Commit aa2777ed authored by Alexander Alekhin's avatar Alexander Alekhin

Merge remote-tracking branch 'upstream/3.4' into merge-3.4

parents 8a588f2c 1dd24eee
......@@ -25,6 +25,16 @@ if(WITH_IPP)
elseif(ANDROID AND NOT OPENCV_SKIP_ANDROID_IPP_FIX_2)
set(CMAKE_SHARED_LINKER_FLAGS "-Wl,-Bsymbolic ${CMAKE_SHARED_LINKER_FLAGS}")
endif()
if(OPENCV_FORCE_IPP_EXCLUDE_LIBS
OR (HAVE_IPP_ICV
AND UNIX AND NOT ANDROID AND NOT APPLE
AND (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
)
AND NOT OPENCV_SKIP_IPP_EXCLUDE_LIBS
)
set(CMAKE_SHARED_LINKER_FLAGS "-Wl,--exclude-libs,libippicv.a -Wl,--exclude-libs,libippiw.a ${CMAKE_SHARED_LINKER_FLAGS}")
endif()
endif()
endif()
......
This diff is collapsed.
......@@ -326,6 +326,13 @@ enum CpuFeatures {
#include "cv_cpu_dispatch.h"
#if !defined(CV_STRONG_ALIGNMENT) && defined(__arm__) && !(defined(__aarch64__) || defined(_M_ARM64))
// int*, int64* should be propertly aligned pointers on ARMv7
#define CV_STRONG_ALIGNMENT 1
#endif
#if !defined(CV_STRONG_ALIGNMENT)
#define CV_STRONG_ALIGNMENT 0
#endif
/* fundamental constants */
#define CV_PI 3.1415926535897932384626433832795
......
......@@ -1458,16 +1458,23 @@ template<typename _Tp, int n> inline void v_zip( const v_reg<_Tp, n>& a0, const
@return register object
@note Returned type will be detected from passed pointer type, for example uchar ==> cv::v_uint8x16, int ==> cv::v_int32x4, etc.
@note Alignment requirement:
if CV_STRONG_ALIGNMENT=1 then passed pointer must be aligned (`sizeof(lane type)` should be enough).
Do not cast pointer types without runtime check for pointer alignment (like `uchar*` => `int*`).
*/
template<typename _Tp>
inline v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128> v_load(const _Tp* ptr)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
return v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128>(ptr);
}
/** @brief Load register contents from memory (aligned)
similar to cv::v_load, but source memory block should be aligned (to 16-byte boundary)
similar to cv::v_load, but source memory block should be aligned (to 16-byte boundary in case of SIMD128, 32-byte - SIMD256, etc)
*/
template<typename _Tp>
inline v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128> v_load_aligned(const _Tp* ptr)
......@@ -1488,6 +1495,9 @@ v_int32x4 r = v_load_low(lo);
template<typename _Tp>
inline v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128> v_load_low(const _Tp* ptr)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128> c;
for( int i = 0; i < c.nlanes/2; i++ )
{
......@@ -1509,6 +1519,10 @@ v_int32x4 r = v_load_halves(lo, hi);
template<typename _Tp>
inline v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128> v_load_halves(const _Tp* loptr, const _Tp* hiptr)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(loptr));
CV_Assert(isAligned<sizeof(_Tp)>(hiptr));
#endif
v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128> c;
for( int i = 0; i < c.nlanes/2; i++ )
{
......@@ -1531,6 +1545,9 @@ template<typename _Tp>
inline v_reg<typename V_TypeTraits<_Tp>::w_type, V_TypeTraits<_Tp>::nlanes128 / 2>
v_load_expand(const _Tp* ptr)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
typedef typename V_TypeTraits<_Tp>::w_type w_type;
v_reg<w_type, V_TypeTraits<w_type>::nlanes128> c;
for( int i = 0; i < c.nlanes; i++ )
......@@ -1552,6 +1569,9 @@ template<typename _Tp>
inline v_reg<typename V_TypeTraits<_Tp>::q_type, V_TypeTraits<_Tp>::nlanes128 / 4>
v_load_expand_q(const _Tp* ptr)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
typedef typename V_TypeTraits<_Tp>::q_type q_type;
v_reg<q_type, V_TypeTraits<q_type>::nlanes128> c;
for( int i = 0; i < c.nlanes; i++ )
......@@ -1572,6 +1592,9 @@ For all types except 64-bit. */
template<typename _Tp, int n> inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a,
v_reg<_Tp, n>& b)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
int i, i2;
for( i = i2 = 0; i < n; i++, i2 += 2 )
{
......@@ -1591,6 +1614,9 @@ For all types except 64-bit. */
template<typename _Tp, int n> inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a,
v_reg<_Tp, n>& b, v_reg<_Tp, n>& c)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
int i, i3;
for( i = i3 = 0; i < n; i++, i3 += 3 )
{
......@@ -1613,6 +1639,9 @@ inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a,
v_reg<_Tp, n>& b, v_reg<_Tp, n>& c,
v_reg<_Tp, n>& d)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
int i, i4;
for( i = i4 = 0; i < n; i++, i4 += 4 )
{
......@@ -1636,6 +1665,9 @@ inline void v_store_interleave( _Tp* ptr, const v_reg<_Tp, n>& a,
const v_reg<_Tp, n>& b,
hal::StoreMode /*mode*/=hal::STORE_UNALIGNED)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
int i, i2;
for( i = i2 = 0; i < n; i++, i2 += 2 )
{
......@@ -1657,6 +1689,9 @@ inline void v_store_interleave( _Tp* ptr, const v_reg<_Tp, n>& a,
const v_reg<_Tp, n>& b, const v_reg<_Tp, n>& c,
hal::StoreMode /*mode*/=hal::STORE_UNALIGNED)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
int i, i3;
for( i = i3 = 0; i < n; i++, i3 += 3 )
{
......@@ -1679,6 +1714,9 @@ template<typename _Tp, int n> inline void v_store_interleave( _Tp* ptr, const v_
const v_reg<_Tp, n>& d,
hal::StoreMode /*mode*/=hal::STORE_UNALIGNED)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
int i, i4;
for( i = i4 = 0; i < n; i++, i4 += 4 )
{
......@@ -1700,6 +1738,9 @@ Pointer can be unaligned. */
template<typename _Tp, int n>
inline void v_store(_Tp* ptr, const v_reg<_Tp, n>& a)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
for( int i = 0; i < n; i++ )
ptr[i] = a.s[i];
}
......@@ -1707,6 +1748,9 @@ inline void v_store(_Tp* ptr, const v_reg<_Tp, n>& a)
template<typename _Tp, int n>
inline void v_store(_Tp* ptr, const v_reg<_Tp, n>& a, hal::StoreMode /*mode*/)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
v_store(ptr, a);
}
......@@ -1720,6 +1764,9 @@ Scheme:
template<typename _Tp, int n>
inline void v_store_low(_Tp* ptr, const v_reg<_Tp, n>& a)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
for( int i = 0; i < (n/2); i++ )
ptr[i] = a.s[i];
}
......@@ -1734,6 +1781,9 @@ Scheme:
template<typename _Tp, int n>
inline void v_store_high(_Tp* ptr, const v_reg<_Tp, n>& a)
{
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(_Tp)>(ptr));
#endif
for( int i = 0; i < (n/2); i++ )
ptr[i] = a.s[i+(n/2)];
}
......
......@@ -449,7 +449,7 @@ Returned value is a string containing space separated list of CPU features with
Example: `SSE SSE2 SSE3 *SSE4.1 *SSE4.2 *FP16 *AVX *AVX2 *AVX512-SKX?`
*/
CV_EXPORTS std::string getCPUFeaturesLine();
CV_EXPORTS_W std::string getCPUFeaturesLine();
/** @brief Returns the number of logical CPUs available for the process.
*/
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_UTILS_BUFFER_AREA_HPP
#define OPENCV_UTILS_BUFFER_AREA_HPP
#include <opencv2/core/base.hpp>
#include <opencv2/core/private.hpp>
#include <opencv2/core/utility.hpp>
#include <vector>
namespace cv { namespace utils {
//! @addtogroup core_utils
//! @{
/** @brief Manages memory block shared by muliple buffers.
This class allows to allocate one large memory block and split it into several smaller
non-overlapping buffers. In safe mode each buffer allocation will be performed independently,
this mode allows dynamic memory access instrumentation using valgrind or memory sanitizer.
Safe mode can be explicitly switched ON in constructor. It will also be enabled when compiling with
memory sanitizer support or in runtime with the environment variable `OPENCV_BUFFER_AREA_ALWAYS_SAFE`.
Example of usage:
@code
int * buf1 = 0;
double * buf2 = 0;
cv::util::BufferArea area;
area.allocate(buf1, 200); // buf1 = new int[200];
area.allocate(buf2, 1000, 64); // buf2 = new double[1000]; - aligned by 64
area.commit();
@endcode
@note This class is considered private and should be used only in OpenCV itself. API can be changed.
*/
class CV_EXPORTS BufferArea
{
public:
/** @brief Class constructor.
@param safe Enable _safe_ operation mode, each allocation will be performed independently.
*/
BufferArea(bool safe = false);
/** @brief Class destructor
All allocated memory well be freed. Each bound pointer will be reset to NULL.
*/
~BufferArea();
/** @brief Bind a pointer to local area.
BufferArea will store reference to the pointer and allocation parameters effectively owning the
pointer and allocated memory. This operation has the same parameters and does the same job
as the operator `new`, except allocation can be performed later during the BufferArea::commit call.
@param ptr Reference to a pointer of type T. Must be NULL
@param count Count of objects to be allocated, it has the same meaning as in the operator `new`.
@param alignment Alignment of allocated memory. same meaning as in the operator `new` (C++17).
Must be divisible by sizeof(T). Must be power of two.
@note In safe mode allocation will be performed immediatly.
*/
template <typename T>
void allocate(T*&ptr, size_t count, ushort alignment = sizeof(T))
{
CV_Assert(ptr == NULL);
CV_Assert(count > 0);
CV_Assert(alignment > 0);
CV_Assert(alignment % sizeof(T) == 0);
CV_Assert((alignment & (alignment - 1)) == 0);
allocate_((void**)(&ptr), static_cast<ushort>(sizeof(T)), count, alignment);
}
/** @brief Allocate memory and initialize all bound pointers
Each pointer bound to the area with the BufferArea::allocate will be initialized and will be set
to point to a memory block with requested size and alignment.
@note Does nothing in safe mode as all allocations will be performed by BufferArea::allocate
*/
void commit();
private:
BufferArea(const BufferArea &); // = delete
BufferArea &operator=(const BufferArea &); // = delete
void allocate_(void **ptr, ushort type_size, size_t count, ushort alignment);
private:
class Block;
std::vector<Block> blocks;
void * oneBuf;
size_t totalSize;
const bool safe;
};
//! @}
}} // cv::utils::
#endif
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "opencv2/core/utils/buffer_area.private.hpp"
#include "opencv2/core/utils/configuration.private.hpp"
#ifdef OPENCV_ENABLE_MEMORY_SANITIZER
#define BUFFER_AREA_DEFAULT_MODE true
#else
#define BUFFER_AREA_DEFAULT_MODE false
#endif
static bool CV_BUFFER_AREA_OVERRIDE_SAFE_MODE =
cv::utils::getConfigurationParameterBool("OPENCV_BUFFER_AREA_ALWAYS_SAFE", BUFFER_AREA_DEFAULT_MODE);
namespace cv { namespace utils {
//==================================================================================================
class BufferArea::Block
{
private:
inline size_t reserve_count() const
{
return alignment / type_size - 1;
}
public:
Block(void **ptr_, ushort type_size_, size_t count_, ushort alignment_)
: ptr(ptr_), raw_mem(0), count(count_), type_size(type_size_), alignment(alignment_)
{
CV_Assert(ptr && *ptr == NULL);
}
void cleanup() const
{
CV_Assert(ptr && *ptr);
*ptr = 0;
if (raw_mem)
fastFree(raw_mem);
}
size_t getByteCount() const
{
return type_size * (count + reserve_count());
}
void real_allocate()
{
CV_Assert(ptr && *ptr == NULL);
const size_t allocated_count = count + reserve_count();
raw_mem = fastMalloc(type_size * allocated_count);
if (alignment != type_size)
{
*ptr = alignPtr(raw_mem, alignment);
CV_Assert(reinterpret_cast<size_t>(*ptr) % alignment == 0);
CV_Assert(static_cast<uchar*>(*ptr) + type_size * count <= static_cast<uchar*>(raw_mem) + type_size * allocated_count);
}
else
{
*ptr = raw_mem;
}
}
void * fast_allocate(void * buf) const
{
CV_Assert(ptr && *ptr == NULL);
buf = alignPtr(buf, alignment);
CV_Assert(reinterpret_cast<size_t>(buf) % alignment == 0);
*ptr = buf;
return static_cast<void*>(static_cast<uchar*>(*ptr) + type_size * count);
}
private:
void **ptr;
void * raw_mem;
size_t count;
ushort type_size;
ushort alignment;
};
//==================================================================================================
BufferArea::BufferArea(bool safe_) :
oneBuf(0),
totalSize(0),
safe(safe_ || CV_BUFFER_AREA_OVERRIDE_SAFE_MODE)
{
}
BufferArea::~BufferArea()
{
for(std::vector<Block>::const_iterator i = blocks.begin(); i != blocks.end(); ++i)
i->cleanup();
if (oneBuf)
fastFree(oneBuf);
}
void BufferArea::allocate_(void **ptr, ushort type_size, size_t count, ushort alignment)
{
blocks.push_back(Block(ptr, type_size, count, alignment));
if (safe)
blocks.back().real_allocate();
else
totalSize += blocks.back().getByteCount();
}
void BufferArea::commit()
{
if (!safe)
{
CV_Assert(totalSize > 0);
CV_Assert(oneBuf == NULL);
CV_Assert(!blocks.empty());
oneBuf = fastMalloc(totalSize);
void * ptr = oneBuf;
for(std::vector<Block>::const_iterator i = blocks.begin(); i != blocks.end(); ++i)
{
ptr = i->fast_allocate(ptr);
}
}
}
//==================================================================================================
}} // cv::utils::
......@@ -563,12 +563,6 @@ Mat& Mat::setTo(InputArray _value, InputArray _mask)
return *this;
}
#if CV_NEON && !defined(__aarch64__)
#define CV_CHECK_ALIGNMENT 1
#else
#define CV_CHECK_ALIGNMENT 0
#endif
#if CV_SIMD128
template<typename V> CV_ALWAYS_INLINE void flipHoriz_single( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size, size_t esz )
{
......@@ -578,7 +572,7 @@ template<typename V> CV_ALWAYS_INLINE void flipHoriz_single( const uchar* src, s
int width_1 = width & -v_uint8x16::nlanes;
int i, j;
#if CV_CHECK_ALIGNMENT
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(T)>(src, dst));
#endif
......@@ -630,7 +624,7 @@ template<typename T1, typename T2> CV_ALWAYS_INLINE void flipHoriz_double( const
int end = (int)(size.width*esz);
int width = (end + 1)/2;
#if CV_CHECK_ALIGNMENT
#if CV_STRONG_ALIGNMENT
CV_Assert(isAligned<sizeof(T1)>(src, dst));
CV_Assert(isAligned<sizeof(T2)>(src, dst));
#endif
......@@ -659,7 +653,7 @@ static void
flipHoriz( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size, size_t esz )
{
#if CV_SIMD
#if CV_CHECK_ALIGNMENT
#if CV_STRONG_ALIGNMENT
size_t alignmentMark = ((size_t)src)|((size_t)dst)|sstep|dstep;
#endif
if (esz == 2 * v_uint8x16::nlanes)
......@@ -712,7 +706,7 @@ flipHoriz( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size,
}
}
else if (esz == 8
#if CV_CHECK_ALIGNMENT
#if CV_STRONG_ALIGNMENT
&& isAligned<sizeof(uint64)>(alignmentMark)
#endif
)
......@@ -720,7 +714,7 @@ flipHoriz( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size,
flipHoriz_single<v_uint64x2>(src, sstep, dst, dstep, size, esz);
}
else if (esz == 4
#if CV_CHECK_ALIGNMENT
#if CV_STRONG_ALIGNMENT
&& isAligned<sizeof(unsigned)>(alignmentMark)
#endif
)
......@@ -728,7 +722,7 @@ flipHoriz( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size,
flipHoriz_single<v_uint32x4>(src, sstep, dst, dstep, size, esz);
}
else if (esz == 2
#if CV_CHECK_ALIGNMENT
#if CV_STRONG_ALIGNMENT
&& isAligned<sizeof(ushort)>(alignmentMark)
#endif
)
......@@ -740,7 +734,7 @@ flipHoriz( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size,
flipHoriz_single<v_uint8x16>(src, sstep, dst, dstep, size, esz);
}
else if (esz == 24
#if CV_CHECK_ALIGNMENT
#if CV_STRONG_ALIGNMENT
&& isAligned<sizeof(uint64_t)>(alignmentMark)
#endif
)
......@@ -766,7 +760,7 @@ flipHoriz( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size,
}
}
}
#if !CV_CHECK_ALIGNMENT
#if !CV_STRONG_ALIGNMENT
else if (esz == 12)
{
flipHoriz_double<uint64_t,uint>(src, sstep, dst, dstep, size, esz);
......@@ -815,7 +809,7 @@ flipVert( const uchar* src0, size_t sstep, uchar* dst0, size_t dstep, Size size,
{
int i = 0;
#if CV_SIMD
#if CV_CHECK_ALIGNMENT
#if CV_STRONG_ALIGNMENT
if (isAligned<sizeof(int)>(src0, src1, dst0, dst1))
#endif
{
......@@ -827,7 +821,7 @@ flipVert( const uchar* src0, size_t sstep, uchar* dst0, size_t dstep, Size size,
vx_store((int*)(dst1 + i), t0);
}
}
#if CV_CHECK_ALIGNMENT
#if CV_STRONG_ALIGNMENT
else
{
for (; i <= size.width - CV_SIMD_WIDTH; i += CV_SIMD_WIDTH)
......
......@@ -3,6 +3,7 @@
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "opencv2/core/utils/logger.hpp"
#include "opencv2/core/utils/buffer_area.private.hpp"
#include "test_utils_tls.impl.hpp"
......@@ -303,4 +304,132 @@ TEST(Samples, findFile_missing)
cv::utils::logging::setLogLevel(prev);
}
template <typename T>
inline bool buffers_overlap(T * first, size_t first_num, T * second, size_t second_num)
{
// cerr << "[" << (void*)first << " : " << (void*)(first + first_num) << ")";
// cerr << " X ";
// cerr << "[" << (void*)second << " : " << (void*)(second + second_num) << ")";
// cerr << endl;
bool res = false;
res |= (second <= first) && (first < second + second_num);
res |= (second < first + first_num) && (first + first_num < second + second_num);
return res;
}
typedef testing::TestWithParam<bool> BufferArea;
TEST_P(BufferArea, basic)
{
const bool safe = GetParam();
const size_t SZ = 3;
int * int_ptr = NULL;
uchar * uchar_ptr = NULL;
double * dbl_ptr = NULL;
{
cv::utils::BufferArea area(safe);
area.allocate(int_ptr, SZ);
area.allocate(uchar_ptr, SZ);
area.allocate(dbl_ptr, SZ);
area.commit();
ASSERT_TRUE(int_ptr != NULL);
ASSERT_TRUE(uchar_ptr != NULL);
ASSERT_TRUE(dbl_ptr != NULL);
EXPECT_EQ((size_t)0, (size_t)int_ptr % sizeof(int));
EXPECT_EQ((size_t)0, (size_t)dbl_ptr % sizeof(double));
}
EXPECT_TRUE(int_ptr == NULL);
EXPECT_TRUE(uchar_ptr == NULL);
EXPECT_TRUE(dbl_ptr == NULL);
}
TEST_P(BufferArea, align)
{
const bool safe = GetParam();
const size_t SZ = 3;
const size_t CNT = 5;
typedef int T;
T * buffers[CNT] = {0};
{
cv::utils::BufferArea area(safe);
// allocate buffers with 3 elements with growing alignment (power of two)
for (size_t i = 0; i < CNT; ++i)
{
const ushort ALIGN = static_cast<ushort>(sizeof(T) << i);
EXPECT_TRUE(buffers[i] == NULL);
area.allocate(buffers[i], SZ, ALIGN);
}
area.commit();
for (size_t i = 0; i < CNT; ++i)
{
const ushort ALIGN = static_cast<ushort>(sizeof(T) << i);
EXPECT_TRUE(buffers[i] != NULL);
EXPECT_EQ((size_t)0, reinterpret_cast<size_t>(buffers[i]) % ALIGN);
if (i < CNT - 1)
{
SCOPED_TRACE(i);
EXPECT_FALSE(buffers_overlap(buffers[i], SZ, buffers[i + 1], SZ))
<< "Buffers overlap: "
<< buffers[i] << " (" << SZ << " elems)"
<< " and "
<< buffers[i + 1] << " (" << SZ << " elems)"
<< " (element size: " << sizeof(T) << ")";
}
}
}
for (size_t i = 0; i < CNT; ++i)
{
EXPECT_TRUE(buffers[i] == NULL);
}
}
TEST_P(BufferArea, default_align)
{
const bool safe = GetParam();
const size_t CNT = 100;
const ushort ALIGN = 64;
typedef int T;
T * buffers[CNT] = {0};
{
cv::utils::BufferArea area(safe);
// allocate buffers with 1-99 elements with default alignment
for (size_t i = 0; i < CNT; ++ i)
{
EXPECT_TRUE(buffers[i] == NULL);
area.allocate(buffers[i], i + 1, ALIGN);
}
area.commit();
for (size_t i = 0; i < CNT; ++i)
{
EXPECT_TRUE(buffers[i] != NULL);
EXPECT_EQ((size_t)0, reinterpret_cast<size_t>(buffers[i]) % ALIGN);
if (i < CNT - 1)
{
SCOPED_TRACE(i);
EXPECT_FALSE(buffers_overlap(buffers[i], i + 1, buffers[i + 1], i + 2))
<< "Buffers overlap: "
<< buffers[i] << " (" << i + 1 << " elems)"
<< " and "
<< buffers[i + 1] << " (" << i + 2 << " elems)"
<< " (element size: " << sizeof(T) << ")";
}
}
}
}
TEST_P(BufferArea, bad)
{
const bool safe = GetParam();
int * ptr = 0;
cv::utils::BufferArea area(safe);
EXPECT_ANY_THROW(area.allocate(ptr, 0)); // bad size
EXPECT_ANY_THROW(area.allocate(ptr, 1, 0)); // bad alignment
EXPECT_ANY_THROW(area.allocate(ptr, 1, 3)); // bad alignment
ptr = (int*)1;
EXPECT_ANY_THROW(area.allocate(ptr, 1)); // non-zero pointer
}
INSTANTIATE_TEST_CASE_P(/**/, BufferArea, testing::Values(true, false));
}} // namespace
This diff is collapsed.
......@@ -12,7 +12,15 @@
#ifdef HAVE_DNN_NGRAPH
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4245)
#pragma warning(disable : 4268)
#endif
#include <ngraph/ngraph.hpp>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // HAVE_DNN_NGRAPH
......
......@@ -148,6 +148,7 @@ Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto)
else
{
const char* val = tensor_proto.raw_data().c_str();
#if CV_STRONG_ALIGNMENT
// Aligned pointer is required: https://github.com/opencv/opencv/issues/16373
// this doesn't work: typedef int64_t CV_DECL_ALIGNED(1) unaligned_int64_t;
AutoBuffer<int64_t, 16> aligned_val;
......@@ -158,6 +159,7 @@ Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto)
memcpy(aligned_val.data(), val, sz);
val = (const char*)aligned_val.data();
}
#endif
const int64_t* src = reinterpret_cast<const int64_t*>(val);
convertInt64ToInt32(src, dst, blob.total());
}
......
......@@ -1468,6 +1468,8 @@ void TFImporter::populateNet(Net dstNet)
int end_mask = getLayerAttr(layer, "end_mask").i();
for (int i = 0; i < num; ++i)
{
if (ends.at<int>(i) < 0)
ends.at<int>(i) -= 1;
if (end_mask & (1 << i))
ends.at<int>(i) = -1;
if (strides.at<int>(i) != 1)
......
......@@ -486,7 +486,9 @@ TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16)
if (backend == DNN_BACKEND_HALIDE)
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#if defined(INF_ENGINE_RELEASE)
#if INF_ENGINE_VER_MAJOR_LE(2018050000)
......
......@@ -330,7 +330,9 @@ TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
}
// There is something wrong with Reshape layer in Myriad plugin.
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
|| backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH
)
{
if (targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_OPENCL_FP16)
return;
......@@ -675,7 +677,10 @@ TEST_P(Test_Caffe_nets, FasterRCNN_vgg16)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
#endif
......
......@@ -460,6 +460,9 @@ TEST_P(Test_Darknet_nets, YOLOv3)
{
applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB));
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
// batchId, classId, confidence, left, top, right, bottom
Mat ref = (Mat_<float>(9, 7) << 0, 7, 0.952983f, 0.614622f, 0.150257f, 0.901369f, 0.289251f, // a truck
0, 1, 0.987908f, 0.150913f, 0.221933f, 0.742255f, 0.74626f, // a bicycle
......@@ -554,6 +557,11 @@ TEST_P(Test_Darknet_layers, reorg)
testDarknetLayer("reorg");
}
TEST_P(Test_Darknet_layers, maxpool)
{
testDarknetLayer("maxpool");
}
TEST_P(Test_Darknet_layers, convolutional)
{
if (target == DNN_TARGET_MYRIAD)
......@@ -563,6 +571,13 @@ TEST_P(Test_Darknet_layers, convolutional)
testDarknetLayer("convolutional", true);
}
TEST_P(Test_Darknet_layers, connected)
{
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
testDarknetLayer("connected", true);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_layers, dnnBackendsAndTargets());
}} // namespace
......@@ -503,6 +503,9 @@ TEST_P(Async, create_layer_pipeline_set_and_forward_all)
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
......
......@@ -196,20 +196,58 @@ TEST_P(Test_TensorFlow_layers, concat_axis_1)
runTensorFlowNet("concat_axis_1");
}
TEST_P(Test_TensorFlow_layers, batch_norm)
TEST_P(Test_TensorFlow_layers, batch_norm_1)
{
runTensorFlowNet("batch_norm");
}
TEST_P(Test_TensorFlow_layers, batch_norm_2)
{
runTensorFlowNet("batch_norm", false, 0.0, 0.0, true);
}
TEST_P(Test_TensorFlow_layers, batch_norm_3)
{
runTensorFlowNet("fused_batch_norm");
}
TEST_P(Test_TensorFlow_layers, batch_norm_4)
{
runTensorFlowNet("fused_batch_norm", false, 0.0, 0.0, true);
}
TEST_P(Test_TensorFlow_layers, batch_norm_5)
{
runTensorFlowNet("batch_norm_text", true);
}
TEST_P(Test_TensorFlow_layers, batch_norm_6)
{
runTensorFlowNet("batch_norm_text", true, 0.0, 0.0, true);
}
TEST_P(Test_TensorFlow_layers, batch_norm_7)
{
runTensorFlowNet("unfused_batch_norm");
}
TEST_P(Test_TensorFlow_layers, batch_norm_8)
{
runTensorFlowNet("fused_batch_norm_no_gamma");
}
TEST_P(Test_TensorFlow_layers, batch_norm_9)
{
runTensorFlowNet("unfused_batch_norm_no_gamma");
}
TEST_P(Test_TensorFlow_layers, batch_norm_10)
{
runTensorFlowNet("mvn_batch_norm");
}
TEST_P(Test_TensorFlow_layers, batch_norm_11)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
runTensorFlowNet("mvn_batch_norm_1x1");
}
TEST_P(Test_TensorFlow_layers, batch_norm_12)
{
runTensorFlowNet("switch_identity");
}
TEST_P(Test_TensorFlow_layers, batch_norm_13)
{
runTensorFlowNet("keras_batch_norm_training");
}
......@@ -431,6 +469,8 @@ TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH,
CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#endif
......@@ -703,10 +743,15 @@ TEST_P(Test_TensorFlow_nets, EAST_text_detection)
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16 &&
INF_ENGINE_VER_MAJOR_EQ(2019020000))
(INF_ENGINE_VER_MAJOR_EQ(2019020000) || INF_ENGINE_VER_MAJOR_GE(2020010000))
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
checkBackend();
......@@ -843,6 +888,8 @@ TEST_P(Test_TensorFlow_layers, slice)
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
double l1 = target == DNN_TARGET_MYRIAD ? 4.9e-3 : default_l1;
runTensorFlowNet("crop2d", false, l1);
runTensorFlowNet("slice_4d");
runTensorFlowNet("strided_slice");
}
......
......@@ -229,9 +229,14 @@ TEST_P(Test_Torch_layers, net_logsoftmax)
runTorchNet("net_logsoftmax_spatial");
}
TEST_P(Test_Torch_layers, net_lp_pooling)
TEST_P(Test_Torch_layers, net_lp_pooling_square)
{
runTorchNet("net_lp_pooling_square", "", false, true);
}
TEST_P(Test_Torch_layers, net_lp_pooling_power)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
runTorchNet("net_lp_pooling_power", "", false, true);
}
......@@ -393,6 +398,10 @@ TEST_P(Test_Torch_nets, ENet_accuracy)
throw SkipTestException("");
if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#else
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
......@@ -400,12 +409,10 @@ TEST_P(Test_Torch_nets, ENet_accuracy)
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
throw SkipTestException("");
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
#endif
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
throw SkipTestException("");
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
Net net;
......
......@@ -62,7 +62,7 @@ namespace cv
//! Imread flags
enum ImreadModes {
IMREAD_UNCHANGED = -1, //!< If set, return the loaded image as is (with alpha channel, otherwise it gets cropped).
IMREAD_UNCHANGED = -1, //!< If set, return the loaded image as is (with alpha channel, otherwise it gets cropped). Ignore EXIF orientation.
IMREAD_GRAYSCALE = 0, //!< If set, always convert image to the single channel grayscale image (codec internal conversion).
IMREAD_COLOR = 1, //!< If set, always convert image to the 3 channel BGR color image.
IMREAD_ANYDEPTH = 2, //!< If set, return 16-bit/32-bit image when the input has the corresponding depth, otherwise convert it to 8-bit.
......@@ -172,8 +172,9 @@ Currently, the following file formats are supported:
then the [GDAL](http://www.gdal.org) driver will be used in order to decode the image, supporting
the following formats: [Raster](http://www.gdal.org/formats_list.html),
[Vector](http://www.gdal.org/ogr_formats.html).
- If EXIF information are embedded in the image file, the EXIF orientation will be taken into account
and thus the image will be rotated accordingly except if the flag @ref IMREAD_IGNORE_ORIENTATION is passed.
- If EXIF information is embedded in the image file, the EXIF orientation will be taken into account
and thus the image will be rotated accordingly except if the flags @ref IMREAD_IGNORE_ORIENTATION
or @ref IMREAD_UNCHANGED are passed.
- Use the IMREAD_UNCHANGED flag to keep the floating point values from PFM image.
- By default number of pixels must be less than 2^30. Limit can be set using system
variable OPENCV_IO_MAX_IMAGE_PIXELS
......
......@@ -51,6 +51,8 @@
#undef max
#include <iostream>
#include <fstream>
#include <cerrno>
#include <opencv2/core/utils/logger.hpp>
#include <opencv2/core/utils/configuration.private.hpp>
......@@ -693,6 +695,23 @@ static bool imwrite_( const String& filename, const std::vector<Mat>& img_vec,
code = encoder->write( write_vec[0], params );
else
code = encoder->writemulti( write_vec, params ); //to be implemented
if (!code)
{
FILE* f = fopen( filename.c_str(), "wb" );
if ( !f )
{
if (errno == EACCES)
{
CV_LOG_WARNING(NULL, "imwrite_('" << filename << "'): can't open file for writing: permission denied");
}
}
else
{
fclose(f);
remove(filename.c_str());
}
}
}
catch (const cv::Exception& e)
{
......
......@@ -982,6 +982,14 @@ PyObject* pyopencv_from(const String& value)
return PyString_FromString(value.empty() ? "" : value.c_str());
}
#if CV_VERSION_MAJOR == 3
template<>
PyObject* pyopencv_from(const std::string& value)
{
return PyString_FromString(value.empty() ? "" : value.c_str());
}
#endif
template<>
bool pyopencv_to(PyObject* obj, String &value, const ArgInfo& info)
{
......
......@@ -146,7 +146,8 @@ enum VideoCaptureProperties {
CAP_PROP_HUE =13, //!< Hue of the image (only for cameras).
CAP_PROP_GAIN =14, //!< Gain of the image (only for those cameras that support).
CAP_PROP_EXPOSURE =15, //!< Exposure (only for those cameras that support).
CAP_PROP_CONVERT_RGB =16, //!< Boolean flags indicating whether images should be converted to RGB.
CAP_PROP_CONVERT_RGB =16, //!< Boolean flags indicating whether images should be converted to RGB. <br/>
//!< *GStreamer note*: The flag is ignored in case if custom pipeline is used. It's user responsibility to interpret pipeline output.
CAP_PROP_WHITE_BALANCE_BLUE_U =17, //!< Currently unsupported.
CAP_PROP_RECTIFICATION =18, //!< Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently).
CAP_PROP_MONOCHROME =19,
......@@ -631,7 +632,8 @@ public:
@param filename it can be:
- name of video file (eg. `video.avi`)
- or image sequence (eg. `img_%02d.jpg`, which will read samples like `img_00.jpg, img_01.jpg, img_02.jpg, ...`)
- or URL of video stream (eg. `protocol://host:port/script_name?script_params|auth`).
- or URL of video stream (eg. `protocol://host:port/script_name?script_params|auth`)
- or GStreamer pipeline string in gst-launch tool format in case if GStreamer is used as backend
Note that each video stream or IP camera feed has its own URL scheme. Please refer to the
documentation of source stream to know the right URL.
@param apiPreference preferred Capture API backends to use. Can be used to enforce a specific reader
......
This diff is collapsed.
......@@ -119,6 +119,8 @@ public:
for (int k = 0; k < n_frames; ++k)
{
checkFrameRead(k, cap);
if (::testing::Test::HasFailure() && k % 10 == 0)
break;
}
}
bool canSeek = false;
......@@ -138,6 +140,8 @@ public:
for (int k = 0; k < n_frames; k += 20)
{
checkFrameSeek(k, cap);
if (::testing::Test::HasFailure() && k % 10 == 0)
break;
}
}
......@@ -150,6 +154,8 @@ public:
for (int k = 0; k < 10; ++k)
{
checkFrameSeek(cvtest::TS::ptr()->get_rng().uniform(0, n_frames), cap);
if (::testing::Test::HasFailure() && k % 10 == 0)
break;
}
}
}
......@@ -217,6 +223,8 @@ public:
EXPECT_EQ(bunny_param.getWidth(), frame.cols);
EXPECT_EQ(bunny_param.getHeight(), frame.rows);
count_actual += 1;
if (::testing::Test::HasFailure() && count_actual % 10 == 0)
break;
}
if (count_prop > 0)
{
......@@ -272,6 +280,8 @@ public:
{
generateFrame(i, frame_count, img);
EXPECT_NO_THROW(writer << img);
if (::testing::Test::HasFailure() && i % 10 == 0)
break;
}
EXPECT_NO_THROW(writer.release());
}
......
......@@ -45,7 +45,7 @@ if(INSTALL_PYTHON_EXAMPLES)
add_subdirectory(python)
endif()
ocv_install_example_src("." CMakeLists.txt)
ocv_install_example_src("." CMakeLists.txt samples_utils.cmake)
if(INSTALL_C_EXAMPLES)
install(DIRECTORY data DESTINATION "${OPENCV_SAMPLES_SRC_INSTALL_PATH}" COMPONENT samples_data)
endif()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment