Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
a8c3431e
Commit
a8c3431e
authored
Dec 06, 2012
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
set parameters
parent
f6e3e3f0
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
66 additions
and
3 deletions
+66
-3
octave.hpp
apps/sft/include/sft/octave.hpp
+1
-0
octave.cpp
apps/sft/octave.cpp
+64
-2
sft.cpp
apps/sft/sft.cpp
+1
-1
No files found.
apps/sft/include/sft/octave.hpp
View file @
a8c3431e
...
...
@@ -84,6 +84,7 @@ public:
FeaturePool
(
cv
::
Size
model
,
int
nfeatures
);
~
FeaturePool
();
int
size
()
const
{
return
(
int
)
pool
.
size
();
}
float
apply
(
int
fi
,
int
si
,
const
Mat
&
integrals
)
const
;
private
:
void
fill
(
int
desired
);
...
...
apps/sft/octave.cpp
View file @
a8c3431e
...
...
@@ -70,8 +70,30 @@ sft::Octave::~Octave(){}
bool
sft
::
Octave
::
train
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
_responses
,
const
cv
::
Mat
&
varIdx
,
const
cv
::
Mat
&
sampleIdx
,
const
cv
::
Mat
&
varType
,
const
cv
::
Mat
&
missingDataMask
)
{
CvBoostParams
_params
;
{
// tree params
_params
.
max_categories
=
10
;
_params
.
max_depth
=
2
;
_params
.
cv_folds
=
0
;
_params
.
truncate_pruned_tree
=
false
;
_params
.
use_surrogates
=
false
;
_params
.
use_1se_rule
=
false
;
_params
.
regression_accuracy
=
0.0
;
// boost params
_params
.
boost_type
=
CvBoost
::
GENTLE
;
_params
.
split_criteria
=
CvBoost
::
SQERR
;
_params
.
weight_trim_rate
=
0.95
;
/// ToDo: move to params
_params
.
min_sample_count
=
2
;
_params
.
weak_count
=
1
;
}
bool
update
=
false
;
return
cv
::
Boost
::
train
(
trainData
,
CV_COL_SAMPLE
,
_responses
,
varIdx
,
sampleIdx
,
varType
,
missingDataMask
,
params
,
return
cv
::
Boost
::
train
(
trainData
,
CV_COL_SAMPLE
,
_responses
,
varIdx
,
sampleIdx
,
varType
,
missingDataMask
,
_
params
,
update
);
}
...
...
@@ -224,7 +246,42 @@ bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool)
processPositives
(
dataset
,
pool
);
generateNegatives
(
dataset
);
return
false
;
// 2. only sumple case (all features used)
int
nfeatures
=
pool
.
size
();
cv
::
Mat
varIdx
(
1
,
nfeatures
,
CV_32SC1
);
int
*
ptr
=
varIdx
.
ptr
<
int
>
(
0
);
for
(
int
x
=
0
;
x
<
nfeatures
;
++
x
)
ptr
[
x
]
=
x
;
// 3. only sumple case (all samples used)
int
nsamples
=
npositives
+
nnegatives
;
cv
::
Mat
sampleIdx
(
1
,
nsamples
,
CV_32SC1
);
ptr
=
varIdx
.
ptr
<
int
>
(
0
);
for
(
int
x
=
0
;
x
<
nsamples
;
++
x
)
ptr
[
x
]
=
x
;
// 4. ICF has an orderable responce.
cv
::
Mat
varType
(
1
,
nfeatures
+
1
,
CV_8UC1
);
uchar
*
uptr
=
varType
.
ptr
<
uchar
>
(
0
);
for
(
int
x
=
0
;
x
<
nfeatures
;
++
x
)
uptr
[
x
]
=
CV_VAR_ORDERED
;
uptr
[
nfeatures
]
=
CV_VAR_CATEGORICAL
;
cv
::
Mat
trainData
(
nfeatures
,
nsamples
,
CV_32FC1
);
for
(
int
fi
=
0
;
fi
<
nfeatures
;
++
fi
)
{
float
*
dptr
=
trainData
.
ptr
<
float
>
(
fi
);
for
(
int
si
=
0
;
si
<
nsamples
;
++
si
)
{
dptr
[
si
]
=
pool
.
apply
(
fi
,
si
,
integrals
);
}
}
cv
::
Mat
missingMask
;
return
train
(
trainData
,
responses
,
varIdx
,
sampleIdx
,
varType
,
missingMask
);
}
...
...
@@ -237,6 +294,11 @@ sft::FeaturePool::FeaturePool(cv::Size m, int n) : model(m), nfeatures(n)
sft
::
FeaturePool
::~
FeaturePool
(){}
float
sft
::
FeaturePool
::
apply
(
int
fi
,
int
si
,
const
Mat
&
integrals
)
const
{
return
0.
f
;
}
void
sft
::
FeaturePool
::
fill
(
int
desired
)
{
...
...
apps/sft/sft.cpp
View file @
a8c3431e
...
...
@@ -73,7 +73,7 @@ int main(int argc, char** argv)
for
(
int
y
=
0
;
y
<
nfeatures
;
++
y
)
for
(
int
x
=
0
;
x
<
nsamples
;
++
x
)
train_data
.
at
<
float
>
(
y
,
x
)
=
rng
.
uniform
(
0.
f
,
1.
f
);
// +
int
tflag
=
CV_COL_SAMPLE
;
cv
::
Mat
responses
(
nsamples
,
1
,
CV_32FC1
);
for
(
int
y
=
0
;
y
<
nsamples
;
++
y
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment