Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
a9df50ee
Commit
a9df50ee
authored
Nov 05, 2013
by
Rahul Kavi
Committed by
Maksim Shabunin
Aug 18, 2014
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated test for logistic regression
parent
b3b4e83a
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
87 additions
and
87 deletions
+87
-87
test_lr.cpp
modules/ml/test/test_lr.cpp
+87
-87
No files found.
modules/ml/test/test_lr.cpp
View file @
a9df50ee
...
@@ -94,35 +94,43 @@ void CV_LRTest::run( int /*start_from*/ )
...
@@ -94,35 +94,43 @@ void CV_LRTest::run( int /*start_from*/ )
// initialize varibles from the popular Iris Dataset
// initialize varibles from the popular Iris Dataset
Mat
data
=
(
Mat_
<
double
>
(
150
,
4
)
<<
Mat
data
=
(
Mat_
<
double
>
(
150
,
4
)
<<
5.1
,
3.5
,
1.4
,
0.2
,
4.9
,
3.0
,
1.4
,
0.2
,
4.7
,
3.2
,
1.3
,
0.2
,
4.6
,
3.1
,
1.5
,
0.2
,
5.1
,
3.5
,
1.4
,
0.2
,
4.9
,
3.0
,
1.4
,
0.2
,
4.7
,
3.2
,
1.3
,
0.2
,
4.6
,
3.1
,
1.5
,
0.2
,
5.0
,
3.6
,
1.4
,
0.2
,
5.4
,
3.9
,
1.7
,
0.4
,
4.6
,
3.4
,
1.4
,
0.3
,
5.0
,
3.4
,
1.5
,
0.2
,
4.4
,
2.9
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.0
,
3.6
,
1.4
,
0.2
,
5.4
,
3.9
,
1.7
,
0.4
,
4.6
,
3.4
,
1.4
,
0.3
,
5.0
,
3.4
,
1.5
,
0.2
,
5.4
,
3.7
,
1.5
,
0.2
,
4.8
,
3.4
,
1.6
,
0.2
,
4.8
,
3.0
,
1.4
,
0.1
,
4.3
,
3.0
,
1.1
,
0.1
,
5.8
,
4.0
,
1.2
,
0.2
,
5.7
,
4.4
,
1.5
,
0.4
,
4.4
,
2.9
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.4
,
3.7
,
1.5
,
0.2
,
4.8
,
3.4
,
1.6
,
0.2
,
5.4
,
3.9
,
1.3
,
0.4
,
5.1
,
3.5
,
1.4
,
0.3
,
5.7
,
3.8
,
1.7
,
0.3
,
5.1
,
3.8
,
1.5
,
0.3
,
5.4
,
3.4
,
1.7
,
0.2
,
5.1
,
3.7
,
1.5
,
0.4
,
4.8
,
3.0
,
1.4
,
0.1
,
4.3
,
3.0
,
1.1
,
0.1
,
5.8
,
4.0
,
1.2
,
0.2
,
5.7
,
4.4
,
1.5
,
0.4
,
4.6
,
3.6
,
1.0
,
0.2
,
5.1
,
3.3
,
1.7
,
0.5
,
4.8
,
3.4
,
1.9
,
0.2
,
5.0
,
3.0
,
1.6
,
0.2
,
5.0
,
3.4
,
1.6
,
0.4
,
5.4
,
3.9
,
1.3
,
0.4
,
5.1
,
3.5
,
1.4
,
0.3
,
5.7
,
3.8
,
1.7
,
0.3
,
5.1
,
3.8
,
1.5
,
0.3
,
5.2
,
3.5
,
1.5
,
0.2
,
5.2
,
3.4
,
1.4
,
0.2
,
4.7
,
3.2
,
1.6
,
0.2
,
4.8
,
3.1
,
1.6
,
0.2
,
5.4
,
3.4
,
1.5
,
0.4
,
5.4
,
3.4
,
1.7
,
0.2
,
5.1
,
3.7
,
1.5
,
0.4
,
4.6
,
3.6
,
1.0
,
0.2
,
5.1
,
3.3
,
1.7
,
0.5
,
5.2
,
4.1
,
1.5
,
0.1
,
5.5
,
4.2
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.0
,
3.2
,
1.2
,
0.2
,
5.5
,
3.5
,
1.3
,
0.2
,
4.8
,
3.4
,
1.9
,
0.2
,
5.0
,
3.0
,
1.6
,
0.2
,
5.0
,
3.4
,
1.6
,
0.4
,
5.2
,
3.5
,
1.5
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
4.4
,
3.0
,
1.3
,
0.2
,
5.1
,
3.4
,
1.5
,
0.2
,
5.0
,
3.5
,
1.3
,
0.3
,
4.5
,
2.3
,
1.3
,
0.3
,
5.2
,
3.4
,
1.4
,
0.2
,
4.7
,
3.2
,
1.6
,
0.2
,
4.8
,
3.1
,
1.6
,
0.2
,
5.4
,
3.4
,
1.5
,
0.4
,
4.4
,
3.2
,
1.3
,
0.2
,
5.0
,
3.5
,
1.6
,
0.6
,
5.1
,
3.8
,
1.9
,
0.4
,
4.8
,
3.0
,
1.4
,
0.3
,
5.1
,
3.8
,
1.6
,
0.2
,
5.2
,
4.1
,
1.5
,
0.1
,
5.5
,
4.2
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.0
,
3.2
,
1.2
,
0.2
,
4.6
,
3.2
,
1.4
,
0.2
,
5.3
,
3.7
,
1.5
,
0.2
,
5.0
,
3.3
,
1.4
,
0.2
,
7.0
,
3.2
,
4.7
,
1.4
,
6.4
,
3.2
,
4.5
,
1.5
,
5.5
,
3.5
,
1.3
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
4.4
,
3.0
,
1.3
,
0.2
,
5.1
,
3.4
,
1.5
,
0.2
,
6.9
,
3.1
,
4.9
,
1.5
,
5.5
,
2.3
,
4.0
,
1.3
,
6.5
,
2.8
,
4.6
,
1.5
,
5.7
,
2.8
,
4.5
,
1.3
,
6.3
,
3.3
,
4.7
,
1.6
,
5.0
,
3.5
,
1.3
,
0.3
,
4.5
,
2.3
,
1.3
,
0.3
,
4.4
,
3.2
,
1.3
,
0.2
,
5.0
,
3.5
,
1.6
,
0.6
,
4.9
,
2.4
,
3.3
,
1.0
,
6.6
,
2.9
,
4.6
,
1.3
,
5.2
,
2.7
,
3.9
,
1.4
,
5.0
,
2.0
,
3.5
,
1.0
,
5.9
,
3.0
,
4.2
,
1.5
,
5.1
,
3.8
,
1.9
,
0.4
,
4.8
,
3.0
,
1.4
,
0.3
,
5.1
,
3.8
,
1.6
,
0.2
,
4.6
,
3.2
,
1.4
,
0.2
,
6.0
,
2.2
,
4.0
,
1.0
,
6.1
,
2.9
,
4.7
,
1.4
,
5.6
,
2.9
,
3.6
,
1.3
,
6.7
,
3.1
,
4.4
,
1.4
,
5.6
,
3.0
,
4.5
,
1.5
,
5.3
,
3.7
,
1.5
,
0.2
,
5.0
,
3.3
,
1.4
,
0.2
,
7.0
,
3.2
,
4.7
,
1.4
,
6.4
,
3.2
,
4.5
,
1.5
,
5.8
,
2.7
,
4.1
,
1.0
,
6.2
,
2.2
,
4.5
,
1.5
,
5.6
,
2.5
,
3.9
,
1.1
,
5.9
,
3.2
,
4.8
,
1.8
,
6.1
,
2.8
,
4.0
,
1.3
,
6.9
,
3.1
,
4.9
,
1.5
,
5.5
,
2.3
,
4.0
,
1.3
,
6.5
,
2.8
,
4.6
,
1.5
,
5.7
,
2.8
,
4.5
,
1.3
,
6.3
,
2.5
,
4.9
,
1.5
,
6.1
,
2.8
,
4.7
,
1.2
,
6.4
,
2.9
,
4.3
,
1.3
,
6.6
,
3.0
,
4.4
,
1.4
,
6.8
,
2.8
,
4.8
,
1.4
,
6.3
,
3.3
,
4.7
,
1.6
,
4.9
,
2.4
,
3.3
,
1.0
,
6.6
,
2.9
,
4.6
,
1.3
,
5.2
,
2.7
,
3.9
,
1.4
,
6.7
,
3.0
,
5.0
,
1.7
,
6.0
,
2.9
,
4.5
,
1.5
,
5.7
,
2.6
,
3.5
,
1.0
,
5.5
,
2.4
,
3.8
,
1.1
,
5.5
,
2.4
,
3.7
,
1.0
,
5.0
,
2.0
,
3.5
,
1.0
,
5.9
,
3.0
,
4.2
,
1.5
,
6.0
,
2.2
,
4.0
,
1.0
,
6.1
,
2.9
,
4.7
,
1.4
,
5.8
,
2.7
,
3.9
,
1.2
,
6.0
,
2.7
,
5.1
,
1.6
,
5.4
,
3.0
,
4.5
,
1.5
,
6.0
,
3.4
,
4.5
,
1.6
,
6.7
,
3.1
,
4.7
,
1.5
,
5.6
,
2.9
,
3.6
,
1.3
,
6.7
,
3.1
,
4.4
,
1.4
,
5.6
,
3.0
,
4.5
,
1.5
,
5.8
,
2.7
,
4.1
,
1.0
,
6.3
,
2.3
,
4.4
,
1.3
,
5.6
,
3.0
,
4.1
,
1.3
,
5.5
,
2.5
,
4.0
,
1.3
,
5.5
,
2.6
,
4.4
,
1.2
,
6.1
,
3.0
,
4.6
,
1.4
,
6.2
,
2.2
,
4.5
,
1.5
,
5.6
,
2.5
,
3.9
,
1.1
,
5.9
,
3.2
,
4.8
,
1.8
,
6.1
,
2.8
,
4.0
,
1.3
,
5.8
,
2.6
,
4.0
,
1.2
,
5.0
,
2.3
,
3.3
,
1.0
,
5.6
,
2.7
,
4.2
,
1.3
,
5.7
,
3.0
,
4.2
,
1.2
,
5.7
,
2.9
,
4.2
,
1.3
,
6.3
,
2.5
,
4.9
,
1.5
,
6.1
,
2.8
,
4.7
,
1.2
,
6.4
,
2.9
,
4.3
,
1.3
,
6.6
,
3.0
,
4.4
,
1.4
,
6.2
,
2.9
,
4.3
,
1.3
,
5.1
,
2.5
,
3.0
,
1.1
,
5.7
,
2.8
,
4.1
,
1.3
,
6.3
,
3.3
,
6.0
,
2.5
,
5.8
,
2.7
,
5.1
,
1.9
,
6.8
,
2.8
,
4.8
,
1.4
,
6.7
,
3.0
,
5.0
,
1.7
,
6.0
,
2.9
,
4.5
,
1.5
,
5.7
,
2.6
,
3.5
,
1.0
,
7.1
,
3.0
,
5.9
,
2.1
,
6.3
,
2.9
,
5.6
,
1.8
,
6.5
,
3.0
,
5.8
,
2.2
,
7.6
,
3.0
,
6.6
,
2.1
,
4.9
,
2.5
,
4.5
,
1.7
,
5.5
,
2.4
,
3.8
,
1.1
,
5.5
,
2.4
,
3.7
,
1.0
,
5.8
,
2.7
,
3.9
,
1.2
,
6.0
,
2.7
,
5.1
,
1.6
,
7.3
,
2.9
,
6.3
,
1.8
,
6.7
,
2.5
,
5.8
,
1.8
,
7.2
,
3.6
,
6.1
,
2.5
,
6.5
,
3.2
,
5.1
,
2.0
,
6.4
,
2.7
,
5.3
,
1.9
,
5.4
,
3.0
,
4.5
,
1.5
,
6.0
,
3.4
,
4.5
,
1.6
,
6.7
,
3.1
,
4.7
,
1.5
,
6.3
,
2.3
,
4.4
,
1.3
,
6.8
,
3.0
,
5.5
,
2.1
,
5.7
,
2.5
,
5.0
,
2.0
,
5.8
,
2.8
,
5.1
,
2.4
,
6.4
,
3.2
,
5.3
,
2.3
,
6.5
,
3.0
,
5.5
,
1.8
,
5.6
,
3.0
,
4.1
,
1.3
,
5.5
,
2.5
,
4.0
,
1.3
,
5.5
,
2.6
,
4.4
,
1.2
,
6.1
,
3.0
,
4.6
,
1.4
,
7.7
,
3.8
,
6.7
,
2.2
,
7.7
,
2.6
,
6.9
,
2.3
,
6.0
,
2.2
,
5.0
,
1.5
,
6.9
,
3.2
,
5.7
,
2.3
,
5.6
,
2.8
,
4.9
,
2.0
,
5.8
,
2.6
,
4.0
,
1.2
,
5.0
,
2.3
,
3.3
,
1.0
,
5.6
,
2.7
,
4.2
,
1.3
,
5.7
,
3.0
,
4.2
,
1.2
,
7.7
,
2.8
,
6.7
,
2.0
,
6.3
,
2.7
,
4.9
,
1.8
,
6.7
,
3.3
,
5.7
,
2.1
,
7.2
,
3.2
,
6.0
,
1.8
,
6.2
,
2.8
,
4.8
,
1.8
,
5.7
,
2.9
,
4.2
,
1.3
,
6.2
,
2.9
,
4.3
,
1.3
,
5.1
,
2.5
,
3.0
,
1.1
,
5.7
,
2.8
,
4.1
,
1.3
,
6.1
,
3.0
,
4.9
,
1.8
,
6.4
,
2.8
,
5.6
,
2.1
,
7.2
,
3.0
,
5.8
,
1.6
,
7.4
,
2.8
,
6.1
,
1.9
,
7.9
,
3.8
,
6.4
,
2.0
,
6.3
,
3.3
,
6.0
,
2.5
,
5.8
,
2.7
,
5.1
,
1.9
,
7.1
,
3.0
,
5.9
,
2.1
,
6.3
,
2.9
,
5.6
,
1.8
,
6.4
,
2.8
,
5.6
,
2.2
,
6.3
,
2.8
,
5.1
,
1.5
,
6.1
,
2.6
,
5.6
,
1.4
,
7.7
,
3.0
,
6.1
,
2.3
,
6.3
,
3.4
,
5.6
,
2.4
,
6.5
,
3.0
,
5.8
,
2.2
,
7.6
,
3.0
,
6.6
,
2.1
,
4.9
,
2.5
,
4.5
,
1.7
,
7.3
,
2.9
,
6.3
,
1.8
,
6.4
,
3.1
,
5.5
,
1.8
,
6.0
,
3.0
,
4.8
,
1.8
,
6.9
,
3.1
,
5.4
,
2.1
,
6.7
,
3.1
,
5.6
,
2.4
,
6.9
,
3.1
,
5.1
,
2.3
,
6.7
,
2.5
,
5.8
,
1.8
,
7.2
,
3.6
,
6.1
,
2.5
,
6.5
,
3.2
,
5.1
,
2.0
,
6.4
,
2.7
,
5.3
,
1.9
,
5.8
,
2.7
,
5.1
,
1.9
,
6.8
,
3.2
,
5.9
,
2.3
,
6.7
,
3.3
,
5.7
,
2.5
,
6.7
,
3.0
,
5.2
,
2.3
,
6.3
,
2.5
,
5.0
,
1.9
,
6.8
,
3.0
,
5.5
,
2.1
,
5.7
,
2.5
,
5.0
,
2.0
,
5.8
,
2.8
,
5.1
,
2.4
,
6.4
,
3.2
,
5.3
,
2.3
,
6.5
,
3.0
,
5.2
,
2.0
,
6.2
,
3.4
,
5.4
,
2.3
,
5.9
,
3.0
,
5.1
,
1.8
);
6.5
,
3.0
,
5.5
,
1.8
,
7.7
,
3.8
,
6.7
,
2.2
,
7.7
,
2.6
,
6.9
,
2.3
,
6.0
,
2.2
,
5.0
,
1.5
,
6.9
,
3.2
,
5.7
,
2.3
,
5.6
,
2.8
,
4.9
,
2.0
,
7.7
,
2.8
,
6.7
,
2.0
,
6.3
,
2.7
,
4.9
,
1.8
,
6.7
,
3.3
,
5.7
,
2.1
,
7.2
,
3.2
,
6.0
,
1.8
,
6.2
,
2.8
,
4.8
,
1.8
,
6.1
,
3.0
,
4.9
,
1.8
,
6.4
,
2.8
,
5.6
,
2.1
,
7.2
,
3.0
,
5.8
,
1.6
,
7.4
,
2.8
,
6.1
,
1.9
,
7.9
,
3.8
,
6.4
,
2.0
,
6.4
,
2.8
,
5.6
,
2.2
,
6.3
,
2.8
,
5.1
,
1.5
,
6.1
,
2.6
,
5.6
,
1.4
,
7.7
,
3.0
,
6.1
,
2.3
,
6.3
,
3.4
,
5.6
,
2.4
,
6.4
,
3.1
,
5.5
,
1.8
,
6.0
,
3.0
,
4.8
,
1.8
,
6.9
,
3.1
,
5.4
,
2.1
,
6.7
,
3.1
,
5.6
,
2.4
,
6.9
,
3.1
,
5.1
,
2.3
,
5.8
,
2.7
,
5.1
,
1.9
,
6.8
,
3.2
,
5.9
,
2.3
,
6.7
,
3.3
,
5.7
,
2.5
,
6.7
,
3.0
,
5.2
,
2.3
,
6.3
,
2.5
,
5.0
,
1.9
,
6.5
,
3.0
,
5.2
,
2.0
,
6.2
,
3.4
,
5.4
,
2.3
,
5.9
,
3.0
,
5.1
,
1.8
);
Mat
labels
=
(
Mat_
<
int
>
(
150
,
1
)
<<
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
Mat
labels
=
(
Mat_
<
int
>
(
150
,
1
)
<<
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
...
@@ -136,7 +144,6 @@ void CV_LRTest::run( int /*start_from*/ )
...
@@ -136,7 +144,6 @@ void CV_LRTest::run( int /*start_from*/ )
float
error
=
0.0
f
;
float
error
=
0.0
f
;
LogisticRegressionParams
params1
=
LogisticRegressionParams
();
LogisticRegressionParams
params1
=
LogisticRegressionParams
();
LogisticRegressionParams
params2
=
LogisticRegressionParams
();
params1
.
alpha
=
1.0
;
params1
.
alpha
=
1.0
;
params1
.
num_iters
=
10001
;
params1
.
num_iters
=
10001
;
...
@@ -167,31 +174,6 @@ void CV_LRTest::run( int /*start_from*/ )
...
@@ -167,31 +174,6 @@ void CV_LRTest::run( int /*start_from*/ )
test_code
=
cvtest
::
TS
::
FAIL_BAD_ACCURACY
;
test_code
=
cvtest
::
TS
::
FAIL_BAD_ACCURACY
;
}
}
params2
.
alpha
=
1.0
;
params2
.
num_iters
=
9000
;
params2
.
norm
=
LogisticRegression
::
REG_L2
;
params2
.
regularized
=
1
;
params2
.
train_method
=
LogisticRegression
::
MINI_BATCH
;
params2
.
mini_batch_size
=
10
;
// now train using mini batch gradient descent
LogisticRegression
lr2
(
data
,
labels
,
params2
);
lr2
.
predict
(
data
,
responses2
);
responses2
.
convertTo
(
responses2
,
CV_32S
);
//calculate error
if
(
!
calculateError
(
responses2
,
labels
,
error
))
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad prediction labels
\n
"
);
test_code
=
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
;
}
else
if
(
error
>
0.06
f
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad accuracy of (%f)
\n
"
,
error
);
test_code
=
cvtest
::
TS
::
FAIL_BAD_ACCURACY
;
}
ts
->
set_failed_test_info
(
test_code
);
ts
->
set_failed_test_info
(
test_code
);
}
}
...
@@ -213,35 +195,43 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
...
@@ -213,35 +195,43 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
// initialize varibles from the popular Iris Dataset
// initialize varibles from the popular Iris Dataset
Mat
data
=
(
Mat_
<
double
>
(
150
,
4
)
<<
Mat
data
=
(
Mat_
<
double
>
(
150
,
4
)
<<
5.1
,
3.5
,
1.4
,
0.2
,
4.9
,
3.0
,
1.4
,
0.2
,
4.7
,
3.2
,
1.3
,
0.2
,
4.6
,
3.1
,
1.5
,
0.2
,
5.1
,
3.5
,
1.4
,
0.2
,
4.9
,
3.0
,
1.4
,
0.2
,
4.7
,
3.2
,
1.3
,
0.2
,
4.6
,
3.1
,
1.5
,
0.2
,
5.0
,
3.6
,
1.4
,
0.2
,
5.4
,
3.9
,
1.7
,
0.4
,
4.6
,
3.4
,
1.4
,
0.3
,
5.0
,
3.4
,
1.5
,
0.2
,
4.4
,
2.9
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.0
,
3.6
,
1.4
,
0.2
,
5.4
,
3.9
,
1.7
,
0.4
,
4.6
,
3.4
,
1.4
,
0.3
,
5.0
,
3.4
,
1.5
,
0.2
,
5.4
,
3.7
,
1.5
,
0.2
,
4.8
,
3.4
,
1.6
,
0.2
,
4.8
,
3.0
,
1.4
,
0.1
,
4.3
,
3.0
,
1.1
,
0.1
,
5.8
,
4.0
,
1.2
,
0.2
,
5.7
,
4.4
,
1.5
,
0.4
,
4.4
,
2.9
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.4
,
3.7
,
1.5
,
0.2
,
4.8
,
3.4
,
1.6
,
0.2
,
5.4
,
3.9
,
1.3
,
0.4
,
5.1
,
3.5
,
1.4
,
0.3
,
5.7
,
3.8
,
1.7
,
0.3
,
5.1
,
3.8
,
1.5
,
0.3
,
5.4
,
3.4
,
1.7
,
0.2
,
5.1
,
3.7
,
1.5
,
0.4
,
4.8
,
3.0
,
1.4
,
0.1
,
4.3
,
3.0
,
1.1
,
0.1
,
5.8
,
4.0
,
1.2
,
0.2
,
5.7
,
4.4
,
1.5
,
0.4
,
4.6
,
3.6
,
1.0
,
0.2
,
5.1
,
3.3
,
1.7
,
0.5
,
4.8
,
3.4
,
1.9
,
0.2
,
5.0
,
3.0
,
1.6
,
0.2
,
5.0
,
3.4
,
1.6
,
0.4
,
5.4
,
3.9
,
1.3
,
0.4
,
5.1
,
3.5
,
1.4
,
0.3
,
5.7
,
3.8
,
1.7
,
0.3
,
5.1
,
3.8
,
1.5
,
0.3
,
5.2
,
3.5
,
1.5
,
0.2
,
5.2
,
3.4
,
1.4
,
0.2
,
4.7
,
3.2
,
1.6
,
0.2
,
4.8
,
3.1
,
1.6
,
0.2
,
5.4
,
3.4
,
1.5
,
0.4
,
5.4
,
3.4
,
1.7
,
0.2
,
5.1
,
3.7
,
1.5
,
0.4
,
4.6
,
3.6
,
1.0
,
0.2
,
5.1
,
3.3
,
1.7
,
0.5
,
5.2
,
4.1
,
1.5
,
0.1
,
5.5
,
4.2
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.0
,
3.2
,
1.2
,
0.2
,
5.5
,
3.5
,
1.3
,
0.2
,
4.8
,
3.4
,
1.9
,
0.2
,
5.0
,
3.0
,
1.6
,
0.2
,
5.0
,
3.4
,
1.6
,
0.4
,
5.2
,
3.5
,
1.5
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
4.4
,
3.0
,
1.3
,
0.2
,
5.1
,
3.4
,
1.5
,
0.2
,
5.0
,
3.5
,
1.3
,
0.3
,
4.5
,
2.3
,
1.3
,
0.3
,
5.2
,
3.4
,
1.4
,
0.2
,
4.7
,
3.2
,
1.6
,
0.2
,
4.8
,
3.1
,
1.6
,
0.2
,
5.4
,
3.4
,
1.5
,
0.4
,
4.4
,
3.2
,
1.3
,
0.2
,
5.0
,
3.5
,
1.6
,
0.6
,
5.1
,
3.8
,
1.9
,
0.4
,
4.8
,
3.0
,
1.4
,
0.3
,
5.1
,
3.8
,
1.6
,
0.2
,
5.2
,
4.1
,
1.5
,
0.1
,
5.5
,
4.2
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.0
,
3.2
,
1.2
,
0.2
,
4.6
,
3.2
,
1.4
,
0.2
,
5.3
,
3.7
,
1.5
,
0.2
,
5.0
,
3.3
,
1.4
,
0.2
,
7.0
,
3.2
,
4.7
,
1.4
,
6.4
,
3.2
,
4.5
,
1.5
,
5.5
,
3.5
,
1.3
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
4.4
,
3.0
,
1.3
,
0.2
,
5.1
,
3.4
,
1.5
,
0.2
,
6.9
,
3.1
,
4.9
,
1.5
,
5.5
,
2.3
,
4.0
,
1.3
,
6.5
,
2.8
,
4.6
,
1.5
,
5.7
,
2.8
,
4.5
,
1.3
,
6.3
,
3.3
,
4.7
,
1.6
,
5.0
,
3.5
,
1.3
,
0.3
,
4.5
,
2.3
,
1.3
,
0.3
,
4.4
,
3.2
,
1.3
,
0.2
,
5.0
,
3.5
,
1.6
,
0.6
,
4.9
,
2.4
,
3.3
,
1.0
,
6.6
,
2.9
,
4.6
,
1.3
,
5.2
,
2.7
,
3.9
,
1.4
,
5.0
,
2.0
,
3.5
,
1.0
,
5.9
,
3.0
,
4.2
,
1.5
,
5.1
,
3.8
,
1.9
,
0.4
,
4.8
,
3.0
,
1.4
,
0.3
,
5.1
,
3.8
,
1.6
,
0.2
,
4.6
,
3.2
,
1.4
,
0.2
,
6.0
,
2.2
,
4.0
,
1.0
,
6.1
,
2.9
,
4.7
,
1.4
,
5.6
,
2.9
,
3.6
,
1.3
,
6.7
,
3.1
,
4.4
,
1.4
,
5.6
,
3.0
,
4.5
,
1.5
,
5.3
,
3.7
,
1.5
,
0.2
,
5.0
,
3.3
,
1.4
,
0.2
,
7.0
,
3.2
,
4.7
,
1.4
,
6.4
,
3.2
,
4.5
,
1.5
,
5.8
,
2.7
,
4.1
,
1.0
,
6.2
,
2.2
,
4.5
,
1.5
,
5.6
,
2.5
,
3.9
,
1.1
,
5.9
,
3.2
,
4.8
,
1.8
,
6.1
,
2.8
,
4.0
,
1.3
,
6.9
,
3.1
,
4.9
,
1.5
,
5.5
,
2.3
,
4.0
,
1.3
,
6.5
,
2.8
,
4.6
,
1.5
,
5.7
,
2.8
,
4.5
,
1.3
,
6.3
,
2.5
,
4.9
,
1.5
,
6.1
,
2.8
,
4.7
,
1.2
,
6.4
,
2.9
,
4.3
,
1.3
,
6.6
,
3.0
,
4.4
,
1.4
,
6.8
,
2.8
,
4.8
,
1.4
,
6.3
,
3.3
,
4.7
,
1.6
,
4.9
,
2.4
,
3.3
,
1.0
,
6.6
,
2.9
,
4.6
,
1.3
,
5.2
,
2.7
,
3.9
,
1.4
,
6.7
,
3.0
,
5.0
,
1.7
,
6.0
,
2.9
,
4.5
,
1.5
,
5.7
,
2.6
,
3.5
,
1.0
,
5.5
,
2.4
,
3.8
,
1.1
,
5.5
,
2.4
,
3.7
,
1.0
,
5.0
,
2.0
,
3.5
,
1.0
,
5.9
,
3.0
,
4.2
,
1.5
,
6.0
,
2.2
,
4.0
,
1.0
,
6.1
,
2.9
,
4.7
,
1.4
,
5.8
,
2.7
,
3.9
,
1.2
,
6.0
,
2.7
,
5.1
,
1.6
,
5.4
,
3.0
,
4.5
,
1.5
,
6.0
,
3.4
,
4.5
,
1.6
,
6.7
,
3.1
,
4.7
,
1.5
,
5.6
,
2.9
,
3.6
,
1.3
,
6.7
,
3.1
,
4.4
,
1.4
,
5.6
,
3.0
,
4.5
,
1.5
,
5.8
,
2.7
,
4.1
,
1.0
,
6.3
,
2.3
,
4.4
,
1.3
,
5.6
,
3.0
,
4.1
,
1.3
,
5.5
,
2.5
,
4.0
,
1.3
,
5.5
,
2.6
,
4.4
,
1.2
,
6.1
,
3.0
,
4.6
,
1.4
,
6.2
,
2.2
,
4.5
,
1.5
,
5.6
,
2.5
,
3.9
,
1.1
,
5.9
,
3.2
,
4.8
,
1.8
,
6.1
,
2.8
,
4.0
,
1.3
,
5.8
,
2.6
,
4.0
,
1.2
,
5.0
,
2.3
,
3.3
,
1.0
,
5.6
,
2.7
,
4.2
,
1.3
,
5.7
,
3.0
,
4.2
,
1.2
,
5.7
,
2.9
,
4.2
,
1.3
,
6.3
,
2.5
,
4.9
,
1.5
,
6.1
,
2.8
,
4.7
,
1.2
,
6.4
,
2.9
,
4.3
,
1.3
,
6.6
,
3.0
,
4.4
,
1.4
,
6.2
,
2.9
,
4.3
,
1.3
,
5.1
,
2.5
,
3.0
,
1.1
,
5.7
,
2.8
,
4.1
,
1.3
,
6.3
,
3.3
,
6.0
,
2.5
,
5.8
,
2.7
,
5.1
,
1.9
,
6.8
,
2.8
,
4.8
,
1.4
,
6.7
,
3.0
,
5.0
,
1.7
,
6.0
,
2.9
,
4.5
,
1.5
,
5.7
,
2.6
,
3.5
,
1.0
,
7.1
,
3.0
,
5.9
,
2.1
,
6.3
,
2.9
,
5.6
,
1.8
,
6.5
,
3.0
,
5.8
,
2.2
,
7.6
,
3.0
,
6.6
,
2.1
,
4.9
,
2.5
,
4.5
,
1.7
,
5.5
,
2.4
,
3.8
,
1.1
,
5.5
,
2.4
,
3.7
,
1.0
,
5.8
,
2.7
,
3.9
,
1.2
,
6.0
,
2.7
,
5.1
,
1.6
,
7.3
,
2.9
,
6.3
,
1.8
,
6.7
,
2.5
,
5.8
,
1.8
,
7.2
,
3.6
,
6.1
,
2.5
,
6.5
,
3.2
,
5.1
,
2.0
,
6.4
,
2.7
,
5.3
,
1.9
,
5.4
,
3.0
,
4.5
,
1.5
,
6.0
,
3.4
,
4.5
,
1.6
,
6.7
,
3.1
,
4.7
,
1.5
,
6.3
,
2.3
,
4.4
,
1.3
,
6.8
,
3.0
,
5.5
,
2.1
,
5.7
,
2.5
,
5.0
,
2.0
,
5.8
,
2.8
,
5.1
,
2.4
,
6.4
,
3.2
,
5.3
,
2.3
,
6.5
,
3.0
,
5.5
,
1.8
,
5.6
,
3.0
,
4.1
,
1.3
,
5.5
,
2.5
,
4.0
,
1.3
,
5.5
,
2.6
,
4.4
,
1.2
,
6.1
,
3.0
,
4.6
,
1.4
,
7.7
,
3.8
,
6.7
,
2.2
,
7.7
,
2.6
,
6.9
,
2.3
,
6.0
,
2.2
,
5.0
,
1.5
,
6.9
,
3.2
,
5.7
,
2.3
,
5.6
,
2.8
,
4.9
,
2.0
,
5.8
,
2.6
,
4.0
,
1.2
,
5.0
,
2.3
,
3.3
,
1.0
,
5.6
,
2.7
,
4.2
,
1.3
,
5.7
,
3.0
,
4.2
,
1.2
,
7.7
,
2.8
,
6.7
,
2.0
,
6.3
,
2.7
,
4.9
,
1.8
,
6.7
,
3.3
,
5.7
,
2.1
,
7.2
,
3.2
,
6.0
,
1.8
,
6.2
,
2.8
,
4.8
,
1.8
,
5.7
,
2.9
,
4.2
,
1.3
,
6.2
,
2.9
,
4.3
,
1.3
,
5.1
,
2.5
,
3.0
,
1.1
,
5.7
,
2.8
,
4.1
,
1.3
,
6.1
,
3.0
,
4.9
,
1.8
,
6.4
,
2.8
,
5.6
,
2.1
,
7.2
,
3.0
,
5.8
,
1.6
,
7.4
,
2.8
,
6.1
,
1.9
,
7.9
,
3.8
,
6.4
,
2.0
,
6.3
,
3.3
,
6.0
,
2.5
,
5.8
,
2.7
,
5.1
,
1.9
,
7.1
,
3.0
,
5.9
,
2.1
,
6.3
,
2.9
,
5.6
,
1.8
,
6.4
,
2.8
,
5.6
,
2.2
,
6.3
,
2.8
,
5.1
,
1.5
,
6.1
,
2.6
,
5.6
,
1.4
,
7.7
,
3.0
,
6.1
,
2.3
,
6.3
,
3.4
,
5.6
,
2.4
,
6.5
,
3.0
,
5.8
,
2.2
,
7.6
,
3.0
,
6.6
,
2.1
,
4.9
,
2.5
,
4.5
,
1.7
,
7.3
,
2.9
,
6.3
,
1.8
,
6.4
,
3.1
,
5.5
,
1.8
,
6.0
,
3.0
,
4.8
,
1.8
,
6.9
,
3.1
,
5.4
,
2.1
,
6.7
,
3.1
,
5.6
,
2.4
,
6.9
,
3.1
,
5.1
,
2.3
,
6.7
,
2.5
,
5.8
,
1.8
,
7.2
,
3.6
,
6.1
,
2.5
,
6.5
,
3.2
,
5.1
,
2.0
,
6.4
,
2.7
,
5.3
,
1.9
,
5.8
,
2.7
,
5.1
,
1.9
,
6.8
,
3.2
,
5.9
,
2.3
,
6.7
,
3.3
,
5.7
,
2.5
,
6.7
,
3.0
,
5.2
,
2.3
,
6.3
,
2.5
,
5.0
,
1.9
,
6.8
,
3.0
,
5.5
,
2.1
,
5.7
,
2.5
,
5.0
,
2.0
,
5.8
,
2.8
,
5.1
,
2.4
,
6.4
,
3.2
,
5.3
,
2.3
,
6.5
,
3.0
,
5.2
,
2.0
,
6.2
,
3.4
,
5.4
,
2.3
,
5.9
,
3.0
,
5.1
,
1.8
);
6.5
,
3.0
,
5.5
,
1.8
,
7.7
,
3.8
,
6.7
,
2.2
,
7.7
,
2.6
,
6.9
,
2.3
,
6.0
,
2.2
,
5.0
,
1.5
,
6.9
,
3.2
,
5.7
,
2.3
,
5.6
,
2.8
,
4.9
,
2.0
,
7.7
,
2.8
,
6.7
,
2.0
,
6.3
,
2.7
,
4.9
,
1.8
,
6.7
,
3.3
,
5.7
,
2.1
,
7.2
,
3.2
,
6.0
,
1.8
,
6.2
,
2.8
,
4.8
,
1.8
,
6.1
,
3.0
,
4.9
,
1.8
,
6.4
,
2.8
,
5.6
,
2.1
,
7.2
,
3.0
,
5.8
,
1.6
,
7.4
,
2.8
,
6.1
,
1.9
,
7.9
,
3.8
,
6.4
,
2.0
,
6.4
,
2.8
,
5.6
,
2.2
,
6.3
,
2.8
,
5.1
,
1.5
,
6.1
,
2.6
,
5.6
,
1.4
,
7.7
,
3.0
,
6.1
,
2.3
,
6.3
,
3.4
,
5.6
,
2.4
,
6.4
,
3.1
,
5.5
,
1.8
,
6.0
,
3.0
,
4.8
,
1.8
,
6.9
,
3.1
,
5.4
,
2.1
,
6.7
,
3.1
,
5.6
,
2.4
,
6.9
,
3.1
,
5.1
,
2.3
,
5.8
,
2.7
,
5.1
,
1.9
,
6.8
,
3.2
,
5.9
,
2.3
,
6.7
,
3.3
,
5.7
,
2.5
,
6.7
,
3.0
,
5.2
,
2.3
,
6.3
,
2.5
,
5.0
,
1.9
,
6.5
,
3.0
,
5.2
,
2.0
,
6.2
,
3.4
,
5.4
,
2.3
,
5.9
,
3.0
,
5.1
,
1.8
);
Mat
labels
=
(
Mat_
<
int
>
(
150
,
1
)
<<
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
Mat
labels
=
(
Mat_
<
int
>
(
150
,
1
)
<<
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
...
@@ -260,6 +250,7 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
...
@@ -260,6 +250,7 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
float
errorCount
=
0.0
;
float
errorCount
=
0.0
;
LogisticRegressionParams
params1
=
LogisticRegressionParams
();
LogisticRegressionParams
params1
=
LogisticRegressionParams
();
LogisticRegressionParams
params2
=
LogisticRegressionParams
();
params1
.
alpha
=
1.0
;
params1
.
alpha
=
1.0
;
params1
.
num_iters
=
10001
;
params1
.
num_iters
=
10001
;
...
@@ -273,7 +264,7 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
...
@@ -273,7 +264,7 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
// run LR classifier train classifier
// run LR classifier train classifier
LogisticRegression
lr1
(
data
,
labels
,
params1
);
LogisticRegression
lr1
(
data
,
labels
,
params1
);
LogisticRegression
lr2
;
LogisticRegression
lr2
(
params2
)
;
learnt_mat1
=
lr1
.
get_learnt_thetas
();
learnt_mat1
=
lr1
.
get_learnt_thetas
();
lr1
.
predict
(
data
,
responses1
);
lr1
.
predict
(
data
,
responses1
);
...
@@ -282,7 +273,11 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
...
@@ -282,7 +273,11 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
string
filename
=
cv
::
tempfile
(
".xml"
);
string
filename
=
cv
::
tempfile
(
".xml"
);
try
try
{
{
lr1
.
save
(
filename
.
c_str
());
//lr1.save(filename.c_str());
FileStorage
fs
;
fs
.
open
(
filename
.
c_str
(),
FileStorage
::
WRITE
);
lr1
.
write
(
fs
);
fs
.
release
();
}
}
catch
(...)
catch
(...)
...
@@ -293,7 +288,12 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
...
@@ -293,7 +288,12 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
try
try
{
{
lr2
.
load
(
filename
.
c_str
());
//lr2.load(filename.c_str());
FileStorage
fs
;
fs
.
open
(
filename
.
c_str
(),
FileStorage
::
READ
);
FileNode
fn
=
fs
.
root
();
lr2
.
read
(
fn
);
fs
.
release
();
}
}
catch
(...)
catch
(...)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment