Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
a2f71326
Commit
a2f71326
authored
Aug 24, 2017
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #9460 from Cartucho:pylint_samples_py
parents
91f680af
7555ab19
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
33 additions
and
35 deletions
+33
-35
asift.py
samples/python/asift.py
+1
-1
browse.py
samples/python/browse.py
+2
-2
camshift.py
samples/python/camshift.py
+2
-2
common.py
samples/python/common.py
+0
-0
demo.py
samples/python/demo.py
+1
-1
digits.py
samples/python/digits.py
+1
-1
digits_video.py
samples/python/digits_video.py
+2
-2
find_obj.py
samples/python/find_obj.py
+1
-2
gaussian_mix.py
samples/python/gaussian_mix.py
+2
-2
lappyr.py
samples/python/lappyr.py
+1
-1
letter_recog.py
samples/python/letter_recog.py
+7
-8
lk_homography.py
samples/python/lk_homography.py
+3
-3
lk_track.py
samples/python/lk_track.py
+3
-3
mosse.py
samples/python/mosse.py
+1
-1
mouse_and_match.py
samples/python/mouse_and_match.py
+1
-1
opt_flow.py
samples/python/opt_flow.py
+1
-1
plane_ar.py
samples/python/plane_ar.py
+1
-1
squares.py
samples/python/squares.py
+2
-2
texture_flow.py
samples/python/texture_flow.py
+0
-0
turing.py
samples/python/turing.py
+1
-1
No files found.
samples/python/asift.py
View file @
a2f71326
...
...
@@ -155,7 +155,7 @@ if __name__ == '__main__':
H
,
status
=
None
,
None
print
(
'
%
d matches found, not enough for homography estimation'
%
len
(
p1
))
vis
=
explore_match
(
win
,
img1
,
img2
,
kp_pairs
,
None
,
H
)
explore_match
(
win
,
img1
,
img2
,
kp_pairs
,
None
,
H
)
match_and_draw
(
'affine find_obj'
)
...
...
samples/python/browse.py
View file @
a2f71326
...
...
@@ -53,8 +53,8 @@ if __name__ == '__main__':
small
=
cv2
.
pyrDown
(
small
)
def
onmouse
(
event
,
x
,
y
,
flags
,
param
):
h
,
w
=
img
.
shape
[:
2
]
h1
,
w1
=
small
.
shape
[:
2
]
h
,
_
w
=
img
.
shape
[:
2
]
h1
,
_
w1
=
small
.
shape
[:
2
]
x
,
y
=
1.0
*
x
*
h
/
h1
,
1.0
*
y
*
h
/
h1
zoom
=
cv2
.
getRectSubPix
(
img
,
(
800
,
600
),
(
x
+
0.5
,
y
+
0.5
))
cv2
.
imshow
(
'zoom'
,
zoom
)
...
...
samples/python/camshift.py
View file @
a2f71326
...
...
@@ -41,7 +41,7 @@ from video import presets
class
App
(
object
):
def
__init__
(
self
,
video_src
):
self
.
cam
=
video
.
create_capture
(
video_src
,
presets
[
'cube'
])
ret
,
self
.
frame
=
self
.
cam
.
read
()
_
ret
,
self
.
frame
=
self
.
cam
.
read
()
cv2
.
namedWindow
(
'camshift'
)
cv2
.
setMouseCallback
(
'camshift'
,
self
.
onmouse
)
...
...
@@ -76,7 +76,7 @@ class App(object):
def
run
(
self
):
while
True
:
ret
,
self
.
frame
=
self
.
cam
.
read
()
_
ret
,
self
.
frame
=
self
.
cam
.
read
()
vis
=
self
.
frame
.
copy
()
hsv
=
cv2
.
cvtColor
(
self
.
frame
,
cv2
.
COLOR_BGR2HSV
)
mask
=
cv2
.
inRange
(
hsv
,
np
.
array
((
0.
,
60.
,
32.
)),
np
.
array
((
180.
,
255.
,
255.
)))
...
...
samples/python/common.py
View file @
a2f71326
samples/python/demo.py
View file @
a2f71326
...
...
@@ -99,7 +99,7 @@ class App:
run_btn
=
tk
.
Button
(
right
,
command
=
self
.
on_run
,
text
=
'Run'
,
width
=
8
)
self
.
text
=
text
=
ScrolledText
(
right
,
font
=
(
'arial'
,
12
,
'normal'
),
width
=
30
,
wrap
=
'word'
)
self
.
linker
=
linker
=
LinkManager
(
text
,
self
.
on_link
)
self
.
linker
=
_
linker
=
LinkManager
(
text
,
self
.
on_link
)
self
.
text
.
tag_config
(
"header1"
,
font
=
(
'arial'
,
14
,
'bold'
))
self
.
text
.
tag_config
(
"header2"
,
font
=
(
'arial'
,
12
,
'bold'
))
text
.
config
(
state
=
'disabled'
)
...
...
samples/python/digits.py
View file @
a2f71326
...
...
@@ -84,7 +84,7 @@ class KNearest(StatModel):
self
.
model
.
train
(
samples
,
cv2
.
ml
.
ROW_SAMPLE
,
responses
)
def
predict
(
self
,
samples
):
retval
,
results
,
neigh_resp
,
dists
=
self
.
model
.
findNearest
(
samples
,
self
.
k
)
_retval
,
results
,
_neigh_resp
,
_
dists
=
self
.
model
.
findNearest
(
samples
,
self
.
k
)
return
results
.
ravel
()
class
SVM
(
StatModel
):
...
...
samples/python/digits_video.py
View file @
a2f71326
...
...
@@ -35,7 +35,7 @@ def main():
model
.
load_
(
classifier_fn
)
#Known bug: https://github.com/opencv/opencv/issues/4969
while
True
:
ret
,
frame
=
cap
.
read
()
_
ret
,
frame
=
cap
.
read
()
gray
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2GRAY
)
...
...
@@ -59,12 +59,12 @@ def main():
cv2
.
rectangle
(
frame
,
(
x
,
y
),
(
x
+
w
,
y
+
h
),
(
0
,
255
,
0
))
bin_roi
=
bin
[
y
:,
x
:][:
h
,:
w
]
gray_roi
=
gray
[
y
:,
x
:][:
h
,:
w
]
m
=
bin_roi
!=
0
if
not
0.1
<
m
.
mean
()
<
0.4
:
continue
'''
gray_roi = gray[y:,x:][:h,:w]
v_in, v_out = gray_roi[m], gray_roi[~m]
if v_out.std() > 10.0:
continue
...
...
samples/python/find_obj.py
View file @
a2f71326
...
...
@@ -92,7 +92,6 @@ def explore_match(win, img1, img2, kp_pairs, status = None, H = None):
green
=
(
0
,
255
,
0
)
red
=
(
0
,
0
,
255
)
white
=
(
255
,
255
,
255
)
kp_color
=
(
51
,
103
,
236
)
for
(
x1
,
y1
),
(
x2
,
y2
),
inlier
in
zip
(
p1
,
p2
,
status
):
if
inlier
:
...
...
@@ -183,7 +182,7 @@ if __name__ == '__main__':
H
,
status
=
None
,
None
print
(
'
%
d matches found, not enough for homography estimation'
%
len
(
p1
))
vis
=
explore_match
(
win
,
img1
,
img2
,
kp_pairs
,
status
,
H
)
_
vis
=
explore_match
(
win
,
img1
,
img2
,
kp_pairs
,
status
,
H
)
match_and_draw
(
'find_obj'
)
cv2
.
waitKey
()
...
...
samples/python/gaussian_mix.py
View file @
a2f71326
...
...
@@ -15,7 +15,7 @@ import cv2
def
make_gaussians
(
cluster_n
,
img_size
):
points
=
[]
ref_distrs
=
[]
for
i
in
xrange
(
cluster_n
):
for
_
i
in
xrange
(
cluster_n
):
mean
=
(
0.1
+
0.8
*
random
.
rand
(
2
))
*
img_size
a
=
(
random
.
rand
(
2
,
2
)
-
0.5
)
*
img_size
*
0.1
cov
=
np
.
dot
(
a
.
T
,
a
)
+
img_size
*
0.05
*
np
.
eye
(
2
)
...
...
@@ -28,7 +28,7 @@ def make_gaussians(cluster_n, img_size):
def
draw_gaussain
(
img
,
mean
,
cov
,
color
):
x
,
y
=
np
.
int32
(
mean
)
w
,
u
,
vt
=
cv2
.
SVDecomp
(
cov
)
w
,
u
,
_
vt
=
cv2
.
SVDecomp
(
cov
)
ang
=
np
.
arctan2
(
u
[
1
,
0
],
u
[
0
,
0
])
*
(
180
/
np
.
pi
)
s1
,
s2
=
np
.
sqrt
(
w
)
*
3.0
cv2
.
ellipse
(
img
,
(
x
,
y
),
(
s1
,
s2
),
ang
,
0
,
360
,
color
,
1
,
cv2
.
LINE_AA
)
...
...
samples/python/lappyr.py
View file @
a2f71326
...
...
@@ -28,7 +28,7 @@ from common import nothing, getsize
def
build_lappyr
(
img
,
leveln
=
6
,
dtype
=
np
.
int16
):
img
=
dtype
(
img
)
levels
=
[]
for
i
in
xrange
(
leveln
-
1
):
for
_
i
in
xrange
(
leveln
-
1
):
next_img
=
cv2
.
pyrDown
(
img
)
img1
=
cv2
.
pyrUp
(
next_img
,
dstsize
=
getsize
(
img
))
levels
.
append
(
img
-
img1
)
...
...
samples/python/letter_recog.py
View file @
a2f71326
...
...
@@ -64,12 +64,11 @@ class RTrees(LetterStatModel):
self
.
model
=
cv2
.
ml
.
RTrees_create
()
def
train
(
self
,
samples
,
responses
):
sample_n
,
var_n
=
samples
.
shape
self
.
model
.
setMaxDepth
(
20
)
self
.
model
.
train
(
samples
,
cv2
.
ml
.
ROW_SAMPLE
,
responses
.
astype
(
int
))
def
predict
(
self
,
samples
):
ret
,
resp
=
self
.
model
.
predict
(
samples
)
_
ret
,
resp
=
self
.
model
.
predict
(
samples
)
return
resp
.
ravel
()
...
...
@@ -81,7 +80,7 @@ class KNearest(LetterStatModel):
self
.
model
.
train
(
samples
,
cv2
.
ml
.
ROW_SAMPLE
,
responses
)
def
predict
(
self
,
samples
):
retval
,
results
,
neigh_resp
,
dists
=
self
.
model
.
findNearest
(
samples
,
k
=
10
)
_retval
,
results
,
_neigh_resp
,
_
dists
=
self
.
model
.
findNearest
(
samples
,
k
=
10
)
return
results
.
ravel
()
...
...
@@ -90,7 +89,7 @@ class Boost(LetterStatModel):
self
.
model
=
cv2
.
ml
.
Boost_create
()
def
train
(
self
,
samples
,
responses
):
sample_n
,
var_n
=
samples
.
shape
_
sample_n
,
var_n
=
samples
.
shape
new_samples
=
self
.
unroll_samples
(
samples
)
new_responses
=
self
.
unroll_responses
(
responses
)
var_types
=
np
.
array
([
cv2
.
ml
.
VAR_NUMERICAL
]
*
var_n
+
[
cv2
.
ml
.
VAR_CATEGORICAL
,
cv2
.
ml
.
VAR_CATEGORICAL
],
np
.
uint8
)
...
...
@@ -101,7 +100,7 @@ class Boost(LetterStatModel):
def
predict
(
self
,
samples
):
new_samples
=
self
.
unroll_samples
(
samples
)
ret
,
resp
=
self
.
model
.
predict
(
new_samples
)
_
ret
,
resp
=
self
.
model
.
predict
(
new_samples
)
return
resp
.
ravel
()
.
reshape
(
-
1
,
self
.
class_n
)
.
argmax
(
1
)
...
...
@@ -118,7 +117,7 @@ class SVM(LetterStatModel):
self
.
model
.
train
(
samples
,
cv2
.
ml
.
ROW_SAMPLE
,
responses
.
astype
(
int
))
def
predict
(
self
,
samples
):
ret
,
resp
=
self
.
model
.
predict
(
samples
)
_
ret
,
resp
=
self
.
model
.
predict
(
samples
)
return
resp
.
ravel
()
...
...
@@ -127,7 +126,7 @@ class MLP(LetterStatModel):
self
.
model
=
cv2
.
ml
.
ANN_MLP_create
()
def
train
(
self
,
samples
,
responses
):
sample_n
,
var_n
=
samples
.
shape
_
sample_n
,
var_n
=
samples
.
shape
new_responses
=
self
.
unroll_responses
(
responses
)
.
reshape
(
-
1
,
self
.
class_n
)
layer_sizes
=
np
.
int32
([
var_n
,
100
,
100
,
self
.
class_n
])
...
...
@@ -141,7 +140,7 @@ class MLP(LetterStatModel):
self
.
model
.
train
(
samples
,
cv2
.
ml
.
ROW_SAMPLE
,
np
.
float32
(
new_responses
))
def
predict
(
self
,
samples
):
ret
,
resp
=
self
.
model
.
predict
(
samples
)
_
ret
,
resp
=
self
.
model
.
predict
(
samples
)
return
resp
.
argmax
(
-
1
)
...
...
samples/python/lk_homography.py
View file @
a2f71326
...
...
@@ -39,8 +39,8 @@ feature_params = dict( maxCorners = 1000,
blockSize
=
19
)
def
checkedTrace
(
img0
,
img1
,
p0
,
back_threshold
=
1.0
):
p1
,
st
,
err
=
cv2
.
calcOpticalFlowPyrLK
(
img0
,
img1
,
p0
,
None
,
**
lk_params
)
p0r
,
st
,
err
=
cv2
.
calcOpticalFlowPyrLK
(
img1
,
img0
,
p1
,
None
,
**
lk_params
)
p1
,
_st
,
_
err
=
cv2
.
calcOpticalFlowPyrLK
(
img0
,
img1
,
p0
,
None
,
**
lk_params
)
p0r
,
_st
,
_
err
=
cv2
.
calcOpticalFlowPyrLK
(
img1
,
img0
,
p1
,
None
,
**
lk_params
)
d
=
abs
(
p0
-
p0r
)
.
reshape
(
-
1
,
2
)
.
max
(
-
1
)
status
=
d
<
back_threshold
return
p1
,
status
...
...
@@ -56,7 +56,7 @@ class App:
def
run
(
self
):
while
True
:
ret
,
frame
=
self
.
cam
.
read
()
_
ret
,
frame
=
self
.
cam
.
read
()
frame_gray
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2GRAY
)
vis
=
frame
.
copy
()
if
self
.
p0
is
not
None
:
...
...
samples/python/lk_track.py
View file @
a2f71326
...
...
@@ -46,15 +46,15 @@ class App:
def
run
(
self
):
while
True
:
ret
,
frame
=
self
.
cam
.
read
()
_
ret
,
frame
=
self
.
cam
.
read
()
frame_gray
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2GRAY
)
vis
=
frame
.
copy
()
if
len
(
self
.
tracks
)
>
0
:
img0
,
img1
=
self
.
prev_gray
,
frame_gray
p0
=
np
.
float32
([
tr
[
-
1
]
for
tr
in
self
.
tracks
])
.
reshape
(
-
1
,
1
,
2
)
p1
,
st
,
err
=
cv2
.
calcOpticalFlowPyrLK
(
img0
,
img1
,
p0
,
None
,
**
lk_params
)
p0r
,
st
,
err
=
cv2
.
calcOpticalFlowPyrLK
(
img1
,
img0
,
p1
,
None
,
**
lk_params
)
p1
,
_st
,
_
err
=
cv2
.
calcOpticalFlowPyrLK
(
img0
,
img1
,
p0
,
None
,
**
lk_params
)
p0r
,
_st
,
_
err
=
cv2
.
calcOpticalFlowPyrLK
(
img1
,
img0
,
p1
,
None
,
**
lk_params
)
d
=
abs
(
p0
-
p0r
)
.
reshape
(
-
1
,
2
)
.
max
(
-
1
)
good
=
d
<
1
new_tracks
=
[]
...
...
samples/python/mosse.py
View file @
a2f71326
...
...
@@ -73,7 +73,7 @@ class MOSSE:
self
.
G
=
cv2
.
dft
(
g
,
flags
=
cv2
.
DFT_COMPLEX_OUTPUT
)
self
.
H1
=
np
.
zeros_like
(
self
.
G
)
self
.
H2
=
np
.
zeros_like
(
self
.
G
)
for
i
in
xrange
(
128
):
for
_
i
in
xrange
(
128
):
a
=
self
.
preprocess
(
rnd_warp
(
img
))
A
=
cv2
.
dft
(
a
,
flags
=
cv2
.
DFT_COMPLEX_OUTPUT
)
self
.
H1
+=
cv2
.
mulSpectrums
(
self
.
G
,
A
,
0
,
conjB
=
True
)
...
...
samples/python/mouse_and_match.py
View file @
a2f71326
...
...
@@ -38,7 +38,7 @@ def onmouse(event, x, y, flags, param):
patch
=
gray
[
sel
[
1
]:
sel
[
3
],
sel
[
0
]:
sel
[
2
]]
result
=
cv2
.
matchTemplate
(
gray
,
patch
,
cv2
.
TM_CCOEFF_NORMED
)
result
=
np
.
abs
(
result
)
**
3
val
,
result
=
cv2
.
threshold
(
result
,
0.01
,
0
,
cv2
.
THRESH_TOZERO
)
_
val
,
result
=
cv2
.
threshold
(
result
,
0.01
,
0
,
cv2
.
THRESH_TOZERO
)
result8
=
cv2
.
normalize
(
result
,
None
,
0
,
255
,
cv2
.
NORM_MINMAX
,
cv2
.
CV_8U
)
cv2
.
imshow
(
"result"
,
result8
)
drag_start
=
None
...
...
samples/python/opt_flow.py
View file @
a2f71326
...
...
@@ -29,7 +29,7 @@ def draw_flow(img, flow, step=16):
lines
=
np
.
int32
(
lines
+
0.5
)
vis
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_GRAY2BGR
)
cv2
.
polylines
(
vis
,
lines
,
0
,
(
0
,
255
,
0
))
for
(
x1
,
y1
),
(
x2
,
y2
)
in
lines
:
for
(
x1
,
y1
),
(
_x2
,
_
y2
)
in
lines
:
cv2
.
circle
(
vis
,
(
x1
,
y1
),
1
,
(
0
,
255
,
0
),
-
1
)
return
vis
...
...
samples/python/plane_ar.py
View file @
a2f71326
...
...
@@ -92,7 +92,7 @@ class App:
[
0
,
fx
*
w
,
0.5
*
(
h
-
1
)],
[
0.0
,
0.0
,
1.0
]])
dist_coef
=
np
.
zeros
(
4
)
ret
,
rvec
,
tvec
=
cv2
.
solvePnP
(
quad_3d
,
tracked
.
quad
,
K
,
dist_coef
)
_
ret
,
rvec
,
tvec
=
cv2
.
solvePnP
(
quad_3d
,
tracked
.
quad
,
K
,
dist_coef
)
verts
=
ar_verts
*
[(
x1
-
x0
),
(
y1
-
y0
),
-
(
x1
-
x0
)
*
0.3
]
+
(
x0
,
y0
,
0
)
verts
=
cv2
.
projectPoints
(
verts
,
rvec
,
tvec
,
K
,
dist_coef
)[
0
]
.
reshape
(
-
1
,
2
)
for
i
,
j
in
ar_edges
:
...
...
samples/python/squares.py
View file @
a2f71326
...
...
@@ -30,8 +30,8 @@ def find_squares(img):
bin
=
cv2
.
Canny
(
gray
,
0
,
50
,
apertureSize
=
5
)
bin
=
cv2
.
dilate
(
bin
,
None
)
else
:
retval
,
bin
=
cv2
.
threshold
(
gray
,
thrs
,
255
,
cv2
.
THRESH_BINARY
)
bin
,
contours
,
hierarchy
=
cv2
.
findContours
(
bin
,
cv2
.
RETR_LIST
,
cv2
.
CHAIN_APPROX_SIMPLE
)
_
retval
,
bin
=
cv2
.
threshold
(
gray
,
thrs
,
255
,
cv2
.
THRESH_BINARY
)
bin
,
contours
,
_
hierarchy
=
cv2
.
findContours
(
bin
,
cv2
.
RETR_LIST
,
cv2
.
CHAIN_APPROX_SIMPLE
)
for
cnt
in
contours
:
cnt_len
=
cv2
.
arcLength
(
cnt
,
True
)
cnt
=
cv2
.
approxPolyDP
(
cnt
,
0.02
*
cnt_len
,
True
)
...
...
samples/python/texture_flow.py
View file @
a2f71326
samples/python/turing.py
View file @
a2f71326
...
...
@@ -45,7 +45,7 @@ if __name__ == '__main__':
def
process_scale
(
a_lods
,
lod
):
d
=
a_lods
[
lod
]
-
cv2
.
pyrUp
(
a_lods
[
lod
+
1
])
for
i
in
xrange
(
lod
):
for
_
i
in
xrange
(
lod
):
d
=
cv2
.
pyrUp
(
d
)
v
=
cv2
.
GaussianBlur
(
d
*
d
,
(
3
,
3
),
0
)
return
np
.
sign
(
d
),
v
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment