConvert_16s8u_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
NppCvt
<
CV_16S
,
CV_8U
,
nppiConvert_16s8u_C4R
>::
cvt
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
NppCvt
<
CV_16S
,
CV_32S
,
nppiConvert_16s32s_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_16S
,
CV_32F
,
nppiConvert_16s32f_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
NppCvt
<
CV_32F
,
CV_8U
,
nppiConvert_32f8u_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_32F
,
CV_16U
,
nppiConvert_32f16u_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_32F
,
CV_16S
,
nppiConvert_32f16s_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
}
},
{
{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
}
}
};
convert_callers
[
sdepth
][
ddepth
][
scn
-
1
](
*
psrc
,
dst
);
}
}
GpuMat
&
GpuMat
::
operator
=
(
const
Scalar
&
s
)
{
setTo
(
s
);
return
*
this
;
}
namespace
{
template
<
int
SDEPTH
,
int
SCN
>
struct
NppSetFunc
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
NppStatus
(
*
func_ptr
)(
const
src_t
values
[],
src_t
*
pSrc
,
int
nSrcStep
,
NppiSize
oSizeROI
);
};
template
<
int
SDEPTH
>
struct
NppSetFunc
<
SDEPTH
,
1
>
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
NppStatus
(
*
func_ptr
)(
src_t
val
,
src_t
*
pSrc
,
int
nSrcStep
,
NppiSize
oSizeROI
);
};
template
<
int
SDEPTH
,
int
SCN
,
typename
NppSetFunc
<
SDEPTH
,
SCN
>::
func_ptr
func
>
struct
NppSet
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
static
void
set
(
GpuMat
&
src
,
const
Scalar
&
s
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
Scalar_
<
src_t
>
nppS
=
s
;
nppSafeCall
(
func
(
nppS
.
val
,
src
.
ptr
<
src_t
>
(),
static_cast
<
int
>
(
src
.
step
),
sz
)
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
template
<
int
SDEPTH
,
typename
NppSetFunc
<
SDEPTH
,
1
>::
func_ptr
func
>
struct
NppSet
<
SDEPTH
,
1
,
func
>
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
static
void
set
(
GpuMat
&
src
,
const
Scalar
&
s
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
Scalar_
<
src_t
>
nppS
=
s
;
nppSafeCall
(
func
(
nppS
[
0
],
src
.
ptr
<
src_t
>
(),
static_cast
<
int
>
(
src
.
step
),
sz
)
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
template
<
typename
T
>
void
kernelSet
(
GpuMat
&
src
,
const
Scalar
&
s
)
{
Scalar_
<
T
>
sf
=
s
;
matrix_operations
::
set_to_gpu
(
src
,
sf
.
val
,
src
.
channels
(),
0
);
}
template
<
int
SDEPTH
,
int
SCN
>
struct
NppSetMaskFunc
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
NppStatus
(
*
func_ptr
)(
const
src_t
values
[],
src_t
*
pSrc
,
int
nSrcStep
,
NppiSize
oSizeROI
,
const
Npp8u
*
pMask
,
int
nMaskStep
);
};
template
<
int
SDEPTH
>
struct
NppSetMaskFunc
<
SDEPTH
,
1
>
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
NppStatus
(
*
func_ptr
)(
src_t
val
,
src_t
*
pSrc
,
int
nSrcStep
,
NppiSize
oSizeROI
,
const
Npp8u
*
pMask
,
int
nMaskStep
);
};
template
<
int
SDEPTH
,
int
SCN
,
typename
NppSetMaskFunc
<
SDEPTH
,
SCN
>::
func_ptr
func
>
struct
NppSetMask
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
static
void
set
(
GpuMat
&
src
,
const
Scalar
&
s
,
const
GpuMat
&
mask
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
Scalar_
<
src_t
>
nppS
=
s
;
nppSafeCall
(
func
(
nppS
.
val
,
src
.
ptr
<
src_t
>
(),
static_cast
<
int
>
(
src
.
step
),
sz
,
mask
.
ptr
<
Npp8u
>
(),
static_cast
<
int
>
(
mask
.
step
))
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
template
<
int
SDEPTH
,
typename
NppSetMaskFunc
<
SDEPTH
,
1
>::
func_ptr
func
>
struct
NppSetMask
<
SDEPTH
,
1
,
func
>
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
static
void
set
(
GpuMat
&
src
,
const
Scalar
&
s
,
const
GpuMat
&
mask
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
Scalar_
<
src_t
>
nppS
=
s
;
nppSafeCall
(
func
(
nppS
[
0
],
src
.
ptr
<
src_t
>
(),
static_cast
<
int
>
(
src
.
step
),
sz
,
mask
.
ptr
<
Npp8u
>
(),
static_cast
<
int
>
(
mask
.
step
))
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
template
<
typename
T
>
void
kernelSetMask
(
GpuMat
&
src
,
const
Scalar
&
s
,
const
GpuMat
&
mask
)
{
Scalar_
<
T
>
sf
=
s
;
matrix_operations
::
set_to_gpu
(
src
,
sf
.
val
,
mask
,
src
.
channels
(),
0
);
}
}
GpuMat
&
GpuMat
::
setTo
(
const
Scalar
&
s
,
const
GpuMat
&
mask
)
{
CV_Assert
(
mask
.
type
()
==
CV_8UC1
);
CV_Assert
((
depth
()
!=
CV_64F
)
||
(
TargetArchs
::
builtWith
(
NATIVE_DOUBLE
)
&&
DeviceInfo
().
supports
(
NATIVE_DOUBLE
)));
CV_DbgAssert
(
!
this
->
empty
());
NppiSize
sz
;
sz
.
width
=
cols
;
sz
.
height
=
rows
;
if
(
mask
.
empty
())
{
if
(
s
[
0
]
==
0.0
&&
s
[
1
]
==
0.0
&&
s
[
2
]
==
0.0
&&
s
[
3
]
==
0.0
)
{
cudaSafeCall
(
cudaMemset2D
(
data
,
step
,
0
,
cols
*
elemSize
(),
rows
)
);
return
*
this
;
}
if
(
depth
()
==
CV_8U
)
{
int
cn
=
channels
();
if
(
cn
==
1
||
(
cn
==
2
&&
s
[
0
]
==
s
[
1
])
||
(
cn
==
3
&&
s
[
0
]
==
s
[
1
]
&&
s
[
0
]
==
s
[
2
])
||
(
cn
==
4
&&
s
[
0
]
==
s
[
1
]
&&
s
[
0
]
==
s
[
2
]
&&
s
[
0
]
==
s
[
3
]))
{
int
val
=
saturate_cast
<
uchar
>
(
s
[
0
]);
cudaSafeCall
(
cudaMemset2D
(
data
,
step
,
val
,
cols
*
elemSize
(),
rows
)
);
return
*
this
;
}
}
typedef
void
(
*
set_caller_t
)(
GpuMat
&
src
,
const
Scalar
&
s
);
static
const
set_caller_t
set_callers
[
8
][
4
]
=
{
{
NppSet
<
CV_8U
,
1
,
nppiSet_8u_C1R
>::
set
,
kernelSet
<
uchar
>
,
kernelSet
<
uchar
>
,
NppSet
<
CV_8U
,
4
,
nppiSet_8u_C4R
>::
set
},
{
kernelSet
<
schar
>
,
kernelSet
<
schar
>
,
kernelSet
<
schar
>
,
kernelSet
<
schar
>
},
{
NppSet
<
CV_16U
,
1
,
nppiSet_16u_C1R
>::
set
,
NppSet
<
CV_16U
,
2
,
nppiSet_16u_C2R
>::
set
,
kernelSet
<
ushort
>
,
NppSet
<
CV_16U
,
4
,
nppiSet_16u_C4R
>::
set
},
{
NppSet
<
CV_16S
,
1
,
nppiSet_16s_C1R
>::
set
,
NppSet
<
CV_16S
,
2
,
nppiSet_16s_C2R
>::
set
,
kernelSet
<
short
>
,
NppSet
<
CV_16S
,
4
,
nppiSet_16s_C4R
>::
set
},
{
NppSet
<
CV_32S
,
1
,
nppiSet_32s_C1R
>::
set
,
kernelSet
<
int
>
,
kernelSet
<
int
>
,
NppSet
<
CV_32S
,
4
,
nppiSet_32s_C4R
>::
set
},
{
NppSet
<
CV_32F
,
1
,
nppiSet_32f_C1R
>::
set
,
kernelSet
<
float
>
,
kernelSet
<
float
>
,
NppSet
<
CV_32F
,
4
,
nppiSet_32f_C4R
>::
set
},
{
kernelSet
<
double
>
,
kernelSet
<
double
>
,
kernelSet
<
double
>
,
kernelSet
<
double
>
},
{
0
,
0
,
0
,
0
}
};
set_callers
[
depth
()][
channels
()
-
1
](
*
this
,
s
);
}
else
{
typedef
void
(
*
set_caller_t
)(
GpuMat
&
src
,
const
Scalar
&
s
,
const
GpuMat
&
mask
);
static
const
set_caller_t
set_callers
[
8
][
4
]
=
{
{
NppSetMask
<
CV_8U
,
1
,
nppiSet_8u_C1MR
>::
set
,
kernelSetMask
<
uchar
>
,
kernelSetMask
<
uchar
>
,
NppSetMask
<
CV_8U
,
4
,
nppiSet_8u_C4MR
>::
set
},
{
kernelSetMask
<
schar
>
,
kernelSetMask
<
schar
>
,
kernelSetMask
<
schar
>
,
kernelSetMask
<
schar
>
},
{
NppSetMask
<
CV_16U
,
1
,
nppiSet_16u_C1MR
>::
set
,
kernelSetMask
<
ushort
>
,
kernelSetMask
<
ushort
>
,
NppSetMask
<
CV_16U
,
4
,
nppiSet_16u_C4MR
>::
set
},
{
NppSetMask
<
CV_16S
,
1
,
nppiSet_16s_C1MR
>::
set
,
kernelSetMask
<
short
>
,
kernelSetMask
<
short
>
,
NppSetMask
<
CV_16S
,
4
,
nppiSet_16s_C4MR
>::
set
},
{
NppSetMask
<
CV_32S
,
1
,
nppiSet_32s_C1MR
>::
set
,
kernelSetMask
<
int
>
,
kernelSetMask
<
int
>
,
NppSetMask
<
CV_32S
,
4
,
nppiSet_32s_C4MR
>::
set
},
{
NppSetMask
<
CV_32F
,
1
,
nppiSet_32f_C1MR
>::
set
,
kernelSetMask
<
float
>
,
kernelSetMask
<
float
>
,
NppSetMask
<
CV_32F
,
4
,
nppiSet_32f_C4MR
>::
set
},
{
kernelSetMask
<
double
>
,
kernelSetMask
<
double
>
,
kernelSetMask
<
double
>
,
kernelSetMask
<
double
>
},
{
0
,
0
,
0
,
0
}
};
set_callers
[
depth
()][
channels
()
-
1
](
*
this
,
s
,
mask
);
}
return
*
this
;
}
GpuMat
cv
::
gpu
::
GpuMat
::
reshape
(
int
new_cn
,
int
new_rows
)
const
{
GpuMat
hdr
=
*
this
;
int
cn
=
channels
();
if
(
new_cn
==
0
)
new_cn
=
cn
;
int
total_width
=
cols
*
cn
;
if
(
(
new_cn
>
total_width
||
total_width
%
new_cn
!=
0
)
&&
new_rows
==
0
)
new_rows
=
rows
*
total_width
/
new_cn
;
if
(
new_rows
!=
0
&&
new_rows
!=
rows
)
{
int
total_size
=
total_width
*
rows
;
if
(
!
isContinuous
()
)
CV_Error
(
CV_BadStep
,
"The matrix is not continuous, thus its number of rows can not be changed"
);
if
(
(
unsigned
)
new_rows
>
(
unsigned
)
total_size
)
CV_Error
(
CV_StsOutOfRange
,
"Bad new number of rows"
);
total_width
=
total_size
/
new_rows
;
if
(
total_width
*
new_rows
!=
total_size
)
CV_Error
(
CV_StsBadArg
,
"The total number of matrix elements is not divisible by the new number of rows"
);
hdr
.
rows
=
new_rows
;
hdr
.
step
=
total_width
*
elemSize1
();
}
int
new_width
=
total_width
/
new_cn
;
if
(
new_width
*
new_cn
!=
total_width
)
CV_Error
(
CV_BadNumChannels
,
"The total width is not divisible by the new number of channels"
);
hdr
.
cols
=
new_width
;
hdr
.
flags
=
(
hdr
.
flags
&
~
CV_MAT_CN_MASK
)
|
((
new_cn
-
1
)
<<
CV_CN_SHIFT
);
return
hdr
;
}
void
cv
::
gpu
::
GpuMat
::
create
(
int
_rows
,
int
_cols
,
int
_type
)
{
_type
&=
TYPE_MASK
;
if
(
rows
==
_rows
&&
cols
==
_cols
&&
type
()
==
_type
&&
data
)
return
;
if
(
data
)
release
();
CV_DbgAssert
(
_rows
>=
0
&&
_cols
>=
0
);
if
(
_rows
>
0
&&
_cols
>
0
)
{
flags
=
Mat
::
MAGIC_VAL
+
_type
;
rows
=
_rows
;
cols
=
_cols
;
size_t
esz
=
elemSize
();
void
*
dev_ptr
;
cudaSafeCall
(
cudaMallocPitch
(
&
dev_ptr
,
&
step
,
esz
*
cols
,
rows
)
);
// Single row must be continuous
if
(
rows
==
1
)
step
=
esz
*
cols
;
if
(
esz
*
cols
==
step
)
flags
|=
Mat
::
CONTINUOUS_FLAG
;
int64
_nettosize
=
(
int64
)
step
*
rows
;
size_t
nettosize
=
(
size_t
)
_nettosize
;
datastart
=
data
=
(
uchar
*
)
dev_ptr
;
dataend
=
data
+
nettosize
;
refcount
=
(
int
*
)
fastMalloc
(
sizeof
(
*
refcount
));
*
refcount
=
1
;
}
}
void
cv
::
gpu
::
GpuMat
::
release
()
{
if
(
refcount
&&
CV_XADD
(
refcount
,
-
1
)
==
1
)
{
fastFree
(
refcount
);
cudaSafeCall
(
cudaFree
(
datastart
)
);
}
data
=
datastart
=
dataend
=
0
;
step
=
rows
=
cols
=
0
;
refcount
=
0
;
}
void
cv
::
gpu
::
createContinuous
(
int
rows
,
int
cols
,
int
type
,
GpuMat
&
m
)
{
int
area
=
rows
*
cols
;
if
(
!
m
.
isContinuous
()
||
m
.
type
()
!=
type
||
m
.
size
().
area
()
!=
area
)
m
.
create
(
1
,
area
,
type
);
m
=
m
.
reshape
(
0
,
rows
);
}
void
cv
::
gpu
::
ensureSizeIsEnough
(
int
rows
,
int
cols
,
int
type
,
GpuMat
&
m
)
{
if
(
m
.
type
()
==
type
&&
m
.
rows
>=
rows
&&
m
.
cols
>=
cols
)
m
=
m
(
Rect
(
0
,
0
,
cols
,
rows
));
else
m
.
create
(
rows
,
cols
,
type
);
}
#endif
/* !defined (HAVE_CUDA) */
modules/gpu/src/matrix_operations.cpp
View file @
b2b1d41d
...
...
@@ -52,554 +52,13 @@ using namespace cv::gpu;
#if !defined (HAVE_CUDA)
namespace
cv
{
namespace
gpu
{
void
GpuMat
::
upload
(
const
Mat
&
/*m*/
)
{
throw_nogpu
();
}
void
GpuMat
::
download
(
cv
::
Mat
&
/*m*/
)
const
{
throw_nogpu
();
}
void
GpuMat
::
copyTo
(
GpuMat
&
/*m*/
)
const
{
throw_nogpu
();
}
void
GpuMat
::
copyTo
(
GpuMat
&
/*m*/
,
const
GpuMat
&
/* mask */
)
const
{
throw_nogpu
();
}
void
GpuMat
::
convertTo
(
GpuMat
&
/*m*/
,
int
/*rtype*/
,
double
/*alpha*/
,
double
/*beta*/
)
const
{
throw_nogpu
();
}
GpuMat
&
GpuMat
::
operator
=
(
const
Scalar
&
/*s*/
)
{
throw_nogpu
();
return
*
this
;
}
GpuMat
&
GpuMat
::
setTo
(
const
Scalar
&
/*s*/
,
const
GpuMat
&
/*mask*/
)
{
throw_nogpu
();
return
*
this
;
}
GpuMat
GpuMat
::
reshape
(
int
/*new_cn*/
,
int
/*new_rows*/
)
const
{
throw_nogpu
();
return
GpuMat
();
}
void
GpuMat
::
create
(
int
/*_rows*/
,
int
/*_cols*/
,
int
/*_type*/
)
{
throw_nogpu
();
}
void
GpuMat
::
release
()
{}
void
createContinuous
(
int
/*rows*/
,
int
/*cols*/
,
int
/*type*/
,
GpuMat
&
/*m*/
)
{
throw_nogpu
();
}
void
CudaMem
::
create
(
int
/*_rows*/
,
int
/*_cols*/
,
int
/*_type*/
,
int
/*type_alloc*/
)
{
throw_nogpu
();
}
bool
CudaMem
::
canMapHostMemory
()
{
throw_nogpu
();
return
false
;
}
void
CudaMem
::
release
()
{
throw_nogpu
();
}
GpuMat
CudaMem
::
createGpuMatHeader
()
const
{
throw_nogpu
();
return
GpuMat
();
}
}
}
void
cv
::
gpu
::
CudaMem
::
create
(
int
/*_rows*/
,
int
/*_cols*/
,
int
/*_type*/
,
int
/*type_alloc*/
)
{
throw_nogpu
();
}
bool
cv
::
gpu
::
CudaMem
::
canMapHostMemory
()
{
throw_nogpu
();
return
false
;
}
void
cv
::
gpu
::
CudaMem
::
release
()
{
throw_nogpu
();
}
GpuMat
cv
::
gpu
::
CudaMem
::
createGpuMatHeader
()
const
{
throw_nogpu
();
return
GpuMat
();
}
#else
/* !defined (HAVE_CUDA) */
namespace
cv
{
namespace
gpu
{
namespace
matrix_operations
{
void
copy_to_with_mask
(
const
DevMem2D
&
src
,
DevMem2D
dst
,
int
depth
,
const
DevMem2D
&
mask
,
int
channels
,
const
cudaStream_t
&
stream
=
0
);
template
<
typename
T
>
void
set_to_gpu
(
const
DevMem2D
&
mat
,
const
T
*
scalar
,
int
channels
,
cudaStream_t
stream
);
template
<
typename
T
>
void
set_to_gpu
(
const
DevMem2D
&
mat
,
const
T
*
scalar
,
const
DevMem2D
&
mask
,
int
channels
,
cudaStream_t
stream
);
void
convert_gpu
(
const
DevMem2D
&
src
,
int
sdepth
,
const
DevMem2D
&
dst
,
int
ddepth
,
double
alpha
,
double
beta
,
cudaStream_t
stream
=
0
);
}
}
}
void
cv
::
gpu
::
GpuMat
::
upload
(
const
Mat
&
m
)
{
CV_DbgAssert
(
!
m
.
empty
());
create
(
m
.
size
(),
m
.
type
());
cudaSafeCall
(
cudaMemcpy2D
(
data
,
step
,
m
.
data
,
m
.
step
,
cols
*
elemSize
(),
rows
,
cudaMemcpyHostToDevice
)
);
}
void
cv
::
gpu
::
GpuMat
::
upload
(
const
CudaMem
&
m
,
Stream
&
stream
)
{
CV_DbgAssert
(
!
m
.
empty
());
stream
.
enqueueUpload
(
m
,
*
this
);
}
void
cv
::
gpu
::
GpuMat
::
download
(
cv
::
Mat
&
m
)
const
{
CV_DbgAssert
(
!
this
->
empty
());
m
.
create
(
size
(),
type
());
cudaSafeCall
(
cudaMemcpy2D
(
m
.
data
,
m
.
step
,
data
,
step
,
cols
*
elemSize
(),
rows
,
cudaMemcpyDeviceToHost
)
);
}
void
cv
::
gpu
::
GpuMat
::
download
(
CudaMem
&
m
,
Stream
&
stream
)
const
{
CV_DbgAssert
(
!
m
.
empty
());
stream
.
enqueueDownload
(
*
this
,
m
);
}
void
cv
::
gpu
::
GpuMat
::
copyTo
(
GpuMat
&
m
)
const
{
CV_DbgAssert
(
!
this
->
empty
());
m
.
create
(
size
(),
type
());
cudaSafeCall
(
cudaMemcpy2D
(
m
.
data
,
m
.
step
,
data
,
step
,
cols
*
elemSize
(),
rows
,
cudaMemcpyDeviceToDevice
)
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
void
cv
::
gpu
::
GpuMat
::
copyTo
(
GpuMat
&
mat
,
const
GpuMat
&
mask
)
const
{
if
(
mask
.
empty
())
{
copyTo
(
mat
);
}
else
{
mat
.
create
(
size
(),
type
());
cv
::
gpu
::
matrix_operations
::
copy_to_with_mask
(
*
this
,
mat
,
depth
(),
mask
,
channels
());
}
}
namespace
{
template
<
int
n
>
struct
NPPTypeTraits
;
template
<>
struct
NPPTypeTraits
<
CV_8U
>
{
typedef
Npp8u
npp_type
;
};
template
<>
struct
NPPTypeTraits
<
CV_16U
>
{
typedef
Npp16u
npp_type
;
};
template
<>
struct
NPPTypeTraits
<
CV_16S
>
{
typedef
Npp16s
npp_type
;
};
template
<>
struct
NPPTypeTraits
<
CV_32S
>
{
typedef
Npp32s
npp_type
;
};
template
<>
struct
NPPTypeTraits
<
CV_32F
>
{
typedef
Npp32f
npp_type
;
};
template
<
int
SDEPTH
,
int
DDEPTH
>
struct
NppConvertFunc
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
typename
NPPTypeTraits
<
DDEPTH
>::
npp_type
dst_t
;
typedef
NppStatus
(
*
func_ptr
)(
const
src_t
*
pSrc
,
int
nSrcStep
,
dst_t
*
pDst
,
int
nDstStep
,
NppiSize
oSizeROI
);
};
template
<
int
DDEPTH
>
struct
NppConvertFunc
<
CV_32F
,
DDEPTH
>
{
typedef
typename
NPPTypeTraits
<
DDEPTH
>::
npp_type
dst_t
;
typedef
NppStatus
(
*
func_ptr
)(
const
Npp32f
*
pSrc
,
int
nSrcStep
,
dst_t
*
pDst
,
int
nDstStep
,
NppiSize
oSizeROI
,
NppRoundMode
eRoundMode
);
};
template
<
int
SDEPTH
,
int
DDEPTH
,
typename
NppConvertFunc
<
SDEPTH
,
DDEPTH
>::
func_ptr
func
>
struct
NppCvt
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
typename
NPPTypeTraits
<
DDEPTH
>::
npp_type
dst_t
;
static
void
cvt
(
const
GpuMat
&
src
,
GpuMat
&
dst
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
nppSafeCall
(
func
(
src
.
ptr
<
src_t
>
(),
static_cast
<
int
>
(
src
.
step
),
dst
.
ptr
<
dst_t
>
(),
static_cast
<
int
>
(
dst
.
step
),
sz
)
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
template
<
int
DDEPTH
,
typename
NppConvertFunc
<
CV_32F
,
DDEPTH
>::
func_ptr
func
>
struct
NppCvt
<
CV_32F
,
DDEPTH
,
func
>
{
typedef
typename
NPPTypeTraits
<
DDEPTH
>::
npp_type
dst_t
;
static
void
cvt
(
const
GpuMat
&
src
,
GpuMat
&
dst
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
nppSafeCall
(
func
(
src
.
ptr
<
Npp32f
>
(),
static_cast
<
int
>
(
src
.
step
),
dst
.
ptr
<
dst_t
>
(),
static_cast
<
int
>
(
dst
.
step
),
sz
,
NPP_RND_NEAR
)
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
void
convertToKernelCaller
(
const
GpuMat
&
src
,
GpuMat
&
dst
)
{
matrix_operations
::
convert_gpu
(
src
.
reshape
(
1
),
src
.
depth
(),
dst
.
reshape
(
1
),
dst
.
depth
(),
1.0
,
0.0
);
}
}
void
cv
::
gpu
::
GpuMat
::
convertTo
(
GpuMat
&
dst
,
int
rtype
,
double
alpha
,
double
beta
)
const
{
CV_Assert
((
depth
()
!=
CV_64F
&&
CV_MAT_DEPTH
(
rtype
)
!=
CV_64F
)
||
(
TargetArchs
::
builtWith
(
NATIVE_DOUBLE
)
&&
DeviceInfo
().
supports
(
NATIVE_DOUBLE
)));
bool
noScale
=
fabs
(
alpha
-
1
)
<
std
::
numeric_limits
<
double
>::
epsilon
()
&&
fabs
(
beta
)
<
std
::
numeric_limits
<
double
>::
epsilon
();
if
(
rtype
<
0
)
rtype
=
type
();
else
rtype
=
CV_MAKETYPE
(
CV_MAT_DEPTH
(
rtype
),
channels
());
int
scn
=
channels
();
int
sdepth
=
depth
(),
ddepth
=
CV_MAT_DEPTH
(
rtype
);
if
(
sdepth
==
ddepth
&&
noScale
)
{
copyTo
(
dst
);
return
;
}
GpuMat
temp
;
const
GpuMat
*
psrc
=
this
;
if
(
sdepth
!=
ddepth
&&
psrc
==
&
dst
)
psrc
=
&
(
temp
=
*
this
);
dst
.
create
(
size
(),
rtype
);
if
(
!
noScale
)
matrix_operations
::
convert_gpu
(
psrc
->
reshape
(
1
),
sdepth
,
dst
.
reshape
(
1
),
ddepth
,
alpha
,
beta
);
else
{
typedef
void
(
*
convert_caller_t
)(
const
GpuMat
&
src
,
GpuMat
&
dst
);
static
const
convert_caller_t
convert_callers
[
8
][
8
][
4
]
=
{
{
{
0
,
0
,
0
,
0
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_8U
,
CV_16U
,
nppiConvert_8u16u_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
NppCvt
<
CV_8U
,
CV_16U
,
nppiConvert_8u16u_C4R
>::
cvt
},
{
NppCvt
<
CV_8U
,
CV_16S
,
nppiConvert_8u16s_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
NppCvt
<
CV_8U
,
CV_16S
,
nppiConvert_8u16s_C4R
>::
cvt
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_8U
,
CV_32F
,
nppiConvert_8u32f_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
NppCvt
<
CV_16U
,
CV_8U
,
nppiConvert_16u8u_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
NppCvt
<
CV_16U
,
CV_8U
,
nppiConvert_16u8u_C4R
>::
cvt
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_16U
,
CV_32S
,
nppiConvert_16u32s_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_16U
,
CV_32F
,
nppiConvert_16u32f_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
NppCvt
<
CV_16S
,
CV_8U
,
nppiConvert_16s8u_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
NppCvt
<
CV_16S
,
CV_8U
,
nppiConvert_16s8u_C4R
>::
cvt
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
NppCvt
<
CV_16S
,
CV_32S
,
nppiConvert_16s32s_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_16S
,
CV_32F
,
nppiConvert_16s32f_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
NppCvt
<
CV_32F
,
CV_8U
,
nppiConvert_32f8u_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_32F
,
CV_16U
,
nppiConvert_32f16u_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
NppCvt
<
CV_32F
,
CV_16S
,
nppiConvert_32f16s_C1R
>::
cvt
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
}
},
{
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
,
convertToKernelCaller
},
{
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
}
},
{
{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
},{
0
,
0
,
0
,
0
}
}
};
convert_callers
[
sdepth
][
ddepth
][
scn
-
1
](
*
psrc
,
dst
);
}
}
GpuMat
&
GpuMat
::
operator
=
(
const
Scalar
&
s
)
{
setTo
(
s
);
return
*
this
;
}
namespace
{
template
<
int
SDEPTH
,
int
SCN
>
struct
NppSetFunc
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
NppStatus
(
*
func_ptr
)(
const
src_t
values
[],
src_t
*
pSrc
,
int
nSrcStep
,
NppiSize
oSizeROI
);
};
template
<
int
SDEPTH
>
struct
NppSetFunc
<
SDEPTH
,
1
>
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
NppStatus
(
*
func_ptr
)(
src_t
val
,
src_t
*
pSrc
,
int
nSrcStep
,
NppiSize
oSizeROI
);
};
template
<
int
SDEPTH
,
int
SCN
,
typename
NppSetFunc
<
SDEPTH
,
SCN
>::
func_ptr
func
>
struct
NppSet
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
static
void
set
(
GpuMat
&
src
,
const
Scalar
&
s
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
Scalar_
<
src_t
>
nppS
=
s
;
nppSafeCall
(
func
(
nppS
.
val
,
src
.
ptr
<
src_t
>
(),
static_cast
<
int
>
(
src
.
step
),
sz
)
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
template
<
int
SDEPTH
,
typename
NppSetFunc
<
SDEPTH
,
1
>::
func_ptr
func
>
struct
NppSet
<
SDEPTH
,
1
,
func
>
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
static
void
set
(
GpuMat
&
src
,
const
Scalar
&
s
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
Scalar_
<
src_t
>
nppS
=
s
;
nppSafeCall
(
func
(
nppS
[
0
],
src
.
ptr
<
src_t
>
(),
static_cast
<
int
>
(
src
.
step
),
sz
)
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
template
<
typename
T
>
void
kernelSet
(
GpuMat
&
src
,
const
Scalar
&
s
)
{
Scalar_
<
T
>
sf
=
s
;
matrix_operations
::
set_to_gpu
(
src
,
sf
.
val
,
src
.
channels
(),
0
);
}
template
<
int
SDEPTH
,
int
SCN
>
struct
NppSetMaskFunc
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
NppStatus
(
*
func_ptr
)(
const
src_t
values
[],
src_t
*
pSrc
,
int
nSrcStep
,
NppiSize
oSizeROI
,
const
Npp8u
*
pMask
,
int
nMaskStep
);
};
template
<
int
SDEPTH
>
struct
NppSetMaskFunc
<
SDEPTH
,
1
>
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
typedef
NppStatus
(
*
func_ptr
)(
src_t
val
,
src_t
*
pSrc
,
int
nSrcStep
,
NppiSize
oSizeROI
,
const
Npp8u
*
pMask
,
int
nMaskStep
);
};
template
<
int
SDEPTH
,
int
SCN
,
typename
NppSetMaskFunc
<
SDEPTH
,
SCN
>::
func_ptr
func
>
struct
NppSetMask
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
static
void
set
(
GpuMat
&
src
,
const
Scalar
&
s
,
const
GpuMat
&
mask
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
Scalar_
<
src_t
>
nppS
=
s
;
nppSafeCall
(
func
(
nppS
.
val
,
src
.
ptr
<
src_t
>
(),
static_cast
<
int
>
(
src
.
step
),
sz
,
mask
.
ptr
<
Npp8u
>
(),
static_cast
<
int
>
(
mask
.
step
))
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
template
<
int
SDEPTH
,
typename
NppSetMaskFunc
<
SDEPTH
,
1
>::
func_ptr
func
>
struct
NppSetMask
<
SDEPTH
,
1
,
func
>
{
typedef
typename
NPPTypeTraits
<
SDEPTH
>::
npp_type
src_t
;
static
void
set
(
GpuMat
&
src
,
const
Scalar
&
s
,
const
GpuMat
&
mask
)
{
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
Scalar_
<
src_t
>
nppS
=
s
;
nppSafeCall
(
func
(
nppS
[
0
],
src
.
ptr
<
src_t
>
(),
static_cast
<
int
>
(
src
.
step
),
sz
,
mask
.
ptr
<
Npp8u
>
(),
static_cast
<
int
>
(
mask
.
step
))
);
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
};
template
<
typename
T
>
void
kernelSetMask
(
GpuMat
&
src
,
const
Scalar
&
s
,
const
GpuMat
&
mask
)
{
Scalar_
<
T
>
sf
=
s
;
matrix_operations
::
set_to_gpu
(
src
,
sf
.
val
,
mask
,
src
.
channels
(),
0
);
}
}
GpuMat
&
GpuMat
::
setTo
(
const
Scalar
&
s
,
const
GpuMat
&
mask
)
{
CV_Assert
(
mask
.
type
()
==
CV_8UC1
);
CV_Assert
((
depth
()
!=
CV_64F
)
||
(
TargetArchs
::
builtWith
(
NATIVE_DOUBLE
)
&&
DeviceInfo
().
supports
(
NATIVE_DOUBLE
)));
CV_DbgAssert
(
!
this
->
empty
());
NppiSize
sz
;
sz
.
width
=
cols
;
sz
.
height
=
rows
;
if
(
mask
.
empty
())
{
if
(
s
[
0
]
==
0.0
&&
s
[
1
]
==
0.0
&&
s
[
2
]
==
0.0
&&
s
[
3
]
==
0.0
)
{
cudaSafeCall
(
cudaMemset2D
(
data
,
step
,
0
,
cols
*
elemSize
(),
rows
)
);
return
*
this
;
}
if
(
depth
()
==
CV_8U
)
{
int
cn
=
channels
();
if
(
cn
==
1
||
(
cn
==
2
&&
s
[
0
]
==
s
[
1
])
||
(
cn
==
3
&&
s
[
0
]
==
s
[
1
]
&&
s
[
0
]
==
s
[
2
])
||
(
cn
==
4
&&
s
[
0
]
==
s
[
1
]
&&
s
[
0
]
==
s
[
2
]
&&
s
[
0
]
==
s
[
3
]))
{
int
val
=
saturate_cast
<
uchar
>
(
s
[
0
]);
cudaSafeCall
(
cudaMemset2D
(
data
,
step
,
val
,
cols
*
elemSize
(),
rows
)
);
return
*
this
;
}
}
typedef
void
(
*
set_caller_t
)(
GpuMat
&
src
,
const
Scalar
&
s
);
static
const
set_caller_t
set_callers
[
8
][
4
]
=
{
{
NppSet
<
CV_8U
,
1
,
nppiSet_8u_C1R
>::
set
,
kernelSet
<
uchar
>
,
kernelSet
<
uchar
>
,
NppSet
<
CV_8U
,
4
,
nppiSet_8u_C4R
>::
set
},
{
kernelSet
<
schar
>
,
kernelSet
<
schar
>
,
kernelSet
<
schar
>
,
kernelSet
<
schar
>
},
{
NppSet
<
CV_16U
,
1
,
nppiSet_16u_C1R
>::
set
,
NppSet
<
CV_16U
,
2
,
nppiSet_16u_C2R
>::
set
,
kernelSet
<
ushort
>
,
NppSet
<
CV_16U
,
4
,
nppiSet_16u_C4R
>::
set
},
{
NppSet
<
CV_16S
,
1
,
nppiSet_16s_C1R
>::
set
,
NppSet
<
CV_16S
,
2
,
nppiSet_16s_C2R
>::
set
,
kernelSet
<
short
>
,
NppSet
<
CV_16S
,
4
,
nppiSet_16s_C4R
>::
set
},
{
NppSet
<
CV_32S
,
1
,
nppiSet_32s_C1R
>::
set
,
kernelSet
<
int
>
,
kernelSet
<
int
>
,
NppSet
<
CV_32S
,
4
,
nppiSet_32s_C4R
>::
set
},
{
NppSet
<
CV_32F
,
1
,
nppiSet_32f_C1R
>::
set
,
kernelSet
<
float
>
,
kernelSet
<
float
>
,
NppSet
<
CV_32F
,
4
,
nppiSet_32f_C4R
>::
set
},
{
kernelSet
<
double
>
,
kernelSet
<
double
>
,
kernelSet
<
double
>
,
kernelSet
<
double
>
},
{
0
,
0
,
0
,
0
}
};
set_callers
[
depth
()][
channels
()
-
1
](
*
this
,
s
);
}
else
{
typedef
void
(
*
set_caller_t
)(
GpuMat
&
src
,
const
Scalar
&
s
,
const
GpuMat
&
mask
);
static
const
set_caller_t
set_callers
[
8
][
4
]
=
{
{
NppSetMask
<
CV_8U
,
1
,
nppiSet_8u_C1MR
>::
set
,
kernelSetMask
<
uchar
>
,
kernelSetMask
<
uchar
>
,
NppSetMask
<
CV_8U
,
4
,
nppiSet_8u_C4MR
>::
set
},
{
kernelSetMask
<
schar
>
,
kernelSetMask
<
schar
>
,
kernelSetMask
<
schar
>
,
kernelSetMask
<
schar
>
},
{
NppSetMask
<
CV_16U
,
1
,
nppiSet_16u_C1MR
>::
set
,
kernelSetMask
<
ushort
>
,
kernelSetMask
<
ushort
>
,
NppSetMask
<
CV_16U
,
4
,
nppiSet_16u_C4MR
>::
set
},
{
NppSetMask
<
CV_16S
,
1
,
nppiSet_16s_C1MR
>::
set
,
kernelSetMask
<
short
>
,
kernelSetMask
<
short
>
,
NppSetMask
<
CV_16S
,
4
,
nppiSet_16s_C4MR
>::
set
},
{
NppSetMask
<
CV_32S
,
1
,
nppiSet_32s_C1MR
>::
set
,
kernelSetMask
<
int
>
,
kernelSetMask
<
int
>
,
NppSetMask
<
CV_32S
,
4
,
nppiSet_32s_C4MR
>::
set
},
{
NppSetMask
<
CV_32F
,
1
,
nppiSet_32f_C1MR
>::
set
,
kernelSetMask
<
float
>
,
kernelSetMask
<
float
>
,
NppSetMask
<
CV_32F
,
4
,
nppiSet_32f_C4MR
>::
set
},
{
kernelSetMask
<
double
>
,
kernelSetMask
<
double
>
,
kernelSetMask
<
double
>
,
kernelSetMask
<
double
>
},
{
0
,
0
,
0
,
0
}
};
set_callers
[
depth
()][
channels
()
-
1
](
*
this
,
s
,
mask
);
}
return
*
this
;
}
GpuMat
cv
::
gpu
::
GpuMat
::
reshape
(
int
new_cn
,
int
new_rows
)
const
{
GpuMat
hdr
=
*
this
;
int
cn
=
channels
();
if
(
new_cn
==
0
)
new_cn
=
cn
;
int
total_width
=
cols
*
cn
;
if
(
(
new_cn
>
total_width
||
total_width
%
new_cn
!=
0
)
&&
new_rows
==
0
)
new_rows
=
rows
*
total_width
/
new_cn
;
if
(
new_rows
!=
0
&&
new_rows
!=
rows
)
{
int
total_size
=
total_width
*
rows
;
if
(
!
isContinuous
()
)
CV_Error
(
CV_BadStep
,
"The matrix is not continuous, thus its number of rows can not be changed"
);
if
(
(
unsigned
)
new_rows
>
(
unsigned
)
total_size
)
CV_Error
(
CV_StsOutOfRange
,
"Bad new number of rows"
);
total_width
=
total_size
/
new_rows
;
if
(
total_width
*
new_rows
!=
total_size
)
CV_Error
(
CV_StsBadArg
,
"The total number of matrix elements is not divisible by the new number of rows"
);
hdr
.
rows
=
new_rows
;
hdr
.
step
=
total_width
*
elemSize1
();
}
int
new_width
=
total_width
/
new_cn
;
if
(
new_width
*
new_cn
!=
total_width
)
CV_Error
(
CV_BadNumChannels
,
"The total width is not divisible by the new number of channels"
);
hdr
.
cols
=
new_width
;
hdr
.
flags
=
(
hdr
.
flags
&
~
CV_MAT_CN_MASK
)
|
((
new_cn
-
1
)
<<
CV_CN_SHIFT
);
return
hdr
;
}
void
cv
::
gpu
::
GpuMat
::
create
(
int
_rows
,
int
_cols
,
int
_type
)
{
_type
&=
TYPE_MASK
;
if
(
rows
==
_rows
&&
cols
==
_cols
&&
type
()
==
_type
&&
data
)
return
;
if
(
data
)
release
();
CV_DbgAssert
(
_rows
>=
0
&&
_cols
>=
0
);
if
(
_rows
>
0
&&
_cols
>
0
)
{
flags
=
Mat
::
MAGIC_VAL
+
_type
;
rows
=
_rows
;
cols
=
_cols
;
size_t
esz
=
elemSize
();
void
*
dev_ptr
;
cudaSafeCall
(
cudaMallocPitch
(
&
dev_ptr
,
&
step
,
esz
*
cols
,
rows
)
);
// Single row must be continuous
if
(
rows
==
1
)
step
=
esz
*
cols
;
if
(
esz
*
cols
==
step
)
flags
|=
Mat
::
CONTINUOUS_FLAG
;
int64
_nettosize
=
(
int64
)
step
*
rows
;
size_t
nettosize
=
(
size_t
)
_nettosize
;
datastart
=
data
=
(
uchar
*
)
dev_ptr
;
dataend
=
data
+
nettosize
;
refcount
=
(
int
*
)
fastMalloc
(
sizeof
(
*
refcount
));
*
refcount
=
1
;
}
}
void
cv
::
gpu
::
GpuMat
::
release
()
{
if
(
refcount
&&
CV_XADD
(
refcount
,
-
1
)
==
1
)
{
fastFree
(
refcount
);
cudaSafeCall
(
cudaFree
(
datastart
)
);
}
data
=
datastart
=
dataend
=
0
;
step
=
rows
=
cols
=
0
;
refcount
=
0
;
}
void
cv
::
gpu
::
createContinuous
(
int
rows
,
int
cols
,
int
type
,
GpuMat
&
m
)
{
int
area
=
rows
*
cols
;
if
(
!
m
.
isContinuous
()
||
m
.
type
()
!=
type
||
m
.
size
().
area
()
!=
area
)
m
.
create
(
1
,
area
,
type
);
m
=
m
.
reshape
(
0
,
rows
);
}
void
cv
::
gpu
::
ensureSizeIsEnough
(
int
rows
,
int
cols
,
int
type
,
GpuMat
&
m
)
{
if
(
m
.
type
()
==
type
&&
m
.
rows
>=
rows
&&
m
.
cols
>=
cols
)
m
=
m
(
Rect
(
0
,
0
,
cols
,
rows
));
else
m
.
create
(
rows
,
cols
,
type
);
}
///////////////////////////////////////////////////////////////////////
//////////////////////////////// CudaMem //////////////////////////////
///////////////////////////////////////////////////////////////////////
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment