Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
a3ec2ac3
Commit
a3ec2ac3
authored
Dec 04, 2017
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #10176 from sturkmen72:update_train_hog
parents
69830b18
2aa38075
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
84 additions
and
68 deletions
+84
-68
train_HOG.cpp
samples/cpp/train_HOG.cpp
+84
-68
No files found.
samples/cpp/train_HOG.cpp
View file @
a3ec2ac3
...
...
@@ -10,14 +10,14 @@ using namespace cv;
using
namespace
cv
::
ml
;
using
namespace
std
;
v
oid
get_svm_detector
(
const
Ptr
<
SVM
>
&
svm
,
vector
<
float
>
&
hog_detector
);
v
ector
<
float
>
get_svm_detector
(
const
Ptr
<
SVM
>&
svm
);
void
convert_to_ml
(
const
std
::
vector
<
Mat
>
&
train_samples
,
Mat
&
trainData
);
void
load_images
(
const
String
&
dirname
,
vector
<
Mat
>
&
img_lst
,
bool
showImages
);
void
sample_neg
(
const
vector
<
Mat
>
&
full_neg_lst
,
vector
<
Mat
>
&
neg_lst
,
const
Size
&
size
);
void
computeHOGs
(
const
Size
wsize
,
const
vector
<
Mat
>
&
img_lst
,
vector
<
Mat
>
&
gradient_lst
);
int
test_trained_detector
(
String
obj_det_filename
,
String
test_dir
,
String
videofilename
);
void
computeHOGs
(
const
Size
wsize
,
const
vector
<
Mat
>
&
img_lst
,
vector
<
Mat
>
&
gradient_lst
,
bool
use_flip
);
void
test_trained_detector
(
String
obj_det_filename
,
String
test_dir
,
String
videofilename
);
v
oid
get_svm_detector
(
const
Ptr
<
SVM
>&
svm
,
vector
<
float
>
&
hog_detector
)
v
ector
<
float
>
get_svm_detector
(
const
Ptr
<
SVM
>&
svm
)
{
// get the support vectors
Mat
sv
=
svm
->
getSupportVectors
();
...
...
@@ -30,11 +30,11 @@ void get_svm_detector( const Ptr< SVM >& svm, vector< float > & hog_detector )
CV_Assert
(
(
alpha
.
type
()
==
CV_64F
&&
alpha
.
at
<
double
>
(
0
)
==
1.
)
||
(
alpha
.
type
()
==
CV_32F
&&
alpha
.
at
<
float
>
(
0
)
==
1.
f
)
);
CV_Assert
(
sv
.
type
()
==
CV_32F
);
hog_detector
.
clear
();
hog_detector
.
resize
(
sv
.
cols
+
1
);
vector
<
float
>
hog_detector
(
sv
.
cols
+
1
);
memcpy
(
&
hog_detector
[
0
],
sv
.
ptr
(),
sv
.
cols
*
sizeof
(
hog_detector
[
0
]
)
);
hog_detector
[
sv
.
cols
]
=
(
float
)
-
rho
;
return
hog_detector
;
}
/*
...
...
@@ -101,35 +101,44 @@ void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, co
srand
(
(
unsigned
int
)
time
(
NULL
)
);
for
(
size_t
i
=
0
;
i
<
full_neg_lst
.
size
();
i
++
)
{
box
.
x
=
rand
()
%
(
full_neg_lst
[
i
].
cols
-
size_x
);
box
.
y
=
rand
()
%
(
full_neg_lst
[
i
].
rows
-
size_y
);
Mat
roi
=
full_neg_lst
[
i
](
box
);
neg_lst
.
push_back
(
roi
.
clone
()
);
}
if
(
full_neg_lst
[
i
].
cols
>=
box
.
width
&&
full_neg_lst
[
i
].
rows
>=
box
.
height
)
{
box
.
x
=
rand
()
%
(
full_neg_lst
[
i
].
cols
-
size_x
);
box
.
y
=
rand
()
%
(
full_neg_lst
[
i
].
rows
-
size_y
);
Mat
roi
=
full_neg_lst
[
i
](
box
);
neg_lst
.
push_back
(
roi
.
clone
()
);
}
}
void
computeHOGs
(
const
Size
wsize
,
const
vector
<
Mat
>
&
img_lst
,
vector
<
Mat
>
&
gradient_lst
)
void
computeHOGs
(
const
Size
wsize
,
const
vector
<
Mat
>
&
img_lst
,
vector
<
Mat
>
&
gradient_lst
,
bool
use_flip
)
{
HOGDescriptor
hog
;
hog
.
winSize
=
wsize
;
Rect
r
=
Rect
(
0
,
0
,
wsize
.
width
,
wsize
.
height
);
r
.
x
+=
(
img_lst
[
0
].
cols
-
r
.
width
)
/
2
;
r
.
y
+=
(
img_lst
[
0
].
rows
-
r
.
height
)
/
2
;
Mat
gray
;
vector
<
float
>
descriptors
;
for
(
size_t
i
=
0
;
i
<
img_lst
.
size
();
i
++
)
for
(
size_t
i
=
0
;
i
<
img_lst
.
size
();
i
++
)
{
cvtColor
(
img_lst
[
i
](
r
),
gray
,
COLOR_BGR2GRAY
);
hog
.
compute
(
gray
,
descriptors
,
Size
(
8
,
8
),
Size
(
0
,
0
)
);
gradient_lst
.
push_back
(
Mat
(
descriptors
).
clone
()
);
if
(
img_lst
[
i
].
cols
>=
wsize
.
width
&&
img_lst
[
i
].
rows
>=
wsize
.
height
)
{
Rect
r
=
Rect
((
img_lst
[
i
].
cols
-
wsize
.
width
)
/
2
,
(
img_lst
[
i
].
rows
-
wsize
.
height
)
/
2
,
wsize
.
width
,
wsize
.
height
);
cvtColor
(
img_lst
[
i
](
r
),
gray
,
COLOR_BGR2GRAY
);
hog
.
compute
(
gray
,
descriptors
,
Size
(
8
,
8
),
Size
(
0
,
0
)
);
gradient_lst
.
push_back
(
Mat
(
descriptors
).
clone
()
);
if
(
use_flip
)
{
flip
(
gray
,
gray
,
1
);
hog
.
compute
(
gray
,
descriptors
,
Size
(
8
,
8
),
Size
(
0
,
0
)
);
gradient_lst
.
push_back
(
Mat
(
descriptors
).
clone
()
);
}
}
}
}
int
test_trained_detector
(
String
obj_det_filename
,
String
test_dir
,
String
videofilename
)
void
test_trained_detector
(
String
obj_det_filename
,
String
test_dir
,
String
videofilename
)
{
cout
<<
"Testing trained detector..."
<<
endl
;
HOGDescriptor
hog
;
...
...
@@ -143,7 +152,10 @@ int test_trained_detector( String obj_det_filename, String test_dir, String vide
if
(
videofilename
!=
""
)
{
cap
.
open
(
videofilename
);
if
(
videofilename
.
size
()
==
1
&&
isdigit
(
videofilename
[
0
]
)
)
cap
.
open
(
videofilename
[
0
]
-
'0'
);
else
cap
.
open
(
videofilename
);
}
obj_det_filename
=
"testing "
+
obj_det_filename
;
...
...
@@ -165,7 +177,7 @@ int test_trained_detector( String obj_det_filename, String test_dir, String vide
if
(
img
.
empty
()
)
{
return
0
;
return
;
}
vector
<
Rect
>
detections
;
...
...
@@ -180,12 +192,11 @@ int test_trained_detector( String obj_det_filename, String test_dir, String vide
imshow
(
obj_det_filename
,
img
);
if
(
27
==
waitKey
(
delay
)
)
if
(
waitKey
(
delay
)
==
27
)
{
return
0
;
return
;
}
}
return
0
;
}
int
main
(
int
argc
,
char
**
argv
)
...
...
@@ -199,6 +210,7 @@ int main( int argc, char** argv )
"{tv | | test video file name}"
"{dw | | width of the detector}"
"{dh | | height of the detector}"
"{f |false| indicates if the program will generate and use mirrored samples or not}"
"{d |false| train twice}"
"{t |false| test a trained detector}"
"{v |false| visualize training steps}"
...
...
@@ -223,6 +235,7 @@ int main( int argc, char** argv )
bool
test_detector
=
parser
.
get
<
bool
>
(
"t"
);
bool
train_twice
=
parser
.
get
<
bool
>
(
"d"
);
bool
visualization
=
parser
.
get
<
bool
>
(
"v"
);
bool
flip_samples
=
parser
.
get
<
bool
>
(
"f"
);
if
(
test_detector
)
{
...
...
@@ -234,8 +247,8 @@ int main( int argc, char** argv )
{
parser
.
printMessage
();
cout
<<
"Wrong number of parameters.
\n\n
"
<<
"Example command line:
\n
"
<<
argv
[
0
]
<<
" -
pd=/INRIAPerson/96X160H96/Train/pos -nd=/INRIAPerson/neg -td=/INRIAPerson/Test/pos -fn=HOGpedestrian96x160.y
ml -d
\n
"
<<
"
\n
Example command line for testing trained detector:
\n
"
<<
argv
[
0
]
<<
" -t -
dw=96 -dh=160 -fn=HOGpedestrian96x160.y
ml -td=/INRIAPerson/Test/pos"
;
<<
"Example command line:
\n
"
<<
argv
[
0
]
<<
" -
dw=64 -dh=128 -pd=/INRIAPerson/96X160H96/Train/pos -nd=/INRIAPerson/neg -td=/INRIAPerson/Test/pos -fn=HOGpedestrian64x128.x
ml -d
\n
"
<<
"
\n
Example command line for testing trained detector:
\n
"
<<
argv
[
0
]
<<
" -t -
fn=HOGpedestrian64x128.x
ml -td=/INRIAPerson/Test/pos"
;
exit
(
1
);
}
...
...
@@ -256,40 +269,40 @@ int main( int argc, char** argv )
Size
pos_image_size
=
pos_lst
[
0
].
size
();
for
(
size_t
i
=
0
;
i
<
pos_lst
.
size
();
++
i
)
{
if
(
pos_lst
[
i
].
size
()
!=
pos_image_size
)
{
cout
<<
"All positive images should be same size!"
<<
endl
;
exit
(
1
);
}
}
pos_image_size
=
pos_image_size
/
8
*
8
;
if
(
detector_width
&&
detector_height
)
{
pos_image_size
=
Size
(
detector_width
,
detector_height
);
}
labels
.
assign
(
pos_lst
.
size
(),
+
1
);
const
unsigned
int
old
=
(
unsigned
int
)
labels
.
size
();
else
{
for
(
size_t
i
=
0
;
i
<
pos_lst
.
size
();
++
i
)
{
if
(
pos_lst
[
i
].
size
()
!=
pos_image_size
)
{
cout
<<
"All positive images should be same size!"
<<
endl
;
exit
(
1
);
}
}
pos_image_size
=
pos_image_size
/
8
*
8
;
}
clog
<<
"Negative images are being loaded..."
;
load_images
(
neg_dir
,
full_neg_lst
,
false
);
sample_neg
(
full_neg_lst
,
neg_lst
,
pos_image_size
);
clog
<<
"...[done]"
<<
endl
;
labels
.
insert
(
labels
.
end
(),
neg_lst
.
size
(),
-
1
);
CV_Assert
(
old
<
labels
.
size
()
);
clog
<<
"Histogram of Gradients are being calculated for positive images..."
;
computeHOGs
(
pos_image_size
,
pos_lst
,
gradient_lst
);
clog
<<
"...[done]"
<<
endl
;
computeHOGs
(
pos_image_size
,
pos_lst
,
gradient_lst
,
flip_samples
);
size_t
positive_count
=
gradient_lst
.
size
();
labels
.
assign
(
positive_count
,
+
1
);
clog
<<
"...[done] ( positive count : "
<<
positive_count
<<
" )"
<<
endl
;
clog
<<
"Histogram of Gradients are being calculated for negative images..."
;
computeHOGs
(
pos_image_size
,
neg_lst
,
gradient_lst
);
clog
<<
"...[done]"
<<
endl
;
computeHOGs
(
pos_image_size
,
neg_lst
,
gradient_lst
,
flip_samples
);
size_t
negative_count
=
gradient_lst
.
size
()
-
positive_count
;
labels
.
insert
(
labels
.
end
(),
negative_count
,
-
1
);
CV_Assert
(
positive_count
<
labels
.
size
()
);
clog
<<
"...[done] ( negative count : "
<<
negative_count
<<
" )"
<<
endl
;
Mat
train_data
;
convert_to_ml
(
gradient_lst
,
train_data
);
...
...
@@ -306,7 +319,7 @@ int main( int argc, char** argv )
svm
->
setP
(
0.1
);
// for EPSILON_SVR, epsilon in loss function?
svm
->
setC
(
0.01
);
// From paper, soft classifier
svm
->
setType
(
SVM
::
EPS_SVR
);
// C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
svm
->
train
(
train_data
,
ROW_SAMPLE
,
Mat
(
labels
)
);
svm
->
train
(
train_data
,
ROW_SAMPLE
,
labels
);
clog
<<
"...[done]"
<<
endl
;
if
(
train_twice
)
...
...
@@ -316,22 +329,25 @@ int main( int argc, char** argv )
my_hog
.
winSize
=
pos_image_size
;
// Set the trained svm to my_hog
vector
<
float
>
hog_detector
;
get_svm_detector
(
svm
,
hog_detector
);
my_hog
.
setSVMDetector
(
hog_detector
);
my_hog
.
setSVMDetector
(
get_svm_detector
(
svm
)
);
vector
<
Rect
>
detections
;
vector
<
double
>
foundWeights
;
for
(
size_t
i
=
0
;
i
<
full_neg_lst
.
size
();
i
++
)
{
my_hog
.
detectMultiScale
(
full_neg_lst
[
i
],
detections
,
foundWeights
);
if
(
full_neg_lst
[
i
].
cols
>=
pos_image_size
.
width
&&
full_neg_lst
[
i
].
rows
>=
pos_image_size
.
height
)
my_hog
.
detectMultiScale
(
full_neg_lst
[
i
],
detections
,
foundWeights
);
else
detections
.
clear
();
for
(
size_t
j
=
0
;
j
<
detections
.
size
();
j
++
)
{
Mat
detection
=
full_neg_lst
[
i
](
detections
[
j
]
).
clone
();
resize
(
detection
,
detection
,
pos_image_size
);
neg_lst
.
push_back
(
detection
);
}
if
(
visualization
)
{
for
(
size_t
j
=
0
;
j
<
detections
.
size
();
j
++
)
...
...
@@ -344,30 +360,30 @@ int main( int argc, char** argv )
}
clog
<<
"...[done]"
<<
endl
;
labels
.
clear
();
labels
.
assign
(
pos_lst
.
size
(),
+
1
);
labels
.
insert
(
labels
.
end
(),
neg_lst
.
size
(),
-
1
);
gradient_lst
.
clear
();
clog
<<
"Histogram of Gradients are being calculated for positive images..."
;
computeHOGs
(
pos_image_size
,
pos_lst
,
gradient_lst
);
clog
<<
"...[done]"
<<
endl
;
computeHOGs
(
pos_image_size
,
pos_lst
,
gradient_lst
,
flip_samples
);
positive_count
=
gradient_lst
.
size
();
clog
<<
"...[done] ( positive count : "
<<
positive_count
<<
" )"
<<
endl
;
clog
<<
"Histogram of Gradients are being calculated for negative images..."
;
computeHOGs
(
pos_image_size
,
neg_lst
,
gradient_lst
);
clog
<<
"...[done]"
<<
endl
;
computeHOGs
(
pos_image_size
,
neg_lst
,
gradient_lst
,
flip_samples
);
negative_count
=
gradient_lst
.
size
()
-
positive_count
;
clog
<<
"...[done] ( negative count : "
<<
negative_count
<<
" )"
<<
endl
;
labels
.
clear
();
labels
.
assign
(
positive_count
,
+
1
);
labels
.
insert
(
labels
.
end
(),
negative_count
,
-
1
);
clog
<<
"Training SVM again..."
;
convert_to_ml
(
gradient_lst
,
train_data
);
svm
->
train
(
train_data
,
ROW_SAMPLE
,
Mat
(
labels
)
);
svm
->
train
(
train_data
,
ROW_SAMPLE
,
labels
);
clog
<<
"...[done]"
<<
endl
;
}
vector
<
float
>
hog_detector
;
get_svm_detector
(
svm
,
hog_detector
);
HOGDescriptor
hog
;
hog
.
winSize
=
pos_image_size
;
hog
.
setSVMDetector
(
hog_detector
);
hog
.
setSVMDetector
(
get_svm_detector
(
svm
)
);
hog
.
save
(
obj_det_filename
);
test_trained_detector
(
obj_det_filename
,
test_dir
,
videofilename
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment