Commit acc089ca authored by Polina Smolnikova's avatar Polina Smolnikova Committed by Alexander Alekhin

Merge pull request #15338 from rayonnant14:my_detect_and_decode_3.4

QR-Code detector : multiple detection

* change in qr-codes detection

* change in qr-codes detection

* change in test

* change in test

* add multiple detection

* multiple detection

* multiple detect

* add parallel implementation

* add functional for performance tests

* change in test

* add perftest

* returned implementation for 1 qr-code, added support for vector<Mat> and vector<vector<Point2f>> in MultipleDetectAndDecode

* deleted all lambda expressions

* changing in triangle sort

* fixed warnings

* fixed errors

* add java and python tests

* change in java tests

* change in java and python tests

* change in perf test

* change in qrcode.cpp

* add spaces

* change in qrcode.cpp

* change in qrcode.cpp

* change in qrcode.cpp

* change in java tests

* change in java tests

* solved problems

* solved problems

* change in java and python tests

* change in python tests

* change in python tests

* change in python tests

* change in methods name

* deleted sample qrcode_multi, change in qrcode.cpp

* change in perf tests

* change in objdetect.hpp

* deleted code duplication in sample qrcode.cpp

* returned spaces

* added spaces

* deleted draw function

* change in qrcode.cpp

* change in qrcode.cpp

* deleted all draw functions

* objdetect(QR): extractVerticalLines

* objdetect(QR): whitespaces

* objdetect(QR): simplify operations, avoid duplicated code

* change in interface, additional checks in java and python tests, added new key in sample for saving original image from camera

* fix warnings and errors in python test

* fix

* write in file with space key

* solved error with empty mat check in python test

* correct path to test image

* deleted spaces

* solved error with check empty mat in python tests

* added check of empty vector of points

* samples: rework qrcode.cpp

* objdetect(QR): fix API, input parameters must be first

* objdetect(QR): test/fix points layout
parent 282a15c9
......@@ -913,6 +913,9 @@ class JavaWrapperGenerator(object):
if type_dict[fi.ctype]["v_type"] in ("Mat", "vector_Mat"):
c_epilogue.append("Mat* _retval_ = new Mat();")
c_epilogue.append(fi.ctype+"_to_Mat(_ret_val_vector_, *_retval_);")
else:
if ret:
c_epilogue.append("jobject _retval_ = " + fi.ctype + "_to_List(env, _ret_val_vector_);")
else:
c_epilogue.append("return " + fi.ctype + "_to_List(env, _ret_val_vector_);")
if fi.classname:
......
......@@ -694,8 +694,8 @@ public:
CV_WRAP bool detect(InputArray img, OutputArray points) const;
/** @brief Decodes QR code in image once it's found by the detect() method.
Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Returns UTF8-encoded output string or empty string if the code cannot be decoded.
@param img grayscale or color (BGR) image containing QR code.
@param points Quadrangle vertices found by detect() method (or some other algorithm).
@param straight_qrcode The optional output image containing rectified and binarized QR code
......@@ -705,11 +705,44 @@ public:
/** @brief Both detects and decodes QR code
@param img grayscale or color (BGR) image containing QR code.
@param points opiotnal output array of vertices of the found QR code quadrangle. Will be empty if not found.
@param points optional output array of vertices of the found QR code quadrangle. Will be empty if not found.
@param straight_qrcode The optional output image containing rectified and binarized QR code
*/
CV_WRAP cv::String detectAndDecode(InputArray img, OutputArray points=noArray(),
OutputArray straight_qrcode = noArray());
/** @brief Detects QR codes in image and returns the vector of the quadrangles containing the codes.
@param img grayscale or color (BGR) image containing (or not) QR codes.
@param points Output vector of vector of vertices of the minimum-area quadrangle containing the codes.
*/
CV_WRAP
bool detectMulti(InputArray img, OutputArray points) const;
/** @brief Decodes QR codes in image once it's found by the detect() method.
@param img grayscale or color (BGR) image containing QR codes.
@param decoded_info UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.
@param points vector of Quadrangle vertices found by detect() method (or some other algorithm).
@param straight_qrcode The optional output vector of images containing rectified and binarized QR codes
*/
CV_WRAP
bool decodeMulti(
InputArray img, InputArray points,
CV_OUT std::vector<cv::String>& decoded_info,
OutputArrayOfArrays straight_qrcode = noArray()
) const;
/** @brief Both detects and decodes QR codes
@param img grayscale or color (BGR) image containing QR codes.
@param decoded_info UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.
@param points optional output vector of vertices of the found QR code quadrangles. Will be empty if not found.
@param straight_qrcode The optional output vector of images containing rectified and binarized QR codes
*/
CV_WRAP
bool detectAndDecodeMulti(
InputArray img, CV_OUT std::vector<cv::String>& decoded_info,
OutputArray points = noArray(),
OutputArrayOfArrays straight_qrcode = noArray()
) const;
protected:
struct Impl;
Ptr<Impl> p;
......@@ -731,6 +764,29 @@ CV_EXPORTS bool detectQRCode(InputArray in, std::vector<Point> &points, double e
*/
CV_EXPORTS bool decodeQRCode(InputArray in, InputArray points, std::string &decoded_info, OutputArray straight_qrcode = noArray());
/** @brief Detect QR codes in image and return vector of minimum area of quadrangle that describes QR codes.
@param in Matrix of the type CV_8UC1 containing an image where QR codes are detected.
@param points Output vector of vertices of quadrangles of minimal area that describes QR codes.
@param eps_x Epsilon neighborhood, which allows you to determine the horizontal pattern of the scheme 1:1:3:1:1 according to QR code standard.
@param eps_y Epsilon neighborhood, which allows you to determine the vertical pattern of the scheme 1:1:3:1:1 according to QR code standard.
*/
CV_EXPORTS
bool detectQRCodeMulti(
InputArray in, std::vector<Point> &points,
double eps_x = 0.2, double eps_y = 0.1);
/** @brief Decode QR codes in image and return text that is encrypted in QR code.
@param in Matrix of the type CV_8UC1 containing an image where QR code are detected.
@param points Input vector of vertices of quadrangles of minimal area that describes QR codes.
@param decoded_info vector of String information that is encrypted in QR codes.
@param straight_qrcode vector of Matrixes of the type CV_8UC1 containing an binary straight QR codes.
*/
CV_EXPORTS
bool decodeQRCodeMulti(
InputArray in, InputArray points,
CV_OUT std::vector<std::string> &decoded_info,
OutputArrayOfArrays straight_qrcode = noArray());
//! @} objdetect
}
......
package org.opencv.test.objdetect;
import java.util.List;
import org.opencv.core.Mat;
import org.opencv.objdetect.QRCodeDetector;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.test.OpenCVTestCase;
import java.util.ArrayList;
public class QRCodeDetectorTest extends OpenCVTestCase {
......@@ -21,9 +23,27 @@ public class QRCodeDetectorTest extends OpenCVTestCase {
public void testDetectAndDecode() {
Mat img = Imgcodecs.imread(testDataPath + "/cv/qrcode/link_ocv.jpg");
assertFalse(img.empty());
QRCodeDetector detector = new QRCodeDetector();
assertNotNull(detector);
String output = detector.detectAndDecode(img);
assertEquals(output, "https://opencv.org/");
}
public void testDetectAndDecodeMulti() {
Mat img = Imgcodecs.imread(testDataPath + "/cv/qrcode/multiple/6_qrcodes.png");
assertFalse(img.empty());
QRCodeDetector detector = new QRCodeDetector();
assertNotNull(detector);
List < String > output = new ArrayList< String >();
boolean result = detector.detectAndDecodeMulti(img, output);
assertTrue(result);
assertEquals(output.size(), 6);
assertEquals(output.get(0), "SKIP");
assertEquals(output.get(1), "EXTRA");
assertEquals(output.get(2), "TWO STEPS FORWARD");
assertEquals(output.get(3), "STEP BACK");
assertEquals(output.get(4), "QUESTION");
assertEquals(output.get(5), "STEP FORWARD");
}
}
......@@ -11,8 +11,42 @@ import cv2 as cv
from tests_common import NewOpenCVTests
class qrcode_detector_test(NewOpenCVTests):
def test_detect(self):
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/link_ocv.jpg'))
self.assertFalse(img is None)
detector = cv.QRCodeDetector()
retval, points = detector.detect(img)
self.assertTrue(retval)
self.assertEqual(points.shape, (1, 4, 2))
def test_detect_and_decode(self):
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/link_ocv.jpg'))
self.assertFalse(img is None)
detector = cv.QRCodeDetector()
retval, points, straight_qrcode = detector.detectAndDecode(img)
self.assertEqual(retval, "https://opencv.org/");
self.assertEqual(retval, "https://opencv.org/")
self.assertEqual(points.shape, (1, 4, 2))
def test_detect_multi(self):
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/multiple/6_qrcodes.png'))
self.assertFalse(img is None)
detector = cv.QRCodeDetector()
retval, points = detector.detectMulti(img)
self.assertTrue(retval)
self.assertEqual(points.shape, (6, 4, 2))
def test_detect_and_decode_multi(self):
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/multiple/6_qrcodes.png'))
self.assertFalse(img is None)
detector = cv.QRCodeDetector()
retval, decoded_data, points, straight_qrcode = detector.detectAndDecodeMulti(img)
self.assertTrue(retval)
self.assertEqual(len(decoded_data), 6)
self.assertEqual(decoded_data[0], "TWO STEPS FORWARD")
self.assertEqual(decoded_data[1], "EXTRA")
self.assertEqual(decoded_data[2], "SKIP")
self.assertEqual(decoded_data[3], "STEP FORWARD")
self.assertEqual(decoded_data[4], "STEP BACK")
self.assertEqual(decoded_data[5], "QUESTION")
self.assertEqual(points.shape, (6, 4, 2))
......@@ -53,6 +53,56 @@ PERF_TEST_P_(Perf_Objdetect_QRCode, decode)
}
#endif
typedef ::perf::TestBaseWithParam< std::string > Perf_Objdetect_QRCode_Multi;
PERF_TEST_P_(Perf_Objdetect_QRCode_Multi, detectMulti)
{
const std::string name_current_image = GetParam();
const std::string root = "cv/qrcode/multiple/";
std::string image_path = findDataFile(root + name_current_image);
Mat src = imread(image_path);
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
std::vector<Point2f> corners;
QRCodeDetector qrcode;
TEST_CYCLE() ASSERT_TRUE(qrcode.detectMulti(src, corners));
SANITY_CHECK(corners);
}
#ifdef HAVE_QUIRC
PERF_TEST_P_(Perf_Objdetect_QRCode_Multi, decodeMulti)
{
const std::string name_current_image = GetParam();
const std::string root = "cv/qrcode/multiple/";
std::string image_path = findDataFile(root + name_current_image);
Mat src = imread(image_path);
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
QRCodeDetector qrcode;
std::vector<Point2f> corners;
ASSERT_TRUE(qrcode.detectMulti(src, corners));
std::vector<Mat> straight_barcode;
std::vector< cv::String > decoded_info;
TEST_CYCLE()
{
ASSERT_TRUE(qrcode.decodeMulti(src, corners, decoded_info, straight_barcode));
for(size_t i = 0; i < decoded_info.size(); i++)
{
ASSERT_FALSE(decoded_info[i].empty());
}
}
std::vector < std::vector< uint8_t > > decoded_info_uint8_t;
for(size_t i = 0; i < decoded_info.size(); i++)
{
std::vector< uint8_t > tmp(decoded_info[i].begin(), decoded_info[i].end());
decoded_info_uint8_t.push_back(tmp);
}
SANITY_CHECK(decoded_info_uint8_t);
SANITY_CHECK(straight_barcode);
}
#endif
INSTANTIATE_TEST_CASE_P(/*nothing*/, Perf_Objdetect_QRCode,
::testing::Values(
"version_1_down.jpg", "version_1_left.jpg", "version_1_right.jpg", "version_1_up.jpg", "version_1_top.jpg",
......@@ -61,6 +111,13 @@ INSTANTIATE_TEST_CASE_P(/*nothing*/, Perf_Objdetect_QRCode,
)
);
INSTANTIATE_TEST_CASE_P(/*nothing*/, Perf_Objdetect_QRCode_Multi,
::testing::Values(
"2_qrcodes.png", "3_close_qrcodes.png", "3_qrcodes.png", "4_qrcodes.png",
"5_qrcodes.png", "6_qrcodes.png", "7_qrcodes.png", "8_close_qrcodes.png"
)
);
typedef ::perf::TestBaseWithParam< tuple< std::string, Size > > Perf_Objdetect_Not_QRCode;
PERF_TEST_P_(Perf_Objdetect_Not_QRCode, detect)
......
......@@ -22,6 +22,48 @@ namespace cv
{
using std::vector;
static bool checkQRInputImage(InputArray img, Mat& gray)
{
CV_Assert(!img.empty());
CV_CheckDepthEQ(img.depth(), CV_8U, "");
if (img.cols() <= 20 || img.rows() <= 20)
{
return false; // image data is not enough for providing reliable results
}
int incn = img.channels();
CV_Check(incn, incn == 1 || incn == 3 || incn == 3, "");
if (incn == 3 || incn == 4)
{
cvtColor(img, gray, COLOR_BGR2GRAY);
}
else
{
gray = img.getMat();
}
return true;
}
static void updatePointsResult(OutputArray points_, const vector<Point2f>& points)
{
if (points_.needed())
{
int N = int(points.size() / 4);
if (N > 0)
{
Mat m_p(N, 4, CV_32FC2, (void*)&points[0]);
int points_type = points_.fixedType() ? points_.type() : CV_32FC2;
m_p.reshape(2, points_.rows()).convertTo(points_, points_type); // Mat layout: N x 4 x 2cn
}
else
{
points_.release();
}
}
}
class QRDetect
{
public:
......@@ -35,6 +77,7 @@ public:
protected:
vector<Vec3d> searchHorizontalLines();
vector<Point2f> separateVerticalLines(const vector<Vec3d> &list_lines);
vector<Point2f> extractVerticalLines(const vector<Vec3d> &list_lines, double eps);
void fixationPoints(vector<Point2f> &local_point);
vector<Point2f> getQuadrilateral(vector<Point2f> angle_list);
bool testBypassRoute(vector<Point2f> hull, int start, int finish);
......@@ -112,7 +155,7 @@ vector<Vec3d> QRDetect::searchHorizontalLines()
{
if (bin_barcode_row[x] == future_pixel)
{
future_pixel = 255 - future_pixel;
future_pixel = static_cast<uint8_t>(~future_pixel);
pixels_position.push_back(x);
}
}
......@@ -125,7 +168,7 @@ vector<Vec3d> QRDetect::searchHorizontalLines()
test_lines[3] = static_cast<double>(pixels_position[i + 2] - pixels_position[i + 1]);
test_lines[4] = static_cast<double>(pixels_position[i + 3] - pixels_position[i + 2]);
double length = 0.0, weight = 0.0;
double length = 0.0, weight = 0.0; // TODO avoid 'double' calculations
for (size_t j = 0; j < test_lines_size; j++) { length += test_lines[j]; }
......@@ -152,18 +195,34 @@ vector<Vec3d> QRDetect::searchHorizontalLines()
vector<Point2f> QRDetect::separateVerticalLines(const vector<Vec3d> &list_lines)
{
CV_TRACE_FUNCTION();
vector<Vec3d> result;
int temp_length;
vector<Point2f> point2f_result;
uint8_t next_pixel;
vector<double> test_lines;
for (int coeff_epsilon = 1; coeff_epsilon < 10; coeff_epsilon++)
{
result.clear();
temp_length = 0;
point2f_result.clear();
vector<Point2f> point2f_result = extractVerticalLines(list_lines, eps_horizontal * coeff_epsilon);
if (!point2f_result.empty())
{
vector<Point2f> centers;
Mat labels;
double compactness = kmeans(
point2f_result, 3, labels,
TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
3, KMEANS_PP_CENTERS, centers);
if (compactness == 0)
continue;
if (compactness > 0)
{
return point2f_result;
}
}
}
return vector<Point2f>(); // nothing
}
vector<Point2f> QRDetect::extractVerticalLines(const vector<Vec3d> &list_lines, double eps)
{
CV_TRACE_FUNCTION();
vector<Vec3d> result;
vector<double> test_lines; test_lines.reserve(6);
for (size_t pnt = 0; pnt < list_lines.size(); pnt++)
{
......@@ -175,32 +234,36 @@ vector<Point2f> QRDetect::separateVerticalLines(const vector<Vec3d> &list_lines)
test_lines.clear();
uint8_t future_pixel_up = 255;
int temp_length_up = 0;
for (int j = y; j < bin_barcode.rows - 1; j++)
{
next_pixel = bin_barcode.ptr<uint8_t>(j + 1)[x];
temp_length++;
uint8_t next_pixel = bin_barcode.ptr<uint8_t>(j + 1)[x];
temp_length_up++;
if (next_pixel == future_pixel_up)
{
future_pixel_up = 255 - future_pixel_up;
test_lines.push_back(temp_length);
temp_length = 0;
if (test_lines.size() == 3) { break; }
future_pixel_up = static_cast<uint8_t>(~future_pixel_up);
test_lines.push_back(temp_length_up);
temp_length_up = 0;
if (test_lines.size() == 3)
break;
}
}
// --------------- Search vertical down-lines --------------- //
int temp_length_down = 0;
uint8_t future_pixel_down = 255;
for (int j = y; j >= 1; j--)
{
next_pixel = bin_barcode.ptr<uint8_t>(j - 1)[x];
temp_length++;
uint8_t next_pixel = bin_barcode.ptr<uint8_t>(j - 1)[x];
temp_length_down++;
if (next_pixel == future_pixel_down)
{
future_pixel_down = 255 - future_pixel_down;
test_lines.push_back(temp_length);
temp_length = 0;
if (test_lines.size() == 6) { break; }
future_pixel_down = static_cast<uint8_t>(~future_pixel_down);
test_lines.push_back(temp_length_down);
temp_length_down = 0;
if (test_lines.size() == 6)
break;
}
}
......@@ -208,23 +271,32 @@ vector<Point2f> QRDetect::separateVerticalLines(const vector<Vec3d> &list_lines)
if (test_lines.size() == 6)
{
double length = 0.0, weight = 0.0;
double length = 0.0, weight = 0.0; // TODO avoid 'double' calculations
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; }
for (size_t i = 0; i < test_lines.size(); i++)
length += test_lines[i];
CV_Assert(length > 0);
for (size_t i = 0; i < test_lines.size(); i++)
{
if (i % 3 != 0) { weight += fabs((test_lines[i] / length) - 1.0/ 7.0); }
else { weight += fabs((test_lines[i] / length) - 3.0/14.0); }
if (i % 3 != 0)
{
weight += fabs((test_lines[i] / length) - 1.0/ 7.0);
}
else
{
weight += fabs((test_lines[i] / length) - 3.0/14.0);
}
}
if(weight < eps_horizontal * coeff_epsilon)
if (weight < eps)
{
result.push_back(list_lines[pnt]);
}
}
}
vector<Point2f> point2f_result;
if (result.size() > 2)
{
for (size_t i = 0; i < result.size(); i++)
......@@ -233,16 +305,6 @@ vector<Point2f> QRDetect::separateVerticalLines(const vector<Vec3d> &list_lines)
Point2f(static_cast<float>(result[i][0] + result[i][2] * 0.5),
static_cast<float>(result[i][1])));
}
vector<Point2f> centers;
Mat labels;
double compactness;
compactness = kmeans(point2f_result, 3, labels,
TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
3, KMEANS_PP_CENTERS, centers);
if (compactness == 0) { continue; }
if (compactness > 0) { break; }
}
}
return point2f_result;
}
......@@ -302,19 +364,25 @@ void QRDetect::fixationPoints(vector<Point2f> &local_point)
for (size_t k = 0; k < list_line_iter.size(); k++)
{
LineIterator& li = list_line_iter[k];
uint8_t future_pixel = 255, count_index = 0;
for(int j = 0; j < list_line_iter[k].count; j++, ++list_line_iter[k])
for(int j = 0; j < li.count; j++, ++li)
{
if (list_line_iter[k].pos().x >= bin_barcode.cols ||
list_line_iter[k].pos().y >= bin_barcode.rows) { break; }
const uint8_t value = bin_barcode.at<uint8_t>(list_line_iter[k].pos());
const Point p = li.pos();
if (p.x >= bin_barcode.cols ||
p.y >= bin_barcode.rows)
{
break;
}
const uint8_t value = bin_barcode.at<uint8_t>(p);
if (value == future_pixel)
{
future_pixel = 255 - future_pixel;
future_pixel = static_cast<uint8_t>(~future_pixel);
count_index++;
if (count_index == 3)
{
list_area_pnt.push_back(list_line_iter[k].pos());
list_area_pnt.push_back(p);
break;
}
}
......@@ -454,7 +522,7 @@ bool QRDetect::computeTransformationPoints()
next_pixel = bin_barcode.ptr<uint8_t>(cvRound(localization_points[i].y))[index + 1];
if (next_pixel == future_pixel)
{
future_pixel = 255 - future_pixel;
future_pixel = static_cast<uint8_t>(~future_pixel);
count_test_lines++;
if (count_test_lines == 2)
{
......@@ -623,11 +691,12 @@ vector<Point2f> QRDetect::getQuadrilateral(vector<Point2f> angle_list)
angle_list[(i + 1) % angle_size]);
for(int j = 0; j < line_iter.count; j++, ++line_iter)
{
value = bin_barcode.at<uint8_t>(line_iter.pos());
mask_value = mask.at<uint8_t>(line_iter.pos() + Point(1, 1));
Point p = line_iter.pos();
value = bin_barcode.at<uint8_t>(p);
mask_value = mask.at<uint8_t>(p + Point(1, 1));
if (value == 0 && mask_value == 0)
{
floodFill(fill_bin_barcode, mask, line_iter.pos(), 255,
floodFill(fill_bin_barcode, mask, p, 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
}
}
......@@ -868,26 +937,16 @@ void QRCodeDetector::setEpsY(double epsY) { p->epsY = epsY; }
bool QRCodeDetector::detect(InputArray in, OutputArray points) const
{
Mat inarr = in.getMat();
CV_Assert(!inarr.empty());
CV_Assert(inarr.depth() == CV_8U);
if (inarr.cols <= 20 || inarr.rows <= 20)
return false; // image data is not enough for providing reliable results
int incn = inarr.channels();
if( incn == 3 || incn == 4 )
{
Mat gray;
cvtColor(inarr, gray, COLOR_BGR2GRAY);
inarr = gray;
}
Mat inarr;
if (!checkQRInputImage(in, inarr))
return false;
QRDetect qrdet;
qrdet.init(inarr, p->epsX, p->epsY);
if (!qrdet.localization()) { return false; }
if (!qrdet.computeTransformationPoints()) { return false; }
vector<Point2f> pnts2f = qrdet.getTransformationPoints();
Mat(pnts2f).convertTo(points, points.fixedType() ? points.type() : CV_32FC2);
updatePointsResult(points, pnts2f);
return true;
}
......@@ -925,24 +984,7 @@ void QRDecode::init(const Mat &src, const vector<Point2f> &points)
{
CV_TRACE_FUNCTION();
vector<Point2f> bbox = points;
double coeff_expansion;
const int min_side = std::min(src.size().width, src.size().height);
if (min_side > 512)
{
coeff_expansion = min_side / 512;
const int width = cvRound(src.size().width / coeff_expansion);
const int height = cvRound(src.size().height / coeff_expansion);
Size new_size(width, height);
resize(src, original, new_size, 0, 0, INTER_AREA);
for (size_t i = 0; i < bbox.size(); i++)
{
bbox[i] /= static_cast<float>(coeff_expansion);
}
}
else
{
original = src.clone();
}
intermediate = Mat::zeros(original.size(), CV_8UC1);
original_points = bbox;
version = 0;
......@@ -1008,7 +1050,11 @@ bool QRDecode::versionDefinition()
for(int j = 0; j < line_iter.count; j++, ++line_iter)
{
const uint8_t value = intermediate.at<uint8_t>(line_iter.pos());
if (value == 0) { black_point = line_iter.pos(); break; }
if (value == 0)
{
black_point = line_iter.pos();
break;
}
}
Mat mask = Mat::zeros(intermediate.rows + 2, intermediate.cols + 2, CV_8UC1);
......@@ -1041,7 +1087,7 @@ bool QRDecode::versionDefinition()
{
if (intermediate_row[i] == future_pixel)
{
future_pixel = 255 - future_pixel;
future_pixel = static_cast<uint8_t>(~future_pixel);
transition_x++;
}
}
......@@ -1052,11 +1098,10 @@ bool QRDecode::versionDefinition()
const uint8_t value = intermediate.at<uint8_t>(Point(j, remote_point.x));
if (value == future_pixel)
{
future_pixel = 255 - future_pixel;
future_pixel = static_cast<uint8_t>(~future_pixel);
transition_y++;
}
}
version = saturate_cast<uint8_t>((std::min(transition_x, transition_y) - 1) * 0.25 - 1);
if ( !( 0 < version && version <= 40 ) ) { return false; }
version_size = 21 + (version - 1) * 4;
......@@ -1177,19 +1222,9 @@ bool decodeQRCode(InputArray in, InputArray points, std::string &decoded_info, O
cv::String QRCodeDetector::decode(InputArray in, InputArray points,
OutputArray straight_qrcode)
{
Mat inarr = in.getMat();
CV_Assert(!inarr.empty());
CV_Assert(inarr.depth() == CV_8U);
if (inarr.cols <= 20 || inarr.rows <= 20)
return cv::String(); // image data is not enough for providing reliable results
int incn = inarr.channels();
if( incn == 3 || incn == 4 )
{
Mat gray;
cvtColor(inarr, gray, COLOR_BGR2GRAY);
inarr = gray;
}
Mat inarr;
if (!checkQRInputImage(in, inarr))
return std::string();
vector<Point2f> src_points;
points.copyTo(src_points);
......@@ -1216,34 +1251,1150 @@ cv::String QRCodeDetector::detectAndDecode(InputArray in,
OutputArray points_,
OutputArray straight_qrcode)
{
Mat inarr = in.getMat();
CV_Assert(!inarr.empty());
CV_Assert(inarr.depth() == CV_8U);
if (inarr.cols <= 20 || inarr.rows <= 20)
return cv::String(); // image data is not enough for providing reliable results
int incn = inarr.channels();
if( incn == 3 || incn == 4 )
Mat inarr;
if (!checkQRInputImage(in, inarr))
{
Mat gray;
cvtColor(inarr, gray, COLOR_BGR2GRAY);
inarr = gray;
points_.release();
return std::string();
}
vector<Point2f> points;
bool ok = detect(inarr, points);
if( points_.needed() )
if (!ok)
{
if( ok )
Mat(points).copyTo(points_);
else
points_.release();
return std::string();
}
std::string decoded_info;
if( ok )
decoded_info = decode(inarr, points, straight_qrcode);
updatePointsResult(points_, points);
std::string decoded_info = decode(inarr, points, straight_qrcode);
return decoded_info;
}
class QRDetectMulti : public QRDetect
{
public:
void init(const Mat& src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1);
bool localization();
bool computeTransformationPoints(const size_t cur_ind);
vector< vector < Point2f > > getTransformationPoints() { return transformation_points;}
protected:
int findNumberLocalizationPoints(vector<Point2f>& tmp_localization_points);
void findQRCodeContours(vector<Point2f>& tmp_localization_points, vector< vector< Point2f > >& true_points_group, const int& num_qrcodes);
bool checkSets(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& true_points_group_copy,
vector<Point2f>& tmp_localization_points);
void deleteUsedPoints(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& loc,
vector<Point2f>& tmp_localization_points);
void fixationPoints(vector<Point2f> &local_point);
bool checkPoints(const vector<Point2f>& quadrangle_points);
bool checkPointsInsideQuadrangle(const vector<Point2f>& quadrangle_points);
bool checkPointsInsideTriangle(const vector<Point2f>& triangle_points);
Mat bin_barcode_fullsize, bin_barcode_temp;
vector<Point2f> not_resized_loc_points;
vector<Point2f> resized_loc_points;
vector< vector< Point2f > > localization_points, transformation_points;
struct compareDistanse_y
{
bool operator()(const Point2f& a, const Point2f& b) const
{
return a.y < b.y;
}
};
struct compareSquare
{
const vector<Point2f>& points;
compareSquare(const vector<Point2f>& points_) : points(points_) {}
bool operator()(const Vec3i& a, const Vec3i& b) const;
};
Mat original;
class ParallelSearch : public ParallelLoopBody
{
public:
ParallelSearch(vector< vector< Point2f > >& true_points_group_,
vector< vector< Point2f > >& loc_, int iter_, int* end_,
vector< vector< Vec3i > >& all_points_,
QRDetectMulti& cl_)
:
true_points_group(true_points_group_),
loc(loc_),
iter(iter_),
end(end_),
all_points(all_points_),
cl(cl_)
{
}
void operator()(const Range& range) const CV_OVERRIDE;
vector< vector< Point2f > >& true_points_group;
vector< vector< Point2f > >& loc;
int iter;
int* end;
vector< vector< Vec3i > >& all_points;
QRDetectMulti& cl;
};
};
void QRDetectMulti::ParallelSearch::operator()(const Range& range) const
{
for (int s = range.start; s < range.end; s++)
{
bool flag = false;
for (int r = iter; r < end[s]; r++)
{
if (flag)
break;
size_t x = iter + s;
size_t k = r - iter;
vector<Point2f> triangle;
for (int l = 0; l < 3; l++)
{
triangle.push_back(true_points_group[s][all_points[s][k][l]]);
}
if (cl.checkPointsInsideTriangle(triangle))
{
bool flag_for_break = false;
cl.fixationPoints(triangle);
if (triangle.size() == 3)
{
cl.localization_points[x] = triangle;
if (cl.purpose == cl.SHRINKING)
{
for (size_t j = 0; j < 3; j++)
{
cl.localization_points[x][j] *= cl.coeff_expansion;
}
}
else if (cl.purpose == cl.ZOOMING)
{
for (size_t j = 0; j < 3; j++)
{
cl.localization_points[x][j] /= cl.coeff_expansion;
}
}
for (size_t i = 0; i < 3; i++)
{
for (size_t j = i + 1; j < 3; j++)
{
if (norm(cl.localization_points[x][i] - cl.localization_points[x][j]) < 10)
{
cl.localization_points[x].clear();
flag_for_break = true;
break;
}
}
if (flag_for_break)
break;
}
if ((!flag_for_break)
&& (cl.localization_points[x].size() == 3)
&& (cl.computeTransformationPoints(x))
&& (cl.checkPointsInsideQuadrangle(cl.transformation_points[x]))
&& (cl.checkPoints(cl.transformation_points[x])))
{
for (int l = 0; l < 3; l++)
{
loc[s][all_points[s][k][l]].x = -1;
}
flag = true;
break;
}
}
if (flag)
{
break;
}
else
{
cl.transformation_points[x].clear();
cl.localization_points[x].clear();
}
}
}
}
}
void QRDetectMulti::init(const Mat& src, double eps_vertical_, double eps_horizontal_)
{
CV_TRACE_FUNCTION();
CV_Assert(!src.empty());
const double min_side = std::min(src.size().width, src.size().height);
if (min_side < 512.0)
{
purpose = ZOOMING;
coeff_expansion = 512.0 / min_side;
const int width = cvRound(src.size().width * coeff_expansion);
const int height = cvRound(src.size().height * coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size, 0, 0, INTER_LINEAR);
}
else if (min_side > 512.0)
{
purpose = SHRINKING;
coeff_expansion = min_side / 512.0;
const int width = cvRound(src.size().width / coeff_expansion);
const int height = cvRound(src.size().height / coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size, 0, 0, INTER_AREA);
}
else
{
purpose = UNCHANGED;
coeff_expansion = 1.0;
barcode = src.clone();
}
eps_vertical = eps_vertical_;
eps_horizontal = eps_horizontal_;
adaptiveThreshold(barcode, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
adaptiveThreshold(src, bin_barcode_fullsize, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
}
void QRDetectMulti::fixationPoints(vector<Point2f> &local_point)
{
CV_TRACE_FUNCTION();
Point2f v0(local_point[1] - local_point[2]);
Point2f v1(local_point[0] - local_point[2]);
Point2f v2(local_point[1] - local_point[0]);
double cos_angles[3], norm_triangl[3];
norm_triangl[0] = norm(v0);
norm_triangl[1] = norm(v1);
norm_triangl[2] = norm(v2);
cos_angles[0] = v2.dot(-v1) / (norm_triangl[1] * norm_triangl[2]);
cos_angles[1] = v2.dot(v0) / (norm_triangl[0] * norm_triangl[2]);
cos_angles[2] = v1.dot(v0) / (norm_triangl[0] * norm_triangl[1]);
const double angle_barrier = 0.85;
if (fabs(cos_angles[0]) > angle_barrier || fabs(cos_angles[1]) > angle_barrier || fabs(cos_angles[2]) > angle_barrier)
{
local_point.clear();
return;
}
size_t i_min_cos =
(cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 :
(cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2;
size_t index_max = 0;
double max_area = std::numeric_limits<double>::min();
for (size_t i = 0; i < local_point.size(); i++)
{
const size_t current_index = i % 3;
const size_t left_index = (i + 1) % 3;
const size_t right_index = (i + 2) % 3;
const Point2f current_point(local_point[current_index]);
const Point2f left_point(local_point[left_index]);
const Point2f right_point(local_point[right_index]);
const Point2f central_point(intersectionLines(
current_point,
Point2f(static_cast<float>((local_point[left_index].x + local_point[right_index].x) * 0.5),
static_cast<float>((local_point[left_index].y + local_point[right_index].y) * 0.5)),
Point2f(0, static_cast<float>(bin_barcode_temp.rows - 1)),
Point2f(static_cast<float>(bin_barcode_temp.cols - 1),
static_cast<float>(bin_barcode_temp.rows - 1))));
vector<Point2f> list_area_pnt;
list_area_pnt.push_back(current_point);
vector<LineIterator> list_line_iter;
list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, left_point));
list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, central_point));
list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, right_point));
for (size_t k = 0; k < list_line_iter.size(); k++)
{
LineIterator& li = list_line_iter[k];
uint8_t future_pixel = 255, count_index = 0;
for (int j = 0; j < li.count; j++, ++li)
{
Point p = li.pos();
if (p.x >= bin_barcode_temp.cols ||
p.y >= bin_barcode_temp.rows)
{
break;
}
const uint8_t value = bin_barcode_temp.at<uint8_t>(p);
if (value == future_pixel)
{
future_pixel = static_cast<uint8_t>(~future_pixel);
count_index++;
if (count_index == 3)
{
list_area_pnt.push_back(p);
break;
}
}
}
}
const double temp_check_area = contourArea(list_area_pnt);
if (temp_check_area > max_area)
{
index_max = current_index;
max_area = temp_check_area;
}
}
if (index_max == i_min_cos)
{
std::swap(local_point[0], local_point[index_max]);
}
else
{
local_point.clear();
return;
}
const Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2];
Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y);
if (determinant(m) > 0)
{
std::swap(local_point[1], local_point[2]);
}
}
bool QRDetectMulti::checkPoints(const vector<Point2f>& quadrangle_points)
{
if (quadrangle_points.size() != 4)
return false;
vector<Point2f> quadrangle = quadrangle_points;
std::sort(quadrangle.begin(), quadrangle.end(), compareDistanse_y());
LineIterator it1(bin_barcode_fullsize, quadrangle[1], quadrangle[0]);
LineIterator it2(bin_barcode_fullsize, quadrangle[2], quadrangle[0]);
LineIterator it3(bin_barcode_fullsize, quadrangle[1], quadrangle[3]);
LineIterator it4(bin_barcode_fullsize, quadrangle[2], quadrangle[3]);
vector<LineIterator> list_line_iter;
list_line_iter.push_back(it1);
list_line_iter.push_back(it2);
list_line_iter.push_back(it3);
list_line_iter.push_back(it4);
int count_w = 0;
int count_b = 0;
for (int j = 0; j < 3; j +=2)
{
LineIterator& li = list_line_iter[j];
LineIterator& li2 = list_line_iter[j + 1];
for (int i = 0; i < li.count; i++)
{
Point pt1 = li.pos();
Point pt2 = li2.pos();
LineIterator it0(bin_barcode_fullsize, pt1, pt2);
for (int r = 0; r < it0.count; r++)
{
int pixel = bin_barcode.at<uchar>(it0.pos().y , it0.pos().x);
if (pixel == 255)
{
count_w++;
}
if (pixel == 0)
{
count_b++;
}
it0++;
}
li++;
li2++;
}
}
double frac = double(count_b) / double(count_w);
double bottom_bound = 0.76;
double upper_bound = 1.24;
if ((frac <= bottom_bound) || (frac >= upper_bound))
return false;
return true;
}
bool QRDetectMulti::checkPointsInsideQuadrangle(const vector<Point2f>& quadrangle_points)
{
if (quadrangle_points.size() != 4)
return false;
int count = 0;
for (size_t i = 0; i < not_resized_loc_points.size(); i++)
{
if (pointPolygonTest(quadrangle_points, not_resized_loc_points[i], true) > 0)
{
count++;
}
}
if (count == 3)
return true;
else
return false;
}
bool QRDetectMulti::checkPointsInsideTriangle(const vector<Point2f>& triangle_points)
{
if (triangle_points.size() != 3)
return false;
double eps = 3;
for (size_t i = 0; i < resized_loc_points.size(); i++)
{
if (pointPolygonTest( triangle_points, resized_loc_points[i], true ) > 0)
{
if ((abs(resized_loc_points[i].x - triangle_points[0].x) > eps)
&& (abs(resized_loc_points[i].x - triangle_points[1].x) > eps)
&& (abs(resized_loc_points[i].x - triangle_points[2].x) > eps))
{
return false;
}
}
}
return true;
}
bool QRDetectMulti::compareSquare::operator()(const Vec3i& a, const Vec3i& b) const
{
Point2f a0 = points[a[0]];
Point2f a1 = points[a[1]];
Point2f a2 = points[a[2]];
Point2f b0 = points[b[0]];
Point2f b1 = points[b[1]];
Point2f b2 = points[b[2]];
return fabs((a1.x - a0.x) * (a2.y - a0.y) - (a2.x - a0.x) * (a1.y - a0.y)) <
fabs((b1.x - b0.x) * (b2.y - b0.y) - (b2.x - b0.x) * (b1.y - b0.y));
}
int QRDetectMulti::findNumberLocalizationPoints(vector<Point2f>& tmp_localization_points)
{
size_t number_possible_purpose = 1;
if (purpose == SHRINKING)
number_possible_purpose = 2;
Mat tmp_shrinking = bin_barcode;
int tmp_num_points = 0;
int num_points = -1;
for (eps_horizontal = 0.1; eps_horizontal < 0.4; eps_horizontal += 0.1)
{
tmp_num_points = 0;
num_points = -1;
if (purpose == SHRINKING)
number_possible_purpose = 2;
else
number_possible_purpose = 1;
for (size_t k = 0; k < number_possible_purpose; k++)
{
if (k == 1)
bin_barcode = bin_barcode_fullsize;
vector<Vec3d> list_lines_x = searchHorizontalLines();
if (list_lines_x.empty())
{
if (k == 0)
{
k = 1;
bin_barcode = bin_barcode_fullsize;
list_lines_x = searchHorizontalLines();
if (list_lines_x.empty())
break;
}
else
break;
}
vector<Point2f> list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal);
if (list_lines_y.size() < 3)
{
if (k == 0)
{
k = 1;
bin_barcode = bin_barcode_fullsize;
list_lines_x = searchHorizontalLines();
if (list_lines_x.empty())
break;
list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal);
if (list_lines_y.size() < 3)
break;
}
else
break;
}
vector<int> index_list_lines_y;
for (size_t i = 0; i < list_lines_y.size(); i++)
index_list_lines_y.push_back(-1);
num_points = 0;
for (size_t i = 0; i < list_lines_y.size() - 1; i++)
{
for (size_t j = i; j < list_lines_y.size(); j++ )
{
double points_distance = norm(list_lines_y[i] - list_lines_y[j]);
if (points_distance <= 10)
{
if ((index_list_lines_y[i] == -1) && (index_list_lines_y[j] == -1))
{
index_list_lines_y[i] = num_points;
index_list_lines_y[j] = num_points;
num_points++;
}
else if (index_list_lines_y[i] != -1)
index_list_lines_y[j] = index_list_lines_y[i];
else if (index_list_lines_y[j] != -1)
index_list_lines_y[i] = index_list_lines_y[j];
}
}
}
for (size_t i = 0; i < index_list_lines_y.size(); i++)
{
if (index_list_lines_y[i] == -1)
{
index_list_lines_y[i] = num_points;
num_points++;
}
}
if ((tmp_num_points < num_points) && (k == 1))
{
purpose = UNCHANGED;
tmp_num_points = num_points;
bin_barcode = bin_barcode_fullsize;
coeff_expansion = 1.0;
}
if ((tmp_num_points < num_points) && (k == 0))
{
tmp_num_points = num_points;
}
}
if ((tmp_num_points < 3) && (tmp_num_points >= 1))
{
const double min_side = std::min(bin_barcode_fullsize.size().width, bin_barcode_fullsize.size().height);
if (min_side > 512)
{
bin_barcode = tmp_shrinking;
purpose = SHRINKING;
coeff_expansion = min_side / 512.0;
}
if (min_side < 512)
{
bin_barcode = tmp_shrinking;
purpose = ZOOMING;
coeff_expansion = 512 / min_side;
}
}
else
break;
}
if (purpose == SHRINKING)
bin_barcode = tmp_shrinking;
num_points = tmp_num_points;
vector<Vec3d> list_lines_x = searchHorizontalLines();
if (list_lines_x.empty())
return num_points;
vector<Point2f> list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal);
if (list_lines_y.size() < 3)
return num_points;
if (num_points < 3)
return num_points;
Mat labels;
kmeans(list_lines_y, num_points, labels,
TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
num_points, KMEANS_PP_CENTERS, tmp_localization_points);
bin_barcode_temp = bin_barcode.clone();
if (purpose == SHRINKING)
{
const int width = cvRound(bin_barcode.size().width * coeff_expansion);
const int height = cvRound(bin_barcode.size().height * coeff_expansion);
Size new_size(width, height);
Mat intermediate;
resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR);
bin_barcode = intermediate.clone();
}
else if (purpose == ZOOMING)
{
const int width = cvRound(bin_barcode.size().width / coeff_expansion);
const int height = cvRound(bin_barcode.size().height / coeff_expansion);
Size new_size(width, height);
Mat intermediate;
resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR);
bin_barcode = intermediate.clone();
}
else
{
bin_barcode = bin_barcode_fullsize.clone();
}
return num_points;
}
void QRDetectMulti::findQRCodeContours(vector<Point2f>& tmp_localization_points,
vector< vector< Point2f > >& true_points_group, const int& num_qrcodes)
{
Mat gray, blur_image, threshold_output;
Mat bar = barcode;
const int width = cvRound(bin_barcode.size().width);
const int height = cvRound(bin_barcode.size().height);
Size new_size(width, height);
resize(bar, bar, new_size, 0, 0, INTER_LINEAR);
blur(bar, blur_image, Size(3, 3));
threshold(blur_image, threshold_output, 50, 255, THRESH_BINARY);
vector< vector< Point > > contours;
vector<Vec4i> hierarchy;
findContours(threshold_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
vector<Point2f> all_contours_points;
for (size_t i = 0; i < contours.size(); i++)
{
for (size_t j = 0; j < contours[i].size(); j++)
{
all_contours_points.push_back(contours[i][j]);
}
}
Mat qrcode_labels;
vector<Point2f> clustered_localization_points;
int count_contours = num_qrcodes;
if (all_contours_points.size() < size_t(num_qrcodes))
count_contours = (int)all_contours_points.size();
kmeans(all_contours_points, count_contours, qrcode_labels,
TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
count_contours, KMEANS_PP_CENTERS, clustered_localization_points);
vector< vector< Point2f > > qrcode_clusters(count_contours);
for (int i = 0; i < count_contours; i++)
for (int j = 0; j < int(all_contours_points.size()); j++)
{
if (qrcode_labels.at<int>(j, 0) == i)
{
qrcode_clusters[i].push_back(all_contours_points[j]);
}
}
vector< vector< Point2f > > hull(count_contours);
for (size_t i = 0; i < qrcode_clusters.size(); i++)
convexHull(Mat(qrcode_clusters[i]), hull[i]);
not_resized_loc_points = tmp_localization_points;
resized_loc_points = tmp_localization_points;
if (purpose == SHRINKING)
{
for (size_t j = 0; j < not_resized_loc_points.size(); j++)
{
not_resized_loc_points[j] *= coeff_expansion;
}
}
else if (purpose == ZOOMING)
{
for (size_t j = 0; j < not_resized_loc_points.size(); j++)
{
not_resized_loc_points[j] /= coeff_expansion;
}
}
true_points_group.resize(hull.size());
for (size_t j = 0; j < hull.size(); j++)
{
for (size_t i = 0; i < not_resized_loc_points.size(); i++)
{
if (pointPolygonTest(hull[j], not_resized_loc_points[i], true) > 0)
{
true_points_group[j].push_back(tmp_localization_points[i]);
tmp_localization_points[i].x = -1;
}
}
}
vector<Point2f> copy;
for (size_t j = 0; j < tmp_localization_points.size(); j++)
{
if (tmp_localization_points[j].x != -1)
copy.push_back(tmp_localization_points[j]);
}
tmp_localization_points = copy;
}
bool QRDetectMulti::checkSets(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& true_points_group_copy,
vector<Point2f>& tmp_localization_points)
{
for (size_t i = 0; i < true_points_group.size(); i++)
{
if (true_points_group[i].size() < 3)
{
for (size_t j = 0; j < true_points_group[i].size(); j++)
tmp_localization_points.push_back(true_points_group[i][j]);
true_points_group[i].clear();
}
}
vector< vector< Point2f > > temp_for_copy;
for (size_t i = 0; i < true_points_group.size(); i++)
{
if (true_points_group[i].size() != 0)
temp_for_copy.push_back(true_points_group[i]);
}
true_points_group = temp_for_copy;
if (true_points_group.size() == 0)
{
true_points_group.push_back(tmp_localization_points);
tmp_localization_points.clear();
}
if (true_points_group.size() == 0)
return false;
if (true_points_group[0].size() < 3)
return false;
int* set_size = new int[true_points_group.size()];
for (size_t i = 0; i < true_points_group.size(); i++)
{
set_size[i] = int(0.5 * (true_points_group[i].size() - 2 ) * (true_points_group[i].size() - 1));
}
vector< vector< Vec3i > > all_points(true_points_group.size());
for (size_t i = 0; i < true_points_group.size(); i++)
all_points[i].resize(set_size[i]);
int cur_cluster = 0;
for (size_t i = 0; i < true_points_group.size(); i++)
{
cur_cluster = 0;
for (size_t j = 1; j < true_points_group[i].size() - 1; j++)
for (size_t k = j + 1; k < true_points_group[i].size(); k++)
{
all_points[i][cur_cluster][0] = 0;
all_points[i][cur_cluster][1] = int(j);
all_points[i][cur_cluster][2] = int(k);
cur_cluster++;
}
}
for (size_t i = 0; i < true_points_group.size(); i++)
{
std::sort(all_points[i].begin(), all_points[i].end(), compareSquare(true_points_group[i]));
}
if (true_points_group.size() == 1)
{
int check_number = 35;
if (set_size[0] > check_number)
set_size[0] = check_number;
all_points[0].resize(set_size[0]);
}
int iter = (int)localization_points.size();
localization_points.resize(iter + true_points_group.size());
transformation_points.resize(iter + true_points_group.size());
true_points_group_copy = true_points_group;
int* end = new int[true_points_group.size()];
for (size_t i = 0; i < true_points_group.size(); i++)
end[i] = iter + set_size[i];
ParallelSearch parallelSearch(true_points_group,
true_points_group_copy, iter, end, all_points, *this);
parallel_for_(Range(0, (int)true_points_group.size()), parallelSearch);
return true;
}
void QRDetectMulti::deleteUsedPoints(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& loc,
vector<Point2f>& tmp_localization_points)
{
size_t iter = localization_points.size() - true_points_group.size() ;
for (size_t s = 0; s < true_points_group.size(); s++)
{
if (localization_points[iter + s].empty())
loc[s][0].x = -2;
if (loc[s].size() == 3)
{
if ((true_points_group.size() > 1) || ((true_points_group.size() == 1) && (tmp_localization_points.size() != 0)) )
{
for (size_t j = 0; j < true_points_group[s].size(); j++)
{
if (loc[s][j].x != -1)
{
loc[s][j].x = -1;
tmp_localization_points.push_back(true_points_group[s][j]);
}
}
}
}
vector<Point2f> for_copy;
for (size_t j = 0; j < loc[s].size(); j++)
{
if ((loc[s][j].x != -1) && (loc[s][j].x != -2) )
{
for_copy.push_back(true_points_group[s][j]);
}
if ((loc[s][j].x == -2) && (true_points_group.size() > 1))
{
tmp_localization_points.push_back(true_points_group[s][j]);
}
}
true_points_group[s] = for_copy;
}
vector< vector< Point2f > > for_copy_loc;
vector< vector< Point2f > > for_copy_trans;
for (size_t i = 0; i < localization_points.size(); i++)
{
if ((localization_points[i].size() == 3) && (transformation_points[i].size() == 4))
{
for_copy_loc.push_back(localization_points[i]);
for_copy_trans.push_back(transformation_points[i]);
}
}
localization_points = for_copy_loc;
transformation_points = for_copy_trans;
}
bool QRDetectMulti::localization()
{
CV_TRACE_FUNCTION();
vector<Point2f> tmp_localization_points;
int num_points = findNumberLocalizationPoints(tmp_localization_points);
if (num_points < 3)
return false;
int num_qrcodes = divUp(num_points, 3);
vector<vector<Point2f> > true_points_group;
findQRCodeContours(tmp_localization_points, true_points_group, num_qrcodes);
for (int q = 0; q < num_qrcodes; q++)
{
vector<vector<Point2f> > loc;
size_t iter = localization_points.size();
if (!checkSets(true_points_group, loc, tmp_localization_points))
break;
deleteUsedPoints(true_points_group, loc, tmp_localization_points);
if ((localization_points.size() - iter) == 1)
q--;
if (((localization_points.size() - iter) == 0) && (tmp_localization_points.size() == 0) && (true_points_group.size() == 1) )
break;
}
if ((transformation_points.size() == 0) || (localization_points.size() == 0))
return false;
return true;
}
bool QRDetectMulti::computeTransformationPoints(const size_t cur_ind)
{
CV_TRACE_FUNCTION();
if (localization_points[cur_ind].size() != 3)
{
return false;
}
vector<Point> locations, non_zero_elem[3], newHull;
vector<Point2f> new_non_zero_elem[3];
for (size_t i = 0; i < 3 ; i++)
{
Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
uint8_t next_pixel, future_pixel = 255;
int localization_point_x = cvRound(localization_points[cur_ind][i].x);
int localization_point_y = cvRound(localization_points[cur_ind][i].y);
int count_test_lines = 0, index = localization_point_x;
for (; index < bin_barcode.cols - 1; index++)
{
next_pixel = bin_barcode.at<uint8_t>(localization_point_y, index + 1);
if (next_pixel == future_pixel)
{
future_pixel = static_cast<uint8_t>(~future_pixel);
count_test_lines++;
if (count_test_lines == 2)
{
// TODO avoid drawing functions
floodFill(bin_barcode, mask,
Point(index + 1, localization_point_y), 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
break;
}
}
}
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
findNonZero(mask_roi, non_zero_elem[i]);
newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end());
}
convexHull(newHull, locations);
for (size_t i = 0; i < locations.size(); i++)
{
for (size_t j = 0; j < 3; j++)
{
for (size_t k = 0; k < non_zero_elem[j].size(); k++)
{
if (locations[i] == non_zero_elem[j][k])
{
new_non_zero_elem[j].push_back(locations[i]);
}
}
}
}
if (new_non_zero_elem[0].size() == 0)
return false;
double pentagon_diag_norm = -1;
Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
{
for (size_t j = 0; j < new_non_zero_elem[2].size(); j++)
{
double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]);
if (temp_norm > pentagon_diag_norm)
{
down_left_edge_point = new_non_zero_elem[1][i];
up_right_edge_point = new_non_zero_elem[2][j];
pentagon_diag_norm = temp_norm;
}
}
}
if (down_left_edge_point == Point2f(0, 0) ||
up_right_edge_point == Point2f(0, 0))
{
return false;
}
double max_area = -1;
up_left_edge_point = new_non_zero_elem[0][0];
for (size_t i = 0; i < new_non_zero_elem[0].size(); i++)
{
vector<Point2f> list_edge_points;
list_edge_points.push_back(new_non_zero_elem[0][i]);
list_edge_points.push_back(down_left_edge_point);
list_edge_points.push_back(up_right_edge_point);
double temp_area = fabs(contourArea(list_edge_points));
if (max_area < temp_area)
{
up_left_edge_point = new_non_zero_elem[0][i];
max_area = temp_area;
}
}
Point2f down_max_delta_point, up_max_delta_point;
double norm_down_max_delta = -1, norm_up_max_delta = -1;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i]) + norm(down_left_edge_point - new_non_zero_elem[1][i]);
if (norm_down_max_delta < temp_norm_delta)
{
down_max_delta_point = new_non_zero_elem[1][i];
norm_down_max_delta = temp_norm_delta;
}
}
for (size_t i = 0; i < new_non_zero_elem[2].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i]) + norm(up_right_edge_point - new_non_zero_elem[2][i]);
if (norm_up_max_delta < temp_norm_delta)
{
up_max_delta_point = new_non_zero_elem[2][i];
norm_up_max_delta = temp_norm_delta;
}
}
vector<Point2f> tmp_transformation_points;
tmp_transformation_points.push_back(down_left_edge_point);
tmp_transformation_points.push_back(up_left_edge_point);
tmp_transformation_points.push_back(up_right_edge_point);
tmp_transformation_points.push_back(intersectionLines(
down_left_edge_point, down_max_delta_point,
up_right_edge_point, up_max_delta_point));
transformation_points[cur_ind] = tmp_transformation_points;
vector<Point2f> quadrilateral = getQuadrilateral(transformation_points[cur_ind]);
transformation_points[cur_ind] = quadrilateral;
return true;
}
bool QRCodeDetector::detectMulti(InputArray in, OutputArray points) const
{
Mat inarr;
if (!checkQRInputImage(in, inarr))
{
points.release();
return false;
}
QRDetectMulti qrdet;
qrdet.init(inarr, p->epsX, p->epsY);
if (!qrdet.localization())
{
points.release();
return false;
}
vector< vector< Point2f > > pnts2f = qrdet.getTransformationPoints();
vector<Point2f> trans_points;
for(size_t i = 0; i < pnts2f.size(); i++)
for(size_t j = 0; j < pnts2f[i].size(); j++)
trans_points.push_back(pnts2f[i][j]);
updatePointsResult(points, trans_points);
return true;
}
bool detectQRCodeMulti(InputArray in, vector< Point > &points, double eps_x, double eps_y)
{
QRCodeDetector qrdetector;
qrdetector.setEpsX(eps_x);
qrdetector.setEpsY(eps_y);
return qrdetector.detectMulti(in, points);
}
class ParallelDecodeProcess : public ParallelLoopBody
{
public:
ParallelDecodeProcess(Mat& inarr_, vector<QRDecode>& qrdec_, vector<std::string>& decoded_info_,
vector<Mat>& straight_barcode_, vector< vector< Point2f > >& src_points_)
: inarr(inarr_), qrdec(qrdec_), decoded_info(decoded_info_)
, straight_barcode(straight_barcode_), src_points(src_points_)
{
// nothing
}
void operator()(const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
qrdec[i].init(inarr, src_points[i]);
bool ok = qrdec[i].fullDecodingProcess();
if (ok)
{
decoded_info[i] = qrdec[i].getDecodeInformation();
straight_barcode[i] = qrdec[i].getStraightBarcode();
}
else if (std::min(inarr.size().width, inarr.size().height) > 512)
{
const int min_side = std::min(inarr.size().width, inarr.size().height);
double coeff_expansion = min_side / 512;
const int width = cvRound(inarr.size().width / coeff_expansion);
const int height = cvRound(inarr.size().height / coeff_expansion);
Size new_size(width, height);
Mat inarr2;
resize(inarr, inarr2, new_size, 0, 0, INTER_AREA);
for (size_t j = 0; j < 4; j++)
{
src_points[i][j] /= static_cast<float>(coeff_expansion);
}
qrdec[i].init(inarr2, src_points[i]);
ok = qrdec[i].fullDecodingProcess();
if (ok)
{
decoded_info[i] = qrdec[i].getDecodeInformation();
straight_barcode[i] = qrdec[i].getStraightBarcode();
}
}
if (decoded_info[i].empty())
decoded_info[i] = "";
}
}
private:
Mat& inarr;
vector<QRDecode>& qrdec;
vector<std::string>& decoded_info;
vector<Mat>& straight_barcode;
vector< vector< Point2f > >& src_points;
};
bool QRCodeDetector::decodeMulti(
InputArray img,
InputArray points,
CV_OUT std::vector<cv::String>& decoded_info,
OutputArrayOfArrays straight_qrcode
) const
{
Mat inarr;
if (!checkQRInputImage(img, inarr))
return false;
CV_Assert(points.size().width > 0);
CV_Assert((points.size().width % 4) == 0);
vector< vector< Point2f > > src_points ;
Mat qr_points = points.getMat();
for (int i = 0; i < points.size().width ; i += 4)
{
vector<Point2f> tempMat = qr_points.colRange(i, i + 4);
if (contourArea(tempMat) > 0.0)
{
src_points.push_back(tempMat);
}
}
CV_Assert(src_points.size() > 0);
vector<QRDecode> qrdec(src_points.size());
vector<Mat> straight_barcode(src_points.size());
vector<std::string> info(src_points.size());
ParallelDecodeProcess parallelDecodeProcess(inarr, qrdec, info, straight_barcode, src_points);
parallel_for_(Range(0, int(src_points.size())), parallelDecodeProcess);
vector<Mat> for_copy;
for (size_t i = 0; i < straight_barcode.size(); i++)
{
if (!(straight_barcode[i].empty()))
for_copy.push_back(straight_barcode[i]);
}
straight_barcode = for_copy;
vector<Mat> tmp_straight_qrcodes;
if (straight_qrcode.needed())
{
for (size_t i = 0; i < straight_barcode.size(); i++)
{
Mat tmp_straight_qrcode;
tmp_straight_qrcodes.push_back(tmp_straight_qrcode);
straight_barcode[i].convertTo(((OutputArray)tmp_straight_qrcodes[i]),
((OutputArray)tmp_straight_qrcodes[i]).fixedType() ?
((OutputArray)tmp_straight_qrcodes[i]).type() : CV_32FC2);
}
straight_qrcode.createSameSize(tmp_straight_qrcodes, CV_32FC2);
straight_qrcode.assign(tmp_straight_qrcodes);
}
decoded_info.clear();
for (size_t i = 0; i < info.size(); i++)
{
decoded_info.push_back(info[i]);
}
if (!decoded_info.empty())
return true;
else
return false;
}
bool QRCodeDetector::detectAndDecodeMulti(
InputArray img,
CV_OUT std::vector<cv::String>& decoded_info,
OutputArray points_,
OutputArrayOfArrays straight_qrcode
) const
{
Mat inarr;
if (!checkQRInputImage(img, inarr))
{
points_.release();
return false;
}
vector<Point2f> points;
bool ok = detectMulti(inarr, points);
if (!ok)
{
points_.release();
return false;
}
updatePointsResult(points_, points);
decoded_info.clear();
ok = decodeMulti(inarr, points, decoded_info, straight_qrcode);
return ok;
}
bool decodeQRCodeMulti(
InputArray in, InputArray points,
vector<std::string> &decoded_info, OutputArrayOfArrays straight_qrcode)
{
QRCodeDetector qrcode;
vector<cv::String> info;
bool ok = qrcode.decodeMulti(in, points, info, straight_qrcode);
for (size_t i = 0; i < info.size(); i++)
decoded_info.push_back(info[i]);
return ok;
}
} // namespace
......@@ -21,7 +21,11 @@ std::string qrcode_images_close[] = {
std::string qrcode_images_monitor[] = {
"monitor_1.png", "monitor_2.png", "monitor_3.png", "monitor_4.png", "monitor_5.png"
};
// #define UPDATE_QRCODE_TEST_DATA
std::string qrcode_images_multiple[] = {
"2_qrcodes.png", "3_close_qrcodes.png", "3_qrcodes.png", "4_qrcodes.png",
"5_qrcodes.png", "6_qrcodes.png", "7_qrcodes.png", "8_close_qrcodes.png"
};
//#define UPDATE_QRCODE_TEST_DATA
#ifdef UPDATE_QRCODE_TEST_DATA
TEST(Objdetect_QRCode, generate_test_data)
......@@ -134,6 +138,66 @@ TEST(Objdetect_QRCode_Monitor, generate_test_data)
file_config.release();
}
TEST(Objdetect_QRCode_Multi, generate_test_data)
{
const std::string root = "qrcode/multiple/";
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::WRITE);
file_config << "multiple_images" << "[:";
size_t multiple_count = sizeof(qrcode_images_multiple) / sizeof(qrcode_images_multiple[0]);
for (size_t i = 0; i < multiple_count; i++)
{
file_config << "{:" << "image_name" << qrcode_images_multiple[i];
std::string image_path = findDataFile(root + qrcode_images_multiple[i]);
Mat src = imread(image_path);
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
std::vector<Point> corners;
EXPECT_TRUE(detectQRCodeMulti(src, corners));
#ifdef HAVE_QUIRC
std::vector<cv::String> decoded_info;
std::vector<Mat> straight_barcode;
EXPECT_TRUE(decodeQRCodeMulti(src, corners, decoded_info, straight_barcode));
#endif
file_config << "x" << "[:";
for(size_t j = 0; j < corners.size(); j += 4)
{
file_config << "[:";
for (size_t k = 0; k < 4; k++)
{
file_config << corners[j + k].x;
}
file_config << "]";
}
file_config << "]";
file_config << "y" << "[:";
for(size_t j = 0; j < corners.size(); j += 4)
{
file_config << "[:";
for (size_t k = 0; k < 4; k++)
{
file_config << corners[j + k].y;
}
file_config << "]";
}
file_config << "]";
file_config << "info";
file_config << "[:";
for(size_t j = 0; j < decoded_info.size(); j++)
{
file_config << decoded_info[j];
}
file_config << "]";
file_config << "}";
}
file_config << "]";
file_config.release();
}
#else
typedef testing::TestWithParam< std::string > Objdetect_QRCode;
......@@ -326,9 +390,96 @@ TEST_P(Objdetect_QRCode_Monitor, regression)
}
}
typedef testing::TestWithParam < std::string > Objdetect_QRCode_Multi;
TEST_P(Objdetect_QRCode_Multi, regression)
{
const std::string name_current_image = GetParam();
const std::string root = "qrcode/multiple/";
const int pixels_error = 3;
std::string image_path = findDataFile(root + name_current_image);
Mat src = imread(image_path);
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
QRCodeDetector qrcode;
std::vector<Point> corners;
#ifdef HAVE_QUIRC
std::vector<cv::String> decoded_info;
std::vector<Mat> straight_barcode;
EXPECT_TRUE(qrcode.detectAndDecodeMulti(src, decoded_info, corners, straight_barcode));
ASSERT_FALSE(corners.empty());
ASSERT_FALSE(decoded_info.empty());
#else
ASSERT_TRUE(qrcode.detectMulti(src, corners));
#endif
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::READ);
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config;
{
FileNode images_list = file_config["multiple_images"];
size_t images_count = static_cast<size_t>(images_list.size());
ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config;
for (size_t index = 0; index < images_count; index++)
{
FileNode config = images_list[(int)index];
std::string name_test_image = config["image_name"];
if (name_test_image == name_current_image)
{
for(int j = 0; j < int(corners.size()); j += 4)
{
bool ok = false;
for (int k = 0; k < int(corners.size() / 4); k++)
{
int count_eq_points = 0;
for (int i = 0; i < 4; i++)
{
int x = config["x"][k][i];
int y = config["y"][k][i];
if(((abs(corners[j + i].x - x)) <= pixels_error) && ((abs(corners[j + i].y - y)) <= pixels_error))
count_eq_points++;
}
if (count_eq_points == 4)
{
ok = true;
break;
}
}
EXPECT_TRUE(ok);
}
#ifdef HAVE_QUIRC
size_t count_eq_info = 0;
for(int i = 0; i < int(decoded_info.size()); i++)
{
for(int j = 0; j < int(decoded_info.size()); j++)
{
std::string original_info = config["info"][j];
if(original_info == decoded_info[i])
{
count_eq_info++;
break;
}
}
}
EXPECT_EQ(decoded_info.size(), count_eq_info);
#endif
return; // done
}
}
std::cerr
<< "Not found results for '" << name_current_image
<< "' image in config file:" << dataset_config << std::endl
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data."
<< std::endl;
}
}
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode, testing::ValuesIn(qrcode_images_name));
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Close, testing::ValuesIn(qrcode_images_close));
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Monitor, testing::ValuesIn(qrcode_images_monitor));
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Multi, testing::ValuesIn(qrcode_images_multiple));
TEST(Objdetect_QRCode_basic, not_found_qrcode)
{
......
......@@ -2,23 +2,45 @@
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/imgcodecs.hpp"
#include <string>
#include <iostream>
using namespace std;
using namespace cv;
static void drawQRCodeContour(Mat &color_image, vector<Point> transform);
static void drawFPS(Mat &color_image, double fps);
static int liveQRCodeDetect(const string& out_file);
static int imageQRCodeDetect(const string& in_file, const string& out_file);
static int liveQRCodeDetect();
static int imageQRCodeDetect(const string& in_file);
static bool g_modeMultiQR = false;
static bool g_detectOnly = false;
static string g_out_file_name, g_out_file_ext;
static int g_save_idx = 0;
static bool g_saveDetections = false;
static bool g_saveAll = false;
static string getQRModeString()
{
std::ostringstream out;
out << "QR"
<< (g_modeMultiQR ? " multi" : "")
<< (g_detectOnly ? " detector" : " decoder");
return out.str();
}
int main(int argc, char *argv[])
{
const string keys =
"{h help ? | | print help messages }"
"{i in | | input path to file for detect (with parameter - show image, otherwise - camera)}"
"{o out | | output path to file (save image, work with -i parameter) }";
"{i in | | input image path (also switches to image detection mode) }"
"{detect | false | detect QR code only (skip decoding) }"
"{m multi | | use detect for multiple qr-codes }"
"{o out | qr_code.png | path to result file }"
"{save_detections | false | save all QR detections (video mode only) }"
"{save_all | false | save all processed frames (video mode only) }"
;
CommandLineParser cmd_parser(argc, argv, keys);
cmd_parser.about("This program detects the QR-codes from camera or images using the OpenCV library.");
......@@ -28,32 +50,51 @@ int main(int argc, char *argv[])
return 0;
}
string in_file_name = cmd_parser.get<string>("in"); // input path to image
string out_file_name;
if (cmd_parser.has("out"))
out_file_name = cmd_parser.get<string>("out"); // output path to image
string in_file_name = cmd_parser.get<string>("in"); // path to input image
if (cmd_parser.has("out"))
{
std::string fpath = cmd_parser.get<string>("out"); // path to output image
std::string::size_type idx = fpath.rfind('.');
if (idx != std::string::npos)
{
g_out_file_name = fpath.substr(0, idx);
g_out_file_ext = fpath.substr(idx);
}
else
{
g_out_file_name = fpath;
g_out_file_ext = ".png";
}
}
if (!cmd_parser.check())
{
cmd_parser.printErrors();
return -1;
}
g_modeMultiQR = cmd_parser.has("multi") && cmd_parser.get<bool>("multi");
g_detectOnly = cmd_parser.has("detect") && cmd_parser.get<bool>("detect");
g_saveDetections = cmd_parser.has("save_detections") && cmd_parser.get<bool>("save_detections");
g_saveAll = cmd_parser.has("save_all") && cmd_parser.get<bool>("save_all");
int return_code = 0;
if (in_file_name.empty())
{
return_code = liveQRCodeDetect(out_file_name);
return_code = liveQRCodeDetect();
}
else
{
return_code = imageQRCodeDetect(samples::findFile(in_file_name), out_file_name);
return_code = imageQRCodeDetect(samples::findFile(in_file_name));
}
return return_code;
}
void drawQRCodeContour(Mat &color_image, vector<Point> transform)
static
void drawQRCodeContour(Mat &color_image, const vector<Point>& corners)
{
if (!transform.empty())
if (!corners.empty())
{
double show_radius = (color_image.rows > color_image.cols)
? (2.813 * color_image.rows) / color_image.cols
......@@ -61,127 +102,246 @@ void drawQRCodeContour(Mat &color_image, vector<Point> transform)
double contour_radius = show_radius * 0.4;
vector< vector<Point> > contours;
contours.push_back(transform);
contours.push_back(corners);
drawContours(color_image, contours, 0, Scalar(211, 0, 148), cvRound(contour_radius));
RNG rng(1000);
for (size_t i = 0; i < 4; i++)
{
Scalar color = Scalar(rng.uniform(0,255), rng.uniform(0, 255), rng.uniform(0, 255));
circle(color_image, transform[i], cvRound(show_radius), color, -1);
circle(color_image, corners[i], cvRound(show_radius), color, -1);
}
}
}
static
void drawFPS(Mat &color_image, double fps)
{
ostringstream convert;
convert << cvRound(fps) << " FPS (QR detection)";
convert << cv::format("%.2f", fps) << " FPS (" << getQRModeString() << ")";
putText(color_image, convert.str(), Point(25, 25), FONT_HERSHEY_DUPLEX, 1, Scalar(0, 0, 255), 2);
}
int liveQRCodeDetect(const string& out_file)
static
void drawQRCodeResults(Mat& frame, const vector<Point>& corners, const vector<cv::String>& decode_info, double fps)
{
if (!corners.empty())
{
for (size_t i = 0; i < corners.size(); i += 4)
{
size_t qr_idx = i / 4;
vector<Point> qrcode_contour(corners.begin() + i, corners.begin() + i + 4);
drawQRCodeContour(frame, qrcode_contour);
cout << "QR[" << qr_idx << "] @ " << Mat(qrcode_contour).reshape(2, 1) << ": ";
if (decode_info.size() > qr_idx)
{
if (!decode_info[qr_idx].empty())
cout << "'" << decode_info[qr_idx] << "'" << endl;
else
cout << "can't decode QR code" << endl;
}
else
{
cout << "decode information is not available (disabled)" << endl;
}
}
}
else
{
cout << "QR code is not detected" << endl;
}
drawFPS(frame, fps);
}
static
void runQR(
QRCodeDetector& qrcode, const Mat& input,
vector<Point>& corners, vector<cv::String>& decode_info
// +global: bool g_modeMultiQR, bool g_detectOnly
)
{
if (!g_modeMultiQR)
{
if (!g_detectOnly)
{
String decode_info1 = qrcode.detectAndDecode(input, corners);
decode_info.push_back(decode_info1);
}
else
{
bool detection_result = qrcode.detect(input, corners);
CV_UNUSED(detection_result);
}
}
else
{
if (!g_detectOnly)
{
bool result_detection = qrcode.detectAndDecodeMulti(input, decode_info, corners);
CV_UNUSED(result_detection);
}
else
{
bool result_detection = qrcode.detectMulti(input, corners);
CV_UNUSED(result_detection);
}
}
}
static
double processQRCodeDetection(QRCodeDetector& qrcode, const Mat& input, Mat& result, vector<Point>& corners)
{
if (input.channels() == 1)
cvtColor(input, result, COLOR_GRAY2BGR);
else
input.copyTo(result);
cout << "Run " << getQRModeString()
<< " on image: " << input.size() << " (" << typeToString(input.type()) << ")"
<< endl;
TickMeter timer;
vector<cv::String> decode_info;
timer.start();
runQR(qrcode, input, corners, decode_info);
timer.stop();
double fps = 1 / timer.getTimeSec();
drawQRCodeResults(result, corners, decode_info, fps);
return fps;
}
int liveQRCodeDetect()
{
VideoCapture cap(0);
if(!cap.isOpened())
if (!cap.isOpened())
{
cout << "Cannot open a camera" << endl;
return -4;
return 2;
}
cout << "Press 'm' to switch between detectAndDecode and detectAndDecodeMulti" << endl;
cout << "Press 'd' to switch between decoder and detector" << endl;
cout << "Press ' ' (space) to save result into images" << endl;
cout << "Press 'ESC' to exit" << endl;
QRCodeDetector qrcode;
TickMeter total;
for(;;)
for (;;)
{
Mat frame, src, straight_barcode;
string decode_info;
vector<Point> transform;
Mat frame;
cap >> frame;
if (frame.empty())
{
cout << "End of video stream" << endl;
break;
}
cvtColor(frame, src, COLOR_BGR2GRAY);
total.start();
bool result_detection = qrcode.detect(src, transform);
if (result_detection)
bool forceSave = g_saveAll;
Mat result;
try
{
vector<Point> corners;
double fps = processQRCodeDetection(qrcode, frame, result, corners);
cout << "FPS: " << fps << endl;
forceSave |= (g_saveDetections && !corners.empty());
//forceSave |= fps < 1.0;
}
catch (const cv::Exception& e)
{
decode_info = qrcode.decode(src, transform, straight_barcode);
if (!decode_info.empty()) { cout << decode_info << endl; }
cerr << "ERROR exception: " << e.what() << endl;
forceSave = true;
}
total.stop();
double fps = 1 / total.getTimeSec();
total.reset();
if (result_detection) { drawQRCodeContour(frame, transform); }
drawFPS(frame, fps);
if (!result.empty())
imshow("QR code", result);
imshow("Live QR code detector", frame);
char c = (char)waitKey(30);
int code = waitKey(1);
if (code < 0 && !forceSave)
continue; // timeout
char c = (char)code;
if (c == ' ' || forceSave)
{
string fsuffix = cv::format("-%05d", g_save_idx++);
string fname_input = g_out_file_name + fsuffix + "_input.png";
cout << "Saving QR code detection input: '" << fname_input << "' ..." << endl;
imwrite(fname_input, frame);
string fname = g_out_file_name + fsuffix + g_out_file_ext;
cout << "Saving QR code detection result: '" << fname << "' ..." << endl;
imwrite(fname, result);
cout << "Saved" << endl;
}
if (c == 'm')
{
g_modeMultiQR = !g_modeMultiQR;
cout << "Switching QR code mode ==> " << (g_modeMultiQR ? "detectAndDecodeMulti" : "detectAndDecode") << endl;
}
if (c == 'd')
{
g_detectOnly = !g_detectOnly;
cout << "Switching QR decoder mode ==> " << (g_detectOnly ? "detect" : "decode") << endl;
}
if (c == 27)
{
cout << "'ESC' is pressed. Exiting..." << endl;
break;
if (c == ' ' && !out_file.empty())
imwrite(out_file, frame); // TODO write original frame too
}
}
cout << "Exit." << endl;
return 0;
}
int imageQRCodeDetect(const string& in_file, const string& out_file)
int imageQRCodeDetect(const string& in_file)
{
Mat color_src = imread(in_file, IMREAD_COLOR), src;
cvtColor(color_src, src, COLOR_BGR2GRAY);
Mat straight_barcode;
string decoded_info;
vector<Point> transform;
const int count_experiments = 10;
double transform_time = 0.0;
bool result_detection = false;
TickMeter total;
Mat input = imread(in_file, IMREAD_COLOR);
cout << "Run " << getQRModeString()
<< " on image: " << input.size() << " (" << typeToString(input.type()) << ")"
<< endl;
QRCodeDetector qrcode;
vector<Point> corners;
vector<cv::String> decode_info;
TickMeter timer;
for (size_t i = 0; i < count_experiments; i++)
{
total.start();
transform.clear();
result_detection = qrcode.detect(src, transform);
total.stop();
transform_time += total.getTimeSec();
total.reset();
if (!result_detection)
continue;
total.start();
decoded_info = qrcode.decode(src, transform, straight_barcode);
total.stop();
transform_time += total.getTimeSec();
total.reset();
}
double fps = count_experiments / transform_time;
if (!result_detection)
cout << "QR code not found" << endl;
if (decoded_info.empty())
cout << "QR code cannot be decoded" << endl;
drawQRCodeContour(color_src, transform);
drawFPS(color_src, fps);
cout << "Input image file path: " << in_file << endl;
cout << "Output image file path: " << out_file << endl;
cout << "Size: " << color_src.size() << endl;
cout << "FPS: " << fps << endl;
cout << "Decoded info: " << decoded_info << endl;
corners.clear();
decode_info.clear();
if (!out_file.empty())
{
imwrite(out_file, color_src);
timer.start();
runQR(qrcode, input, corners, decode_info);
timer.stop();
}
double fps = count_experiments / timer.getTimeSec();
cout << "FPS: " << fps << endl;
for(;;)
Mat result; input.copyTo(result);
drawQRCodeResults(result, corners, decode_info, fps);
imshow("QR", result); waitKey(1);
if (!g_out_file_name.empty())
{
imshow("Detect QR code on image", color_src);
if (waitKey(0) == 27)
break;
string out_file = g_out_file_name + g_out_file_ext;
cout << "Saving result: " << out_file << endl;
imwrite(out_file, result);
}
cout << "Press any key to exit ..." << endl;
waitKey(0);
cout << "Exit." << endl;
return 0;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment