Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
a9f2f522
Commit
a9f2f522
authored
Jul 02, 2012
by
Marina Kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
LBP classifier was refactored, added parameter for max size of detected object
parent
e6f7e4d8
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
114 additions
and
85 deletions
+114
-85
gpu.hpp
modules/gpu/include/opencv2/gpu/gpu.hpp
+2
-1
cascadeclassifier.cpp
modules/gpu/src/cascadeclassifier.cpp
+39
-25
lbp.cu
modules/gpu/src/cuda/lbp.cu
+46
-30
lbp.hpp
modules/gpu/src/opencv2/gpu/device/lbp.hpp
+27
-29
No files found.
modules/gpu/include/opencv2/gpu/gpu.hpp
View file @
a9f2f522
...
...
@@ -1435,7 +1435,8 @@ public:
bool
load
(
const
std
::
string
&
filename
);
void
release
();
int
detectMultiScale
(
const
GpuMat
&
image
,
GpuMat
&
scaledImageBuffer
,
GpuMat
&
objectsBuf
,
double
scaleFactor
=
1.1
,
int
minNeighbors
=
4
/*, Size minSize = Size()*/
);
int
detectMultiScale
(
const
GpuMat
&
image
,
GpuMat
&
scaledImageBuffer
,
GpuMat
&
objectsBuf
,
double
scaleFactor
=
1.1
,
int
minNeighbors
=
4
,
cv
::
Size
maxObjectSize
=
cv
::
Size
()
/*, Size minSize = Size()*/
);
void
preallocateIntegralBuffer
(
cv
::
Size
desired
);
bool
findLargestObject
;
...
...
modules/gpu/src/cascadeclassifier.cpp
View file @
a9f2f522
...
...
@@ -48,20 +48,6 @@ using namespace cv;
using
namespace
cv
::
gpu
;
using
namespace
std
;
struct
Stage
{
int
first
;
int
ntrees
;
float
threshold
;
};
struct
DTreeNode
{
int
featureIdx
;
int
left
;
int
right
;
};
#if !defined (HAVE_CUDA)
// ============ old fashioned haar cascade ==============================================//
cv
::
gpu
::
CascadeClassifier_GPU
::
CascadeClassifier_GPU
()
{
throw_nogpu
();
}
...
...
@@ -128,6 +114,13 @@ bool cv::gpu::CascadeClassifier_GPU_LBP::load(const string& classifierAsXml)
#define GPU_CC_FEATURES "features"
#define GPU_CC_RECT "rect"
struct
Stage
{
int
first
;
int
ntrees
;
float
threshold
;
};
// currently only stump based boost classifiers are supported
bool
CascadeClassifier_GPU_LBP
::
read
(
const
FileNode
&
root
)
{
...
...
@@ -279,12 +272,26 @@ namespace cv { namespace gpu { namespace device
{
namespace
lbp
{
void
cascadeClassify
(
const
DevMem2Db
stages
,
const
DevMem2Di
trees
,
const
DevMem2Db
nodes
,
const
DevMem2Df
leaves
,
const
DevMem2Di
subsets
,
const
DevMem2Db
features
,
const
DevMem2Di
integral
,
int
workWidth
,
int
workHeight
,
int
clWidth
,
int
clHeight
,
float
scale
,
int
step
,
int
subsetSize
,
DevMem2D_
<
int4
>
objects
,
int
minNeighbors
=
4
,
cudaStream_t
stream
=
0
);
void
classifyStump
(
const
DevMem2Db
mstages
,
const
int
nstages
,
const
DevMem2Di
mnodes
,
const
DevMem2Df
mleaves
,
const
DevMem2Di
msubsets
,
const
DevMem2Db
mfeatures
,
const
DevMem2Di
integral
,
const
int
workWidth
,
const
int
workHeight
,
const
int
clWidth
,
const
int
clHeight
,
float
scale
,
int
step
,
int
subsetSize
,
DevMem2D_
<
int4
>
objects
);
}
}}}
int
cv
::
gpu
::
CascadeClassifier_GPU_LBP
::
detectMultiScale
(
const
GpuMat
&
image
,
GpuMat
&
scaledImageBuffer
,
GpuMat
&
objects
,
double
scaleFactor
,
int
minNeighbors
/*, Size minSize=Size()*/
)
int
cv
::
gpu
::
CascadeClassifier_GPU_LBP
::
detectMultiScale
(
const
GpuMat
&
image
,
GpuMat
&
scaledImageBuffer
,
GpuMat
&
objects
,
double
scaleFactor
,
int
minNeighbors
,
cv
::
Size
maxObjectSize
/*, Size minSize=Size()*/
)
{
CV_Assert
(
scaleFactor
>
1
&&
image
.
depth
()
==
CV_8U
);
CV_Assert
(
!
empty
());
...
...
@@ -299,28 +306,35 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
// temp solution
objects
.
create
(
image
.
rows
,
image
.
cols
,
CV_32SC4
);
scaledImageBuffer
.
create
(
image
.
size
(),
image
.
type
());
if
(
maxObjectSize
==
cv
::
Size
())
maxObjectSize
=
image
.
size
();
scaledImageBuffer
.
create
(
image
.
rows
+
1
,
image
.
cols
+
1
,
CV_8U
);
// TODO: specify max objects size
for
(
double
factor
=
1
;
;
factor
*=
scaleFactor
)
{
cv
::
Size
windowSize
(
cvRound
(
NxM
.
width
*
factor
),
cvRound
(
NxM
.
height
*
factor
));
cv
::
Size
scaledImageSize
(
cvRound
(
image
.
cols
/
factor
),
cvRound
(
image
.
rows
/
factor
));
cv
::
Size
processingRectSize
(
scaledImageSize
.
width
-
NxM
.
width
+
1
,
scaledImageSize
.
height
-
NxM
.
height
+
1
);
// nothing to do
if
(
processingRectSize
.
width
<=
0
||
processingRectSize
.
height
<=
0
)
break
;
// TODO: min max object sizes cheching
cv
::
gpu
::
resize
(
image
,
scaledImageBuffer
,
scaledImageSize
,
0
,
0
,
INTER_NEAREST
);
//prepare image for evaluation
if
(
windowSize
.
width
>
maxObjectSize
.
width
||
windowSize
.
height
>
maxObjectSize
.
height
)
break
;
// if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
// continue;
cv
::
gpu
::
resize
(
image
,
scaledImageBuffer
,
scaledImageSize
,
0
,
0
,
CV_INTER_LINEAR
);
integral
.
create
(
cv
::
Size
(
scaledImageSize
.
width
+
1
,
scaledImageSize
.
height
+
1
),
CV_32SC1
);
cv
::
gpu
::
integral
(
scaledImageBuffer
,
integral
);
int
step
=
(
factor
<=
2.
)
+
1
;
cv
::
gpu
::
device
::
lbp
::
c
ascadeClassify
(
stage_mat
,
trees_mat
,
nodes_mat
,
leaves_mat
,
subsets_mat
,
features_mat
,
integral
,
processingRectSize
.
width
,
processingRectSize
.
height
,
windowSize
.
width
,
windowSize
.
height
,
scaleFactor
,
step
,
subsetSize
,
objects
,
minNeighbor
s
);
cv
::
gpu
::
device
::
lbp
::
c
lassifyStump
(
stage_mat
,
stage_mat
.
cols
/
sizeof
(
Stage
)
,
nodes_mat
,
leaves_mat
,
subsets_mat
,
features_mat
,
integral
,
processingRectSize
.
width
,
processingRectSize
.
height
,
windowSize
.
width
,
windowSize
.
height
,
scaleFactor
,
step
,
subsetSize
,
object
s
);
}
// TODO: reject levels
...
...
modules/gpu/src/cuda/lbp.cu
View file @
a9f2f522
...
...
@@ -46,54 +46,69 @@ namespace cv { namespace gpu { namespace device
{
namespace lbp
{
__global__ void lbp_classify(const DevMem2D_< ::cv::gpu::device::Stage> stages, const DevMem2Di trees, const DevMem2D_< ::cv::gpu::device::ClNode> nodes,
const DevMem2Df leaves, const DevMem2Di subsets,
const DevMem2D_<uchar4> features, const DevMem2Di integral, float step, int subsetSize, DevMem2D_<int4> objects, float scale, int clWidth, int clHeight)
__global__ void lbp_classify_stump(Stage* stages, int nstages, ClNode* nodes, const float* leaves, const int* subsets, const uchar4* features,
const DevMem2Di integral, int workWidth, int workHeight, int clWidth, int clHeight, float scale, int step, int subsetSize, DevMem2D_<int4> objects)
{
unsigned int x = threadIdx.x * step;
unsigned int y = blockIdx.x * step;
int nodeOfs = 0, leafOfs = 0;
::cv::gpu::device::Feature evaluator;
int y = threadIdx.x * scale;
int x = blockIdx.x * scale;
for (int s = 0; s < stages.cols; s++ )
int i = 0;
int current_node = 0;
int current_leave = 0;
LBP evaluator;
for (int s = 0; s < nstages; s++ )
{
::cv::gpu::device::Stage stage = stages(0, s);
int sum = 0;
for (int w = 0; w < stage.ntrees; w++)
float sum = 0;
Stage stage = stages[s];
for (int t = 0; t < stage.ntrees; t++)
{
::cv::gpu::device::ClNode node = nodes(0, nodeOfs);
uchar4 feature = features(0, node.featureIdx);
ClNode node = nodes[current_node];
uchar4 feature = features[node.featureIdx];
int c = evaluator(y, x, feature, integral);
const int* subsetIdx = subsets + (current_node * subsetSize);
uchar c = evaluator(y, x, feature, integral);
const int subsetIdx = (nodeOfs * subsetSize);
int idx = subsetIdx + ((c >> 5) & ( 1 << (c & 31)) ? leafOfs : leafOfs + 1);
sum += leaves(0, subsets(0, idx) );
nodeOfs++;
leafOfs += 2;
int idx = (subsetIdx[c >> 5] & ( 1 << (c & 31))) ? current_leave : current_leave + 1;
sum += leaves[idx];
current_node += 1;
current_leave += 2;
}
i = s;
if (sum < stage.threshold)
return;
}
int4 rect;
rect.x = roundf(x * scale);
rect.y = roundf(y * scale);
rect.z = roundf(clWidth * scale);
rect.w = roundf(clHeight * scale);
objects(blockIdx.x, threadIdx.x) = rect;
rect.z = roundf(clWidth);
rect.w = roundf(clHeight);
if(i >= 19)
printf( "GPU detected [%d, %d] - [%d, %d]\n", rect.x, rect.y, rect.z, rect.w);
}
void cascadeClassify(const DevMem2Db bstages, const DevMem2Di trees, const DevMem2Db bnodes, const DevMem2Df leaves, const DevMem2Di subsets, const DevMem2Db bfeatures,
const DevMem2Di integral, int workWidth, int workHeight, int clWidth, int clHeight, float scale, int step, int subsetSize, DevMem2D_<int4> objects, int minNeighbors, cudaStream_t stream)
void classifyStump(const DevMem2Db mstages, const int nstages, const DevMem2Di mnodes, const DevMem2Df mleaves, const DevMem2Di msubsets, const DevMem2Db mfeatures,
const DevMem2Di integral, const int workWidth, const int workHeight, const int clWidth, const int clHeight, float scale, int step, int subsetSize,
DevMem2D_<int4> objects)
{
printf("CascadeClassify");
int blocks = ceilf(workHeight / (float)step);
int blocks = ceilf(workHeight / (float)step);
int threads = ceilf(workWidth / (float)step);
DevMem2D_< ::cv::gpu::device::Stage> stages = DevMem2D_< ::cv::gpu::device::Stage>(bstages);
DevMem2D_<uchar4> features = (DevMem2D_<uchar4>)bfeatures;
DevMem2D_< ::cv::gpu::device::ClNode> nodes = DevMem2D_< ::cv::gpu::device::ClNode>(bnodes);
printf("blocks %d, threads %d\n", blocks, threads);
Stage* stages = (Stage*)(mstages.ptr());
ClNode* nodes = (ClNode*)(mnodes.ptr());
const float* leaves = mleaves.ptr();
const int* subsets = msubsets.ptr();
const uchar4* features = (uchar4*)(mfeatures.ptr());
lbp_classify<<<blocks, threads>>>(stages, trees, nodes, leaves, subsets, features, integral, step, subsetSize, objects, scale, clWidth, clHeight);
lbp_classify_stump<<<blocks, threads>>>(stages, nstages, nodes, leaves, subsets, features, integral,
workWidth, workHeight, clWidth, clHeight, scale, step, subsetSize, objects);
}
}
}}}
\ No newline at end of file
modules/gpu/src/opencv2/gpu/device/lbp.hpp
View file @
a9f2f522
...
...
@@ -44,62 +44,58 @@
#define __OPENCV_GPU_DEVICE_LBP_HPP_
#include "internal_shared.hpp"
// #include "opencv2/gpu/device/border_interpolate.hpp"
// #include "opencv2/gpu/device/vec_traits.hpp"
// #include "opencv2/gpu/device/vec_math.hpp"
// #include "opencv2/gpu/device/saturate_cast.hpp"
// #include "opencv2/gpu/device/filters.hpp"
// #define CALC_SUM_(p0, p1, p2, p3, offset) \
// ((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])
// __device__ __forceinline__ int sum(p0, p1, p2, p3, offset)
// {
// }
namespace
cv
{
namespace
gpu
{
namespace
device
{
namespace
lbp
{
struct
Stage
{
int
first
;
int
ntrees
;
float
threshold
;
__device__
__forceinline__
Stage
(
int
f
=
0
,
int
n
=
0
,
float
t
=
0.
f
)
:
first
(
f
),
ntrees
(
n
),
threshold
(
t
)
{}
__device__
__forceinline__
Stage
(
const
Stage
&
other
)
:
first
(
other
.
first
),
ntrees
(
other
.
ntrees
),
threshold
(
other
.
threshold
)
{}
};
struct
ClNode
{
int
featureIdx
;
int
left
;
int
right
;
__device__
__forceinline__
ClNode
(
int
f
=
0
,
int
l
=
0
,
int
r
=
0
)
:
featureIdx
(
f
),
left
(
l
),
right
(
r
)
{}
__device__
__forceinline__
ClNode
(
const
ClNode
&
other
)
:
featureIdx
(
other
.
featureIdx
),
left
(
other
.
left
),
right
(
other
.
right
)
{}
int
featureIdx
;
};
struct
Feature
struct
LBP
{
__device__
__forceinline__
Feature
(
const
Feature
&
other
)
{(
void
)
other
;}
__device__
__forceinline__
Feature
()
{}
__device__
__forceinline__
LBP
(
const
LBP
&
other
)
{(
void
)
other
;}
__device__
__forceinline__
LBP
()
{}
//feature as uchar x, y - left top, z,w - right bottom
__device__
__forceinline__
uchar
operator
()
(
unsigned
int
y
,
unsigned
int
x
,
uchar4
feature
,
const
DevMem2Di
integral
)
const
__device__
__forceinline__
int
operator
()
(
unsigned
int
y
,
unsigned
int
x
,
uchar4
feature
,
const
DevMem2Di
integral
)
const
{
int
x_off
=
2
*
feature
.
z
;
int
y_off
=
2
*
feature
.
w
;
// printf("feature: %d %d %d %d\n", (int)feature.x, (int)feature.y, (int)feature.z, (int)feature.w);
feature
.
z
+=
feature
.
x
;
feature
.
w
+=
feature
.
y
;
// load feature key points
int
anchors
[
16
];
/*
P0-----P1-----P2-----P3
| | | |
P4-----P5-----P6-----P7
| | | |
P8-----P9-----P10----P11
| | | |
P12----P13----P14----15
*/
anchors
[
0
]
=
integral
(
y
+
feature
.
y
,
x
+
feature
.
x
);
anchors
[
1
]
=
integral
(
y
+
feature
.
y
,
x
+
feature
.
z
);
anchors
[
2
]
=
integral
(
y
+
feature
.
y
,
x
+
x_off
+
feature
.
x
);
anchors
[
3
]
=
integral
(
y
+
feature
.
y
,
x
+
x_off
+
feature
.
z
);
anchors
[
2
]
=
integral
(
y
+
feature
.
y
,
x
+
feature
.
x
+
x_off
);
anchors
[
3
]
=
integral
(
y
+
feature
.
y
,
x
+
feature
.
z
+
x_off
);
anchors
[
4
]
=
integral
(
y
+
feature
.
w
,
x
+
feature
.
x
);
anchors
[
5
]
=
integral
(
y
+
feature
.
w
,
x
+
feature
.
z
);
anchors
[
6
]
=
integral
(
y
+
feature
.
w
,
x
+
x_off
+
feature
.
x
);
anchors
[
7
]
=
integral
(
y
+
feature
.
w
,
x
+
x_off
+
feature
.
z
);
anchors
[
6
]
=
integral
(
y
+
feature
.
w
,
x
+
feature
.
x
+
x_off
);
anchors
[
7
]
=
integral
(
y
+
feature
.
w
,
x
+
feature
.
z
+
x_off
);
anchors
[
8
]
=
integral
(
y
+
y_off
+
feature
.
y
,
x
+
feature
.
x
);
anchors
[
9
]
=
integral
(
y
+
y_off
+
feature
.
y
,
x
+
feature
.
z
);
...
...
@@ -114,7 +110,7 @@ namespace cv { namespace gpu { namespace device {
// calculate feature
int
sum
=
anchors
[
5
]
-
anchors
[
6
]
-
anchors
[
9
]
+
anchors
[
10
];
uchar
response
=
((
(
anchors
[
0
]
-
anchors
[
1
]
-
anchors
[
4
]
+
anchors
[
5
])
>=
sum
)
?
128
:
0
)
int
response
=
((
(
anchors
[
0
]
-
anchors
[
1
]
-
anchors
[
4
]
+
anchors
[
5
])
>=
sum
)
?
128
:
0
)
|
((
(
anchors
[
1
]
-
anchors
[
2
]
-
anchors
[
5
]
+
anchors
[
6
])
>=
sum
)
?
64
:
0
)
|
((
(
anchors
[
2
]
-
anchors
[
3
]
-
anchors
[
6
]
+
anchors
[
7
])
>=
sum
)
?
32
:
0
)
|
((
(
anchors
[
6
]
-
anchors
[
7
]
-
anchors
[
10
]
+
anchors
[
11
])
>=
sum
)
?
16
:
0
)
...
...
@@ -122,11 +118,12 @@ namespace cv { namespace gpu { namespace device {
|
((
(
anchors
[
9
]
-
anchors
[
10
]
-
anchors
[
13
]
+
anchors
[
14
])
>=
sum
)
?
4
:
0
)
|
((
(
anchors
[
8
]
-
anchors
[
9
]
-
anchors
[
12
]
+
anchors
[
13
])
>=
sum
)
?
2
:
0
)
|
((
(
anchors
[
4
]
-
anchors
[
5
]
-
anchors
[
8
]
+
anchors
[
9
])
>=
sum
)
?
1
:
0
);
return
response
;
}
};
}
// lbp
}
}
}
// namespaces
#endif
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment