Commit ade6388d authored by Ilya Lysenkov's avatar Ilya Lysenkov

Vadim, Maria, Alex, Andrey and I fixed the EM algorithm

parent b8f2011f
......@@ -86,7 +86,8 @@ bool EM::train(InputArray samples,
OutputArray probs,
OutputArray logLikelihoods)
{
setTrainData(START_AUTO_STEP, samples.getMat(), 0, 0, 0, 0);
Mat samplesMat = samples.getMat();
setTrainData(START_AUTO_STEP, samplesMat, 0, 0, 0, 0);
return doTrain(START_AUTO_STEP, labels, probs, logLikelihoods);
}
......@@ -98,12 +99,13 @@ bool EM::trainE(InputArray samples,
OutputArray probs,
OutputArray logLikelihoods)
{
Mat samplesMat = samples.getMat();
vector<Mat> covs0;
_covs0.getMatVector(covs0);
Mat means0 = _means0.getMat(), weights0 = _weights0.getMat();
setTrainData(START_E_STEP, samples.getMat(), 0, !_means0.empty() ? &means0 : 0,
setTrainData(START_E_STEP, samplesMat, 0, !_means0.empty() ? &means0 : 0,
!_covs0.empty() ? &covs0 : 0, _weights0.empty() ? &weights0 : 0);
return doTrain(START_E_STEP, labels, probs, logLikelihoods);
}
......@@ -114,9 +116,10 @@ bool EM::trainM(InputArray samples,
OutputArray probs,
OutputArray logLikelihoods)
{
Mat samplesMat = samples.getMat();
Mat probs0 = _probs0.getMat();
setTrainData(START_M_STEP, samples.getMat(), !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
setTrainData(START_M_STEP, samplesMat, !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
return doTrain(START_M_STEP, labels, probs, logLikelihoods);
}
......@@ -337,7 +340,11 @@ void EM::clusterTrainSamples()
CV_Assert(meansFlt.type() == CV_32FC1);
if(trainSamples.type() != CV_64FC1)
trainSamplesFlt.convertTo(trainSamples, CV_64FC1);
{
Mat trainSamplesBuffer;
trainSamplesFlt.convertTo(trainSamplesBuffer, CV_64FC1);
trainSamples = trainSamplesBuffer;
}
meansFlt.convertTo(means, CV_64FC1);
// Compute weights and covs
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment