Commit a39bce20 authored by alexey.spizhevoy's avatar alexey.spizhevoy Committed by Alexey Spizhevoy

implemented DP-based seam estimation method

parent cd58b7e1
......@@ -43,6 +43,7 @@
#ifndef __OPENCV_STITCHING_SEAM_FINDERS_HPP__
#define __OPENCV_STITCHING_SEAM_FINDERS_HPP__
#include <set>
#include "opencv2/core/core.hpp"
#include "opencv2/opencv_modules.hpp"
......@@ -92,6 +93,114 @@ private:
};
class CV_EXPORTS DpSeamFinder : public SeamFinder
{
public:
enum CostFunction { COLOR, COLOR_GRAD };
DpSeamFinder(CostFunction costFunc = COLOR_GRAD);
CostFunction costFunction() const { return costFunc_; }
void setCostFunction(CostFunction val) { costFunc_ = val; }
private:
enum ComponentState
{
FIRST = 1, SECOND = 2, INTERS = 4,
INTERS_FIRST = INTERS | FIRST,
INTERS_SECOND = INTERS | SECOND
};
class ImagePairLess
{
public:
ImagePairLess(const std::vector<Mat> &images, const std::vector<Point> &corners)
: src_(&images[0]), corners_(&corners[0]) {}
bool operator() (const std::pair<int, int> &l, const std::pair<int, int> &r) const
{
Point c1 = corners_[l.first] + Point(src_[l.first].cols / 2, src_[l.first].rows / 2);
Point c2 = corners_[l.second] + Point(src_[l.second].cols / 2, src_[l.second].rows / 2);
int d1 = (c1 - c2).dot(c1 - c2);
c1 = corners_[r.first] + Point(src_[r.first].cols / 2, src_[r.first].rows / 2);
c2 = corners_[r.second] + Point(src_[r.second].cols / 2, src_[r.second].rows / 2);
int d2 = (c1 - c2).dot(c1 - c2);
return d1 < d2;
}
private:
const Mat *src_;
const Point *corners_;
};
class ClosePoints
{
public:
ClosePoints(int minDist) : minDist_(minDist) {}
bool operator() (const Point &p1, const Point &p2) const
{
int dist2 = (p1.x-p2.x) * (p1.x-p2.x) + (p1.y-p2.y) * (p1.y-p2.y);
return dist2 < minDist_ * minDist_;
}
private:
int minDist_;
};
virtual void find(const std::vector<Mat> &src, const std::vector<Point> &corners,
std::vector<Mat> &masks);
void process(const Mat &image1, const Mat &image2, Point tl1, Point tl2,
Mat &mask1, Mat &mask2);
void findComponents();
void findEdges();
void resolveConflicts(const Mat &image1, const Mat &image2,
Point tl1, Point tl2, Mat &mask1, Mat &mask2);
void computeGradients(const Mat &image1, const Mat &image2);
bool hasOnlyOneNeighbor(int c);
bool closeToContour(int y, int x, const Mat_<uchar> &contourMask);
bool getSeamTips(int c1, int c2, Point &p1, Point &p2);
void computeCosts(const Mat &image1, const Mat &image2, Point tl1, Point tl2,
int c, Mat_<float> &costV, Mat_<float> &costH);
bool estimateSeam(
const Mat &image1, const Mat &image2, Point tl1, Point tl2, int c,
Point p1, Point p2, std::vector<Point> &seam, bool &isHorizontal);
void updateLabelsUsingSeam(int c1, int c2, const std::vector<Point> &seam,
bool isHorizontalSeam);
CostFunction costFunc_;
// processing images pair data
Point unionTl_, unionBr_;
Size unionSize_;
Mat_<uchar> mask1_, mask2_;
Mat_<uchar> contour1mask_, contour2mask_;
Mat_<float> gradx1_, grady1_;
Mat_<float> gradx2_, grady2_;
// components data
int ncomps_;
Mat_<int> labels_;
std::vector<ComponentState> states_;
std::vector<Point> tls_, brs_;
std::vector<std::vector<Point> > contours_;
std::set<std::pair<int, int> > edges_;
};
class CV_EXPORTS GraphCutSeamFinderBase
{
public:
......
......@@ -41,6 +41,9 @@
//M*/
#include "precomp.hpp"
#include <map>
using namespace std;
namespace cv {
namespace detail {
......@@ -152,6 +155,853 @@ void VoronoiSeamFinder::findInPair(size_t first, size_t second, Rect roi)
}
DpSeamFinder::DpSeamFinder(CostFunction costFunc) : costFunc_(costFunc) {}
void DpSeamFinder::find(const vector<Mat> &src, const vector<Point> &corners, vector<Mat> &masks)
{
LOGLN("Finding seams...");
int64 t = getTickCount();
if (src.size() == 0)
return;
vector<pair<int, int> > pairs;
for (size_t i = 0; i+1 < src.size(); ++i)
for (size_t j = i+1; j < src.size(); ++j)
pairs.push_back(make_pair(i, j));
sort(pairs.begin(), pairs.end(), ImagePairLess(src, corners));
reverse(pairs.begin(), pairs.end());
for (size_t i = 0; i < pairs.size(); ++i)
{
int i0 = pairs[i].first, i1 = pairs[i].second;
process(src[i0], src[i1], corners[i0], corners[i1], masks[i0], masks[i1]);
}
LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
}
void DpSeamFinder::process(
const Mat &image1, const Mat &image2, Point tl1, Point tl2,
Mat &mask1, Mat &mask2)
{
Point intersectTl(std::max(tl1.x, tl2.x), std::max(tl1.y, tl2.y));
Point intersectBr(std::min(tl1.x + image1.cols, tl2.x + image2.cols),
std::min(tl1.y + image1.rows, tl2.y + image2.rows));
if (intersectTl.x >= intersectBr.x || intersectTl.y >= intersectBr.y)
return; // there are no conflicts
unionTl_ = Point(std::min(tl1.x, tl2.x), std::min(tl1.y, tl2.y));
unionBr_ = Point(std::max(tl1.x + image1.cols, tl2.x + image2.cols),
std::max(tl1.y + image1.rows, tl2.y + image2.rows));
unionSize_ = Size(unionBr_.x - unionTl_.x, unionBr_.y - unionTl_.y);
mask1_ = Mat::zeros(unionSize_, CV_8U);
mask2_ = Mat::zeros(unionSize_, CV_8U);
Mat tmp = mask1_(Rect(tl1.x - unionTl_.x, tl1.y - unionTl_.y, mask1.cols, mask1.rows));
mask1.copyTo(tmp);
tmp = mask2_(Rect(tl2.x - unionTl_.x, tl2.y - unionTl_.y, mask2.cols, mask2.rows));
mask2.copyTo(tmp);
// find both images contour masks
contour1mask_ = Mat::zeros(unionSize_, CV_8U);
contour2mask_ = Mat::zeros(unionSize_, CV_8U);
for (int y = 0; y < unionSize_.height; ++y)
{
for (int x = 0; x < unionSize_.width; ++x)
{
if (mask1_(y, x) &&
((x == 0 || !mask1_(y, x-1)) || (x == unionSize_.width-1 || !mask1_(y, x+1)) ||
(y == 0 || !mask1_(y-1, x)) || (y == unionSize_.height-1 || !mask1_(y+1, x))))
{
contour1mask_(y, x) = 255;
}
if (mask2_(y, x) &&
((x == 0 || !mask2_(y, x-1)) || (x == unionSize_.width-1 || !mask2_(y, x+1)) ||
(y == 0 || !mask2_(y-1, x)) || (y == unionSize_.height-1 || !mask2_(y+1, x))))
{
contour2mask_(y, x) = 255;
}
}
}
findComponents();
findEdges();
resolveConflicts(image1, image2, tl1, tl2, mask1, mask2);
}
void DpSeamFinder::findComponents()
{
// label all connected components and get information about them
ncomps_ = 0;
labels_.create(unionSize_);
states_.clear();
tls_.clear();
brs_.clear();
contours_.clear();
for (int y = 0; y < unionSize_.height; ++y)
{
for (int x = 0; x < unionSize_.width; ++x)
{
if (mask1_(y, x) && mask2_(y, x))
labels_(y, x) = numeric_limits<int>::max();
else if (mask1_(y, x))
labels_(y, x) = numeric_limits<int>::max()-1;
else if (mask2_(y, x))
labels_(y, x) = numeric_limits<int>::max()-2;
else
labels_(y, x) = 0;
}
}
for (int y = 0; y < unionSize_.height; ++y)
{
for (int x = 0; x < unionSize_.width; ++x)
{
if (labels_(y, x) >= numeric_limits<int>::max()-2)
{
if (labels_(y, x) == numeric_limits<int>::max())
states_.push_back(INTERS);
else if (labels_(y, x) == numeric_limits<int>::max()-1)
states_.push_back(FIRST);
else if (labels_(y, x) == numeric_limits<int>::max()-2)
states_.push_back(SECOND);
floodFill(labels_, Point(x, y), ++ncomps_);
tls_.push_back(Point(x, y));
brs_.push_back(Point(x+1, y+1));
contours_.push_back(vector<Point>());
}
if (labels_(y, x))
{
int l = labels_(y, x);
int ci = l-1;
tls_[ci].x = std::min(tls_[ci].x, x);
tls_[ci].y = std::min(tls_[ci].y, y);
brs_[ci].x = std::max(brs_[ci].x, x+1);
brs_[ci].y = std::max(brs_[ci].y, y+1);
if ((x == 0 || labels_(y, x-1) != l) || (x == unionSize_.width-1 || labels_(y, x+1) != l) ||
(y == 0 || labels_(y-1, x) != l) || (y == unionSize_.height-1 || labels_(y+1, x) != l))
{
contours_[ci].push_back(Point(x, y));
}
}
}
}
}
void DpSeamFinder::findEdges()
{
// find edges between components
map<pair<int, int>, int> wedges; // weighted edges
for (int ci = 0; ci < ncomps_-1; ++ci)
{
for (int cj = ci+1; cj < ncomps_; ++cj)
{
wedges[make_pair(ci, cj)] = 0;
wedges[make_pair(cj, ci)] = 0;
}
}
for (int ci = 0; ci < ncomps_; ++ci)
{
for (size_t i = 0; i < contours_[ci].size(); ++i)
{
int x = contours_[ci][i].x;
int y = contours_[ci][i].y;
int l = ci + 1;
if (x > 0 && labels_(y, x-1) && labels_(y, x-1) != l)
{
wedges[make_pair(ci, labels_(y, x-1)-1)]++;
wedges[make_pair(labels_(y, x-1)-1, ci)]++;
}
if (y > 0 && labels_(y-1, x) && labels_(y-1, x) != l)
{
wedges[make_pair(ci, labels_(y-1, x)-1)]++;
wedges[make_pair(labels_(y-1, x)-1, ci)]++;
}
if (x < unionSize_.width-1 && labels_(y, x+1) && labels_(y, x+1) != l)
{
wedges[make_pair(ci, labels_(y, x+1)-1)]++;
wedges[make_pair(labels_(y, x+1)-1, ci)]++;
}
if (y < unionSize_.height-1 && labels_(y+1, x) && labels_(y+1, x) != l)
{
wedges[make_pair(ci, labels_(y+1, x)-1)]++;
wedges[make_pair(labels_(y+1, x)-1, ci)]++;
}
}
}
edges_.clear();
for (int ci = 0; ci < ncomps_-1; ++ci)
{
for (int cj = ci+1; cj < ncomps_; ++cj)
{
map<pair<int, int>, int>::iterator itr = wedges.find(make_pair(ci, cj));
if (itr != wedges.end() && itr->second > 0)
edges_.insert(itr->first);
itr = wedges.find(make_pair(cj, ci));
if (itr != wedges.end() && itr->second > 0)
edges_.insert(itr->first);
}
}
}
void DpSeamFinder::resolveConflicts(const Mat &image1, const Mat &image2,
Point tl1, Point tl2, Mat &mask1, Mat &mask2)
{
if (costFunc_ == COLOR_GRAD)
computeGradients(image1, image2);
// resolve conflicts between components
bool hasConflict = true;
while (hasConflict)
{
int c1, c2;
hasConflict = false;
for (set<pair<int, int> >::iterator itr = edges_.begin(); itr != edges_.end(); ++itr)
{
c1 = itr->first;
c2 = itr->second;
if ((states_[c1] & INTERS) && (states_[c1] & (~INTERS)) != states_[c2])
{
hasConflict = true;
break;
}
}
if (hasConflict)
{
int l1 = c1+1, l2 = c2+1;
if (hasOnlyOneNeighbor(c1))
{
// if the first components has only one adjacent component
for (int y = tls_[c1].y; y < brs_[c1].y; ++y)
for (int x = tls_[c1].x; x < brs_[c1].x; ++x)
if (labels_(y, x) == l1)
labels_(y, x) = l2;
states_[c1] = states_[c2] == FIRST ? SECOND : FIRST;
}
else
{
// if the first component has more than one adjacent component
Point p1, p2;
if (getSeamTips(c1, c2, p1, p2))
{
vector<Point> seam;
bool isHorizontalSeam;
if (estimateSeam(image1, image2, tl1, tl2, c1, p1, p2, seam, isHorizontalSeam))
updateLabelsUsingSeam(c1, c2, seam, isHorizontalSeam);
}
states_[c1] = states_[c2] == FIRST ? INTERS_SECOND : INTERS_FIRST;
}
const int c[] = {c1, c2};
const int l[] = {l1, l2};
for (int i = 0; i < 2; ++i)
{
// update information about the (i+1)-th component
int x0 = tls_[c[i]].x, x1 = brs_[c[i]].x;
int y0 = tls_[c[i]].y, y1 = brs_[c[i]].y;
tls_[c[i]] = Point(numeric_limits<int>::max(), numeric_limits<int>::max());
brs_[c[i]] = Point(numeric_limits<int>::min(), numeric_limits<int>::min());
contours_[c[i]].clear();
for (int y = y0; y < y1; ++y)
{
for (int x = x0; x < x1; ++x)
{
if (labels_(y, x) == l[i])
{
tls_[c[i]].x = std::min(tls_[c[i]].x, x);
tls_[c[i]].y = std::min(tls_[c[i]].y, y);
brs_[c[i]].x = std::max(brs_[c[i]].x, x+1);
brs_[c[i]].y = std::max(brs_[c[i]].y, y+1);
if ((x == 0 || labels_(y, x-1) != l[i]) || (x == unionSize_.width-1 || labels_(y, x+1) != l[i]) ||
(y == 0 || labels_(y-1, x) != l[i]) || (y == unionSize_.height-1 || labels_(y+1, x) != l[i]))
{
contours_[c[i]].push_back(Point(x, y));
}
}
}
}
}
// remove edges
edges_.erase(make_pair(c1, c2));
edges_.erase(make_pair(c2, c1));
}
}
// update masks
int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y;
int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y;
for (int y = 0; y < mask2.rows; ++y)
{
for (int x = 0; x < mask2.cols; ++x)
{
int l = labels_(y - dy2, x - dx2);
if ((states_[l-1] & FIRST) && mask1.at<uchar>(y - dy2 + dy1, x - dx2 + dx1))
mask2.at<uchar>(y, x) = 0;
}
}
for (int y = 0; y < mask1.rows; ++y)
{
for (int x = 0; x < mask1.cols; ++x)
{
int l = labels_(y - dy1, x - dx1);
if ((states_[l-1] & SECOND) && mask2.at<uchar>(y - dy1 + dy2, x - dx1 + dx2))
mask1.at<uchar>(y, x) = 0;
}
}
}
void DpSeamFinder::computeGradients(const Mat &image1, const Mat &image2)
{
CV_Assert(costFunction() == COLOR_GRAD);
CV_Assert(image1.type() == CV_32FC3);
CV_Assert(image2.type() == CV_32FC3);
Mat gray;
cvtColor(image1, gray, CV_BGR2GRAY);
Sobel(gray, gradx1_, CV_32F, 1, 0);
Sobel(gray, grady1_, CV_32F, 0, 1);
cvtColor(image2, gray, CV_BGR2GRAY);
Sobel(gray, gradx2_, CV_32F, 1, 0);
Sobel(gray, grady2_, CV_32F, 0, 1);
}
bool DpSeamFinder::hasOnlyOneNeighbor(int c)
{
set<pair<int, int> >::iterator begin, end;
begin = lower_bound(edges_.begin(), edges_.end(), make_pair(c, numeric_limits<int>::min()));
end = upper_bound(edges_.begin(), edges_.end(), make_pair(c, numeric_limits<int>::max()));
return ++begin == end;
}
bool DpSeamFinder::closeToContour(int y, int x, const Mat_<uchar> &contourMask)
{
const int rad = 2;
for (int dy = -rad; dy <= rad; ++dy)
{
if (y + dy >= 0 && y + dy < unionSize_.height)
{
for (int dx = -rad; dx <= rad; ++dx)
{
if (x + dx >= 0 && x + dx < unionSize_.width &&
contourMask(y + dy, x + dx))
{
return true;
}
}
}
}
return false;
}
bool DpSeamFinder::getSeamTips(int c1, int c2, Point &p1, Point &p2)
{
CV_Assert(states_[c1] & INTERS);
// find special points
vector<Point> specialPoints;
int l2 = c2+1;
for (size_t i = 0; i < contours_[c1].size(); ++i)
{
int x = contours_[c1][i].x;
int y = contours_[c1][i].y;
if (closeToContour(y, x, contour1mask_) &&
closeToContour(y, x, contour2mask_) &&
((x > 0 && labels_(y, x-1) == l2) ||
(y > 0 && labels_(y-1, x) == l2) ||
(x < unionSize_.width-1 && labels_(y, x+1) == l2) ||
(y < unionSize_.height-1 && labels_(y+1, x) == l2)))
{
specialPoints.push_back(Point(x, y));
}
}
if (specialPoints.size() < 2)
return false;
// find clusters
vector<int> labels;
cv::partition(specialPoints, labels, ClosePoints(10));
int nlabels = *max_element(labels.begin(), labels.end()) + 1;
if (nlabels < 2)
return false;
vector<Point> sum(nlabels);
vector<vector<Point> > points(nlabels);
for (size_t i = 0; i < specialPoints.size(); ++i)
{
sum[labels[i]] += specialPoints[i];
points[labels[i]].push_back(specialPoints[i]);
}
// select two most distant clusters
int idx[2];
double maxDist = -numeric_limits<double>::max();
for (int i = 0; i < nlabels-1; ++i)
{
for (int j = i+1; j < nlabels; ++j)
{
double size1 = points[i].size(), size2 = points[j].size();
double cx1 = cvRound(sum[i].x / size1), cy1 = cvRound(sum[i].y / size1);
double cx2 = cvRound(sum[j].x / size2), cy2 = cvRound(sum[j].y / size1);
double dist = (cx1 - cx2) * (cx1 - cx2) + (cy1 - cy2) * (cy1 - cy2);
if (dist > maxDist)
{
maxDist = dist;
idx[0] = i;
idx[1] = j;
}
}
}
// select two points closest to the clusters' centers
Point p[2];
for (int i = 0; i < 2; ++i)
{
double size = points[idx[i]].size();
double cx = cvRound(sum[idx[i]].x / size);
double cy = cvRound(sum[idx[i]].y / size);
int closest = -1;
double minDist = numeric_limits<double>::max();
for (size_t j = 0; j < points[idx[i]].size(); ++j)
{
double dist = (points[idx[i]][j].x - cx) * (points[idx[i]][j].x - cx) +
(points[idx[i]][j].y - cy) * (points[idx[i]][j].y - cy);
if (dist < minDist)
{
minDist = dist;
closest = j;
}
}
p[i] = points[idx[i]][closest];
}
p1 = p[0];
p2 = p[1];
return true;
}
void DpSeamFinder::computeCosts(const Mat &image1, const Mat &image2, Point tl1, Point tl2,
int c, Mat_<float> &costV, Mat_<float> &costH)
{
CV_Assert(image1.type() == CV_32FC3);
CV_Assert(image2.type() == CV_32FC3);
CV_Assert(states_[c] & INTERS);
// compute costs
int l = c+1;
Rect roi(tls_[c], brs_[c]);
int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y;
int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y;
const float badRegionCost = normL2(Point3f(255.f, 255.f, 255.f),
Point3f(0.f, 0.f, 0.f));
costV.create(roi.height, roi.width+1);
for (int y = roi.y; y < roi.br().y; ++y)
{
for (int x = roi.x; x < roi.br().x+1; ++x)
{
if (labels_(y, x) == l && x > 0 && labels_(y, x-1) == l)
{
const Point3f &pr1 = image1.at<Point3f>(y + dy1, x + dx1);
const Point3f &pl1 = image1.at<Point3f>(y + dy1, x + dx1 - 1);
const Point3f &pr2 = image2.at<Point3f>(y + dy2, x + dx2);
const Point3f &pl2 = image2.at<Point3f>(y + dy2, x + dx2 - 1);
float costColor = (normL2(pl1, pr2) + normL2(pl2, pr1)) / 2;
if (costFunc_ == COLOR)
costV(y - roi.y, x - roi.x) = costColor;
else if (costFunc_ == COLOR_GRAD)
{
float costGrad = fabs(gradx1_(y + dy1, x + dx1)) + fabs(gradx1_(y + dy1, x + dx1 - 1)) +
fabs(gradx2_(y + dy2, x + dx2)) + fabs(gradx2_(y + dy2, x + dx2 - 1)) + 1.f;
costV(y - roi.y, x - roi.x) = costColor / costGrad;
}
}
else
costV(y - roi.y, x - roi.x) = badRegionCost;
}
}
costH.create(roi.height+1, roi.width);
for (int y = roi.y; y < roi.br().y+1; ++y)
{
for (int x = roi.x; x < roi.br().x; ++x)
{
if (labels_(y, x) == l && y > 0 && labels_(y-1, x) == l)
{
const Point3f &pd1 = image1.at<Point3f>(y + dy1, x + dx1);
const Point3f &pu1 = image1.at<Point3f>(y + dy1 - 1, x + dx1);
const Point3f &pd2 = image2.at<Point3f>(y + dy2, x + dx2);
const Point3f &pu2 = image2.at<Point3f>(y + dy2 - 1, x + dx2);
float costColor = (normL2(pu1, pd2) + normL2(pu2, pd1)) / 2;
if (costFunc_ == COLOR)
costH(y - roi.y, x - roi.x) = costColor;
else if (costFunc_ == COLOR_GRAD)
{
float costGrad = fabs(grady1_(y + dy1, x + dx1)) + fabs(grady1_(y + dy1 - 1, x + dx1)) +
fabs(grady2_(y + dy2, x + dx2)) + fabs(grady2_(y + dy2 - 1, x + dx2)) + 1.f;
costH(y - roi.y, x - roi.x) = costColor / costGrad;
}
}
else
costH(y - roi.y, x - roi.x) = badRegionCost;
}
}
}
bool DpSeamFinder::estimateSeam(
const Mat &image1, const Mat &image2, Point tl1, Point tl2, int c,
Point p1, Point p2, vector<Point> &seam, bool &isHorizontal)
{
CV_Assert(states_[c] & INTERS);
Mat_<float> costV, costH;
computeCosts(image1, image2, tl1, tl2, c, costV, costH);
Rect roi(tls_[c], brs_[c]);
Point src = p1 - roi.tl();
Point dst = p2 - roi.tl();
int l = c+1;
// estimate seam direction
bool swapped = false;
isHorizontal = std::abs(dst.x - src.x) > std::abs(dst.y - src.y);
if (isHorizontal)
{
if (src.x > dst.x)
{
std::swap(src, dst);
swapped = true;
}
}
else if (src.y > dst.y)
{
swapped = true;
std::swap(src, dst);
}
// find optimal control
Mat_<uchar> control = Mat::zeros(roi.size(), CV_8U);
Mat_<uchar> reachable = Mat::zeros(roi.size(), CV_8U);
Mat_<float> cost = Mat::zeros(roi.size(), CV_32F);
reachable(src) = 1;
cost(src) = 0.f;
int nsteps;
pair<float, int> steps[3];
if (isHorizontal)
{
for (int x = src.x+1; x <= dst.x; ++x)
{
for (int y = 0; y < roi.height; ++y)
{
// seam follows along upper side of pixels
nsteps = 0;
if (labels_(y + roi.y, x + roi.x) == l)
{
if (reachable(y, x-1))
steps[nsteps++] = make_pair(cost(y, x-1) + costH(y, x-1), 1);
if (y > 0 && reachable(y-1, x-1))
steps[nsteps++] = make_pair(cost(y-1, x-1) + costH(y-1, x-1) + costV(y-1, x), 2);
if (y < roi.height-1 && reachable(y+1, x-1))
steps[nsteps++] = make_pair(cost(y+1, x-1) + costH(y+1, x-1) + costV(y, x), 3);
}
if (nsteps)
{
pair<float, int> opt = *min_element(steps, steps + nsteps);
cost(y, x) = opt.first;
control(y, x) = opt.second;
reachable(y, x) = 255;
}
}
}
}
else
{
for (int y = src.y+1; y <= dst.y; ++y)
{
for (int x = 0; x < roi.width; ++x)
{
// seam follows along left side of pixels
nsteps = 0;
if (labels_(y + roi.y, x + roi.x) == l)
{
if (reachable(y-1, x))
steps[nsteps++] = make_pair(cost(y-1, x) + costV(y-1, x), 1);
if (x > 0 && reachable(y-1, x-1))
steps[nsteps++] = make_pair(cost(y-1, x-1) + costV(y-1, x-1) + costH(y, x-1), 2);
if (x < roi.width-1 && reachable(y-1, x+1))
steps[nsteps++] = make_pair(cost(y-1, x+1) + costV(y-1, x+1) + costH(y, x), 3);
}
if (nsteps)
{
pair<float, int> opt = *min_element(steps, steps + nsteps);
cost(y, x) = opt.first;
control(y, x) = opt.second;
reachable(y, x) = 255;
}
}
}
}
if (!reachable(dst))
return false;
// restore seam
Point p = dst;
seam.clear();
seam.push_back(p + roi.tl());
if (isHorizontal)
{
for (; p.x != src.x; seam.push_back(p + roi.tl()))
{
if (control(p) == 2) p.y--;
else if (control(p) == 3) p.y++;
p.x--;
}
}
else
{
for (; p.y != src.y; seam.push_back(p + roi.tl()))
{
if (control(p) == 2) p.x--;
else if (control(p) == 3) p.x++;
p.y--;
}
}
if (!swapped)
reverse(seam.begin(), seam.end());
CV_Assert(seam.front() == p1);
CV_Assert(seam.back() == p2);
return true;
}
void DpSeamFinder::updateLabelsUsingSeam(int c1, int c2, const vector<Point> &seam, bool isHorizontalSeam)
{
Mat_<int> mask = Mat::zeros(brs_[c1].y - tls_[c1].y, brs_[c1].x - tls_[c1].x, CV_32S);
for (size_t i = 0; i < contours_[c1].size(); ++i)
mask(contours_[c1][i] - tls_[c1]) = 255;
for (size_t i = 0; i < seam.size(); ++i)
mask(seam[i] - tls_[c1]) = 255;
// find connected components after seam carving
int l1 = c1+1, l2 = c2+1;
int ncomps = 0;
for (int y = 0; y < mask.rows; ++y)
for (int x = 0; x < mask.cols; ++x)
if (!mask(y, x) && labels_(y + tls_[c1].y, x + tls_[c1].x) == l1)
floodFill(mask, Point(x, y), ++ncomps);
for (size_t i = 0; i < contours_[c1].size(); ++i)
{
int x = contours_[c1][i].x - tls_[c1].x;
int y = contours_[c1][i].y - tls_[c1].y;
bool ok = false;
static const int dx[] = {-1, +1, 0, 0, -1, +1, -1, +1};
static const int dy[] = {0, 0, -1, +1, -1, -1, +1, +1};
for (int j = 0; j < 8; ++j)
{
int c = x + dx[j];
int r = y + dy[j];
if (c > 0 && c < mask.cols && r > 0 && r < mask.rows &&
mask(r, c) && mask(r, c) != 255)
{
ok = true;
mask(y, x) = mask(r, c);
}
}
if (!ok)
mask(y, x) = 0;
}
if (isHorizontalSeam)
{
for (size_t i = 0; i < seam.size(); ++i)
{
int x = seam[i].x - tls_[c1].x;
int y = seam[i].y - tls_[c1].y;
if (y < mask.rows-1 && mask(y+1, x) && mask(y+1, x) != 255)
mask(y, x) = mask(y+1, x);
else
mask(y, x) = 0;
}
}
else
{
for (size_t i = 0; i < seam.size(); ++i)
{
int x = seam[i].x - tls_[c1].x;
int y = seam[i].y - tls_[c1].y;
if (x < mask.cols-1 && mask(y, x+1) && mask(y, x+1) != 255)
mask(y, x) = mask(y, x+1);
else
mask(y, x) = 0;
}
}
// find new components connected with the second component and
// with other components except the ones we are working with
map<int, int> connect2;
map<int, int> connectOther;
for (int i = 1; i <= ncomps; ++i)
{
connect2.insert(make_pair(i, 0));
connectOther.insert(make_pair(i, 0));
}
for (size_t i = 0; i < contours_[c1].size(); ++i)
{
int x = contours_[c1][i].x;
int y = contours_[c1][i].y;
if ((x > 0 && labels_(y, x-1) == l2) ||
(y > 0 && labels_(y-1, x) == l2) ||
(x < unionSize_.width-1 && labels_(y, x+1) == l2) ||
(y < unionSize_.height-1 && labels_(y+1, x) == l2))
{
connect2[mask(y - tls_[c1].y, x - tls_[c1].x)]++;
}
if ((x > 0 && labels_(y, x-1) != l1 && labels_(y, x-1) != l2) ||
(y > 0 && labels_(y-1, x) != l1 && labels_(y-1, x) != l2) ||
(x < unionSize_.width-1 && labels_(y, x+1) != l1 && labels_(y, x+1) != l2) ||
(y < unionSize_.height-1 && labels_(y+1, x) != l1 && labels_(y+1, x) != l2))
{
connectOther[mask(y - tls_[c1].y, x - tls_[c1].x)]++;
}
}
vector<int> isAdjComp(ncomps + 1, 0);
for (map<int, int>::iterator itr = connect2.begin(); itr != connect2.end(); ++itr)
{
double len = contours_[c1].size();
isAdjComp[itr->first] = itr->second / len > 0.05 && connectOther.find(itr->first)->second / len < 0.1;
}
// update labels
for (int y = 0; y < mask.rows; ++y)
for (int x = 0; x < mask.cols; ++x)
if (mask(y, x) && isAdjComp[mask(y, x)])
labels_(y + tls_[c1].y, x + tls_[c1].x) = l2;
}
class GraphCutSeamFinder::Impl : public PairwiseSeamFinder
{
public:
......
......@@ -276,7 +276,9 @@ static int parseCmdArgs(int argc, char** argv)
if (string(argv[i + 1]) == "no" ||
string(argv[i + 1]) == "voronoi" ||
string(argv[i + 1]) == "gc_color" ||
string(argv[i + 1]) == "gc_colorgrad")
string(argv[i + 1]) == "gc_colorgrad" ||
string(argv[i + 1]) == "dp_color" ||
string(argv[i + 1]) == "dp_colorgrad")
seam_find_type = argv[i + 1];
else
{
......@@ -612,6 +614,10 @@ int main(int argc, char* argv[])
#endif
seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR_GRAD);
}
else if (seam_find_type == "dp_color")
seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR);
else if (seam_find_type == "dp_colorgrad")
seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR_GRAD);
if (seam_finder.empty())
{
cout << "Can't create the following seam finder '" << seam_find_type << "'\n";
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment