Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
ab69f5e0
Commit
ab69f5e0
authored
Jun 28, 2012
by
Marina Kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
merged python samles
parent
54ee92e3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
331 additions
and
68 deletions
+331
-68
digits.py
samples/python2/digits.py
+120
-68
digits_adjust.py
samples/python2/digits_adjust.py
+137
-0
digits_video.py
samples/python2/digits_video.py
+74
-0
No files found.
samples/python2/digits.py
View file @
ab69f5e0
'''
Neural network digit recognition sample.
SVN and KNearest digit recognition.
Sample loads a dataset of handwritten digits from 'digits.png'.
Then it trains a SVN and KNearest classifiers on it and evaluates
their accuracy. Moment-based image deskew is used to improve
the recognition accuracy.
Usage:
digits.py
Sample loads a dataset of handwritten digits from 'digits.png'.
Then it trains a neural network classifier on it and evaluates
its classification accuracy.
'''
import
numpy
as
np
import
cv2
from
common
import
mosaic
def
unroll_responses
(
responses
,
class_n
):
'''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]'''
sample_n
=
len
(
responses
)
new_responses
=
np
.
zeros
((
sample_n
,
class_n
),
np
.
float32
)
new_responses
[
np
.
arange
(
sample_n
),
responses
]
=
1
return
new_responses
from
multiprocessing.pool
import
ThreadPool
from
common
import
clock
,
mosaic
SZ
=
20
# size of each digit is SZ x SZ
CLASS_N
=
10
digits_img
=
cv2
.
imread
(
'digits.png'
,
0
)
# prepare dataset
h
,
w
=
digits_img
.
shape
digits
=
[
np
.
hsplit
(
row
,
w
/
SZ
)
for
row
in
np
.
vsplit
(
digits_img
,
h
/
SZ
)]
digits
=
np
.
float32
(
digits
)
.
reshape
(
-
1
,
SZ
*
SZ
)
N
=
len
(
digits
)
labels
=
np
.
repeat
(
np
.
arange
(
CLASS_N
),
N
/
CLASS_N
)
# split it onto train and test subsets
shuffle
=
np
.
random
.
permutation
(
N
)
train_n
=
int
(
0.9
*
N
)
digits_train
,
digits_test
=
np
.
split
(
digits
[
shuffle
],
[
train_n
])
labels_train
,
labels_test
=
np
.
split
(
labels
[
shuffle
],
[
train_n
])
# train model
model
=
cv2
.
ANN_MLP
()
layer_sizes
=
np
.
int32
([
SZ
*
SZ
,
25
,
CLASS_N
])
model
.
create
(
layer_sizes
)
params
=
dict
(
term_crit
=
(
cv2
.
TERM_CRITERIA_COUNT
,
100
,
0.01
),
train_method
=
cv2
.
ANN_MLP_TRAIN_PARAMS_BACKPROP
,
bp_dw_scale
=
0.001
,
bp_moment_scale
=
0.0
)
print
'training...'
labels_train_unrolled
=
unroll_responses
(
labels_train
,
CLASS_N
)
model
.
train
(
digits_train
,
labels_train_unrolled
,
None
,
params
=
params
)
model
.
save
(
'dig_nn.dat'
)
model
.
load
(
'dig_nn.dat'
)
def
evaluate
(
model
,
samples
,
labels
):
'''Evaluates classifier preformance on a given labeled samples set.'''
ret
,
resp
=
model
.
predict
(
samples
)
resp
=
resp
.
argmax
(
-
1
)
error_mask
=
(
resp
==
labels
)
accuracy
=
error_mask
.
mean
()
return
accuracy
,
error_mask
# evaluate model
train_accuracy
,
_
=
evaluate
(
model
,
digits_train
,
labels_train
)
print
'train accuracy: '
,
train_accuracy
test_accuracy
,
test_error_mask
=
evaluate
(
model
,
digits_test
,
labels_test
)
print
'test accuracy: '
,
test_accuracy
# visualize test results
vis
=
[]
for
img
,
flag
in
zip
(
digits_test
,
test_error_mask
):
img
=
np
.
uint8
(
img
)
.
reshape
(
SZ
,
SZ
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_GRAY2BGR
)
if
not
flag
:
img
[
...
,:
2
]
=
0
vis
.
append
(
img
)
vis
=
mosaic
(
25
,
vis
)
cv2
.
imshow
(
'test'
,
vis
)
cv2
.
waitKey
()
def
load_digits
(
fn
):
print
'loading "
%
s" ...'
%
fn
digits_img
=
cv2
.
imread
(
fn
,
0
)
h
,
w
=
digits_img
.
shape
digits
=
[
np
.
hsplit
(
row
,
w
/
SZ
)
for
row
in
np
.
vsplit
(
digits_img
,
h
/
SZ
)]
digits
=
np
.
array
(
digits
)
.
reshape
(
-
1
,
SZ
,
SZ
)
labels
=
np
.
repeat
(
np
.
arange
(
CLASS_N
),
len
(
digits
)
/
CLASS_N
)
return
digits
,
labels
def
deskew
(
img
):
m
=
cv2
.
moments
(
img
)
if
abs
(
m
[
'mu02'
])
<
1e-2
:
return
img
.
copy
()
skew
=
m
[
'mu11'
]
/
m
[
'mu02'
]
M
=
np
.
float32
([[
1
,
skew
,
-
0.5
*
SZ
*
skew
],
[
0
,
1
,
0
]])
img
=
cv2
.
warpAffine
(
img
,
M
,
(
SZ
,
SZ
),
flags
=
cv2
.
WARP_INVERSE_MAP
|
cv2
.
INTER_LINEAR
)
return
img
class
StatModel
(
object
):
def
load
(
self
,
fn
):
self
.
model
.
load
(
fn
)
def
save
(
self
,
fn
):
self
.
model
.
save
(
fn
)
class
KNearest
(
StatModel
):
def
__init__
(
self
,
k
=
3
):
self
.
k
=
k
self
.
model
=
cv2
.
KNearest
()
def
train
(
self
,
samples
,
responses
):
self
.
model
=
cv2
.
KNearest
()
self
.
model
.
train
(
samples
,
responses
)
def
predict
(
self
,
samples
):
retval
,
results
,
neigh_resp
,
dists
=
self
.
model
.
find_nearest
(
samples
,
self
.
k
)
return
results
.
ravel
()
class
SVM
(
StatModel
):
def
__init__
(
self
,
C
=
1
,
gamma
=
0.5
):
self
.
params
=
dict
(
kernel_type
=
cv2
.
SVM_RBF
,
svm_type
=
cv2
.
SVM_C_SVC
,
C
=
C
,
gamma
=
gamma
)
self
.
model
=
cv2
.
SVM
()
def
train
(
self
,
samples
,
responses
):
self
.
model
=
cv2
.
SVM
()
self
.
model
.
train
(
samples
,
responses
,
params
=
self
.
params
)
def
predict
(
self
,
samples
):
return
self
.
model
.
predict_all
(
samples
)
.
ravel
()
def
evaluate_model
(
model
,
digits
,
samples
,
labels
):
resp
=
model
.
predict
(
samples
)
err
=
(
labels
!=
resp
)
.
mean
()
print
'error:
%.2
f
%%
'
%
(
err
*
100
)
confusion
=
np
.
zeros
((
10
,
10
),
np
.
int32
)
for
i
,
j
in
zip
(
labels
,
resp
):
confusion
[
i
,
j
]
+=
1
print
'confusion matrix:'
print
confusion
print
vis
=
[]
for
img
,
flag
in
zip
(
digits
,
resp
==
labels
):
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_GRAY2BGR
)
if
not
flag
:
img
[
...
,:
2
]
=
0
vis
.
append
(
img
)
return
mosaic
(
25
,
vis
)
if
__name__
==
'__main__'
:
print
__doc__
digits
,
labels
=
load_digits
(
'digits.png'
)
print
'preprocessing...'
# shuffle digits
rand
=
np
.
random
.
RandomState
(
12345
)
shuffle
=
rand
.
permutation
(
len
(
digits
))
digits
,
labels
=
digits
[
shuffle
],
labels
[
shuffle
]
digits2
=
map
(
deskew
,
digits
)
samples
=
np
.
float32
(
digits2
)
.
reshape
(
-
1
,
SZ
*
SZ
)
/
255.0
train_n
=
int
(
0.9
*
len
(
samples
))
cv2
.
imshow
(
'test set'
,
mosaic
(
25
,
digits
[
train_n
:]))
digits_train
,
digits_test
=
np
.
split
(
digits2
,
[
train_n
])
samples_train
,
samples_test
=
np
.
split
(
samples
,
[
train_n
])
labels_train
,
labels_test
=
np
.
split
(
labels
,
[
train_n
])
print
'training KNearest...'
model
=
KNearest
(
k
=
1
)
model
.
train
(
samples_train
,
labels_train
)
vis
=
evaluate_model
(
model
,
digits_test
,
samples_test
,
labels_test
)
cv2
.
imshow
(
'KNearest test'
,
vis
)
print
'training SVM...'
model
=
SVM
(
C
=
4.66
,
gamma
=
0.08
)
model
.
train
(
samples_train
,
labels_train
)
vis
=
evaluate_model
(
model
,
digits_test
,
samples_test
,
labels_test
)
cv2
.
imshow
(
'SVM test'
,
vis
)
print
'saving SVM as "digits_svm.dat"...'
model
.
save
(
'digits_svm.dat'
)
cv2
.
waitKey
(
0
)
samples/python2/digits_adjust.py
0 → 100644
View file @
ab69f5e0
'''
Digit recognition adjustment.
Grid search is used to find the best parameters for SVN and KNearest classifiers.
SVM adjustment follows the guidelines given in
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
Threading or cloud computing (with http://www.picloud.com/)) may be used
to speedup the computation.
Usage:
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>]
--model {svm|knearest} - select the classifier (SVM is the default)
--cloud - use PiCloud computing platform (for SVM only)
--env - cloud environment name
'''
# TODO dataset preprocessing in cloud
# TODO cloud env setup tutorial
import
numpy
as
np
import
cv2
from
multiprocessing.pool
import
ThreadPool
from
digits
import
*
def
cross_validate
(
model_class
,
params
,
samples
,
labels
,
kfold
=
3
,
pool
=
None
):
n
=
len
(
samples
)
folds
=
np
.
array_split
(
np
.
arange
(
n
),
kfold
)
def
f
(
i
):
model
=
model_class
(
**
params
)
test_idx
=
folds
[
i
]
train_idx
=
list
(
folds
)
train_idx
.
pop
(
i
)
train_idx
=
np
.
hstack
(
train_idx
)
train_samples
,
train_labels
=
samples
[
train_idx
],
labels
[
train_idx
]
test_samples
,
test_labels
=
samples
[
test_idx
],
labels
[
test_idx
]
model
.
train
(
train_samples
,
train_labels
)
resp
=
model
.
predict
(
test_samples
)
score
=
(
resp
!=
test_labels
)
.
mean
()
print
"."
,
return
score
if
pool
is
None
:
scores
=
map
(
f
,
xrange
(
kfold
))
else
:
scores
=
pool
.
map
(
f
,
xrange
(
kfold
))
return
np
.
mean
(
scores
)
def
adjust_KNearest
(
samples
,
labels
):
print
'adjusting KNearest ...'
best_err
,
best_k
=
np
.
inf
,
-
1
for
k
in
xrange
(
1
,
9
):
err
=
cross_validate
(
KNearest
,
dict
(
k
=
k
),
samples
,
labels
)
if
err
<
best_err
:
best_err
,
best_k
=
err
,
k
print
'k =
%
d, error:
%.2
f
%%
'
%
(
k
,
err
*
100
)
best_params
=
dict
(
k
=
best_k
)
print
'best params:'
,
best_params
return
best_params
def
adjust_SVM
(
samples
,
labels
,
usecloud
=
False
,
cloud_env
=
''
):
Cs
=
np
.
logspace
(
0
,
5
,
10
,
base
=
2
)
gammas
=
np
.
logspace
(
-
7
,
-
2
,
10
,
base
=
2
)
scores
=
np
.
zeros
((
len
(
Cs
),
len
(
gammas
)))
scores
[:]
=
np
.
nan
if
usecloud
:
try
:
import
cloud
except
ImportError
:
print
'cloud module is not installed'
usecloud
=
False
if
usecloud
:
print
'uploading dataset to cloud...'
np
.
savez
(
'train.npz'
,
samples
=
samples
,
labels
=
labels
)
cloud
.
files
.
put
(
'train.npz'
)
print
'adjusting SVM (may take a long time) ...'
def
f
(
job
):
i
,
j
=
job
params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
score
=
cross_validate
(
SVM
,
params
,
samples
,
labels
)
return
i
,
j
,
score
def
fcloud
(
job
):
i
,
j
=
job
cloud
.
files
.
get
(
'train.npz'
)
npz
=
np
.
load
(
'train.npz'
)
params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
score
=
cross_validate
(
SVM
,
params
,
npz
[
'samples'
],
npz
[
'labels'
])
return
i
,
j
,
score
if
usecloud
:
jids
=
cloud
.
map
(
fcloud
,
np
.
ndindex
(
*
scores
.
shape
),
_env
=
cloud_env
,
_profile
=
True
)
ires
=
cloud
.
iresult
(
jids
)
else
:
pool
=
ThreadPool
(
processes
=
cv2
.
getNumberOfCPUs
())
ires
=
pool
.
imap_unordered
(
f
,
np
.
ndindex
(
*
scores
.
shape
))
for
count
,
(
i
,
j
,
score
)
in
enumerate
(
ires
):
scores
[
i
,
j
]
=
score
print
'
%
d /
%
d (best error:
%.2
f
%%
, last:
%.2
f
%%
)'
%
(
count
+
1
,
scores
.
size
,
np
.
nanmin
(
scores
)
*
100
,
score
*
100
)
print
scores
i
,
j
=
np
.
unravel_index
(
scores
.
argmin
(),
scores
.
shape
)
best_params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
print
'best params:'
,
best_params
print
'best error:
%.2
f
%%
'
%
(
scores
.
min
()
*
100
)
return
best_params
if
__name__
==
'__main__'
:
import
getopt
import
sys
print
__doc__
args
,
_
=
getopt
.
getopt
(
sys
.
argv
[
1
:],
''
,
[
'model='
,
'cloud'
,
'env='
])
args
=
dict
(
args
)
args
.
setdefault
(
'--model'
,
'svm'
)
args
.
setdefault
(
'--env'
,
''
)
if
args
[
'--model'
]
not
in
[
'svm'
,
'knearest'
]:
print
'unknown model "
%
s"'
%
args
[
'--model'
]
sys
.
exit
(
1
)
digits
,
labels
=
load_digits
(
'digits.png'
)
shuffle
=
np
.
random
.
permutation
(
len
(
digits
))
digits
,
labels
=
digits
[
shuffle
],
labels
[
shuffle
]
digits2
=
map
(
deskew
,
digits
)
samples
=
np
.
float32
(
digits2
)
.
reshape
(
-
1
,
SZ
*
SZ
)
/
255.0
t
=
clock
()
if
args
[
'--model'
]
==
'knearest'
:
adjust_KNearest
(
samples
,
labels
)
else
:
adjust_SVM
(
samples
,
labels
,
usecloud
=
'--cloud'
in
args
,
cloud_env
=
args
[
'--env'
])
print
'work time:
%
f s'
%
(
clock
()
-
t
)
\ No newline at end of file
samples/python2/digits_video.py
0 → 100644
View file @
ab69f5e0
import
numpy
as
np
import
cv2
import
digits
import
os
import
video
from
common
import
mosaic
def
main
():
cap
=
video
.
create_capture
()
classifier_fn
=
'digits_svm.dat'
if
not
os
.
path
.
exists
(
classifier_fn
):
print
'"
%
s" not found, run digits.py first'
%
classifier_fn
return
model
=
digits
.
SVM
()
model
.
load
(
'digits_svm.dat'
)
SZ
=
20
while
True
:
ret
,
frame
=
cap
.
read
()
gray
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2GRAY
)
bin
=
cv2
.
adaptiveThreshold
(
gray
,
255
,
cv2
.
ADAPTIVE_THRESH_MEAN_C
,
cv2
.
THRESH_BINARY_INV
,
31
,
10
)
bin
=
cv2
.
medianBlur
(
bin
,
3
)
contours
,
heirs
=
cv2
.
findContours
(
bin
.
copy
(),
cv2
.
RETR_TREE
,
cv2
.
CHAIN_APPROX_SIMPLE
)
rects
=
map
(
cv2
.
boundingRect
,
contours
)
valid_flags
=
[
16
<=
h
<=
64
and
w
<=
1.2
*
h
for
x
,
y
,
w
,
h
in
rects
]
for
i
,
cnt
in
enumerate
(
contours
):
if
not
valid_flags
[
i
]:
continue
_
,
_
,
_
,
outer_i
=
heirs
[
0
,
i
]
if
outer_i
>=
0
and
valid_flags
[
outer_i
]:
continue
x
,
y
,
w
,
h
=
rects
[
i
]
cv2
.
rectangle
(
frame
,
(
x
,
y
),
(
x
+
w
,
y
+
h
),
(
0
,
255
,
0
))
sub
=
bin
[
y
:,
x
:][:
h
,:
w
]
#sub = ~cv2.equalizeHist(sub)
#_, sub_bin = cv2.threshold(sub, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
s
=
1.5
*
float
(
h
)
/
SZ
m
=
cv2
.
moments
(
sub
)
m00
=
m
[
'm00'
]
if
m00
/
255
<
0.1
*
w
*
h
or
m00
/
255
>
0.9
*
w
*
h
:
continue
c1
=
np
.
float32
([
m
[
'm10'
],
m
[
'm01'
]])
/
m00
c0
=
np
.
float32
([
SZ
/
2
,
SZ
/
2
])
t
=
c1
-
s
*
c0
A
=
np
.
zeros
((
2
,
3
),
np
.
float32
)
A
[:,:
2
]
=
np
.
eye
(
2
)
*
s
A
[:,
2
]
=
t
sub1
=
cv2
.
warpAffine
(
sub
,
A
,
(
SZ
,
SZ
),
flags
=
cv2
.
WARP_INVERSE_MAP
|
cv2
.
INTER_LINEAR
)
sub1
=
digits
.
deskew
(
sub1
)
if
x
+
w
+
SZ
<
frame
.
shape
[
1
]
and
y
+
SZ
<
frame
.
shape
[
0
]:
frame
[
y
:,
x
+
w
:][:
SZ
,
:
SZ
]
=
sub1
[
...
,
np
.
newaxis
]
sample
=
np
.
float32
(
sub1
)
.
reshape
(
1
,
SZ
*
SZ
)
/
255.0
digit
=
model
.
predict
(
sample
)[
0
]
cv2
.
putText
(
frame
,
'
%
d'
%
digit
,
(
x
,
y
),
cv2
.
FONT_HERSHEY_PLAIN
,
1.0
,
(
200
,
0
,
0
),
thickness
=
1
)
cv2
.
imshow
(
'frame'
,
frame
)
cv2
.
imshow
(
'bin'
,
bin
)
if
cv2
.
waitKey
(
1
)
==
27
:
break
if
__name__
==
'__main__'
:
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment