Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
a2bbfa1d
Commit
a2bbfa1d
authored
Apr 08, 2019
by
Dmitry Kurtaev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Enable some tests for Inference Engine 2019R1
parent
dad2247b
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
70 additions
and
98 deletions
+70
-98
dnn.cpp
modules/dnn/src/dnn.cpp
+1
-26
elementwise_layers.cpp
modules/dnn/src/layers/elementwise_layers.cpp
+10
-4
flatten_layer.cpp
modules/dnn/src/layers/flatten_layer.cpp
+2
-2
padding_layer.cpp
modules/dnn/src/layers/padding_layer.cpp
+42
-7
pooling_layer.cpp
modules/dnn/src/layers/pooling_layer.cpp
+1
-1
test_backends.cpp
modules/dnn/test/test_backends.cpp
+1
-6
test_halide_layers.cpp
modules/dnn/test/test_halide_layers.cpp
+0
-13
test_onnx_importer.cpp
modules/dnn/test/test_onnx_importer.cpp
+1
-1
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+12
-38
No files found.
modules/dnn/src/dnn.cpp
View file @
a2bbfa1d
...
...
@@ -1160,12 +1160,6 @@ struct Net::Impl
continue
;
currLayer
->
unsetAttached
();
Ptr
<
PoolingLayer
>
poolingLayer
=
currLayer
.
dynamicCast
<
PoolingLayer
>
();
if
(
!
poolingLayer
.
empty
()
)
{
poolingLayer
->
computeMaxIdx
=
true
;
}
}
layersTimings
.
clear
();
...
...
@@ -2082,30 +2076,11 @@ struct Net::Impl
}
}
}
// the optimization #2. if there is no layer that takes max pooling layer's computed
// max indices (and only some semantical segmentation networks might need this;
// many others only take the maximum values), then we switch the max pooling
// layer to the faster operating mode.
Ptr
<
PoolingLayer
>
poolingLayer
=
ld
.
layerInstance
.
dynamicCast
<
PoolingLayer
>
();
if
(
!
poolingLayer
.
empty
()
&&
!
ld
.
consumers
.
empty
()
)
{
size_t
i
=
0
,
nconsumers
=
ld
.
consumers
.
size
();
for
(
;
i
<
nconsumers
;
i
++
)
if
(
ld
.
consumers
[
i
].
oid
>
0
)
break
;
// if there is no layer that takes the second output pin of the pooling layer
// on input then we don't need to compute the indices
if
(
i
>=
nconsumers
)
{
poolingLayer
->
computeMaxIdx
=
false
;
printf_
((
"
\t
simplified pooling layer %s
\n
"
,
poolingLayer
->
name
.
c_str
()));
}
}
if
(
preferableBackend
!=
DNN_BACKEND_OPENCV
)
continue
;
// Go to the next layer.
// the optimization #
3
. if there is concat layer that concatenates channels
// the optimization #
2
. if there is concat layer that concatenates channels
// from the inputs together (i.e. axis == 1) then we make the inputs of
// the concat layer to write to the concatenation output buffer
// (and so we eliminate the concatenation layer, because the channels
...
...
modules/dnn/src/layers/elementwise_layers.cpp
View file @
a2bbfa1d
...
...
@@ -256,8 +256,11 @@ struct ReLUFunctor
bool
supportBackend
(
int
backendId
,
int
)
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
||
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
;
#ifdef HAVE_INF_ENGINE
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
)
return
slope
>=
0
||
!
INF_ENGINE_VER_MAJOR_EQ
(
INF_ENGINE_RELEASE_2019R1
);
#endif
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
...
...
@@ -741,8 +744,11 @@ struct AbsValFunctor
bool
supportBackend
(
int
backendId
,
int
)
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
||
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
;
#ifdef HAVE_INF_ENGINE
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
)
return
!
INF_ENGINE_VER_MAJOR_EQ
(
INF_ENGINE_RELEASE_2019R1
);
#endif
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
...
...
modules/dnn/src/layers/flatten_layer.cpp
View file @
a2bbfa1d
...
...
@@ -159,8 +159,8 @@ public:
InferenceEngine
::
Builder
::
Layer
ieLayer
(
name
);
ieLayer
.
setName
(
name
);
ieLayer
.
setType
(
"Flatten"
);
ieLayer
.
getParameters
()[
"axis"
]
=
_startAxis
;
ieLayer
.
getParameters
()[
"end_axis"
]
=
_endAxis
;
ieLayer
.
getParameters
()[
"axis"
]
=
(
size_t
)
_startAxis
;
ieLayer
.
getParameters
()[
"end_axis"
]
=
_endAxis
;
// Do not cast to size_t because it might be negative.
ieLayer
.
setInputPorts
(
std
::
vector
<
InferenceEngine
::
Port
>
(
1
));
ieLayer
.
setOutputPorts
(
std
::
vector
<
InferenceEngine
::
Port
>
(
1
));
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
ieLayer
));
...
...
modules/dnn/src/layers/padding_layer.cpp
View file @
a2bbfa1d
...
...
@@ -12,6 +12,7 @@ Implementation of padding layer, which adds paddings to input blob.
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include <vector>
namespace
cv
...
...
@@ -68,28 +69,36 @@ public:
// Compute dstRanges.
const
MatSize
&
inpShape
=
inputs
[
0
].
size
;
dstRanges
.
resize
(
paddings
.
size
());
int
offset
=
0
;
if
(
inputDims
!=
-
1
&&
inputs
[
0
].
dims
!=
inputDims
)
{
dstRanges
.
insert
(
dstRanges
.
begin
(),
Range
::
all
());
offset
=
1
;
paddings
.
insert
(
paddings
.
begin
(),
std
::
make_pair
(
0
,
0
));
}
dstRanges
.
resize
(
paddings
.
size
());
for
(
int
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
dstRanges
[
offset
+
i
].
start
=
paddings
[
i
].
first
;
dstRanges
[
offset
+
i
].
end
=
paddings
[
i
].
first
+
inpShape
[
offset
+
i
];
dstRanges
[
i
].
start
=
paddings
[
i
].
first
;
dstRanges
[
i
].
end
=
paddings
[
i
].
first
+
inpShape
[
i
];
}
// Add the rest of dimensions.
for
(
int
i
=
dstRanges
.
size
();
i
<
inputs
[
0
].
dims
;
++
i
)
{
dstRanges
.
push_back
(
Range
::
all
());
paddings
.
push_back
(
std
::
make_pair
(
0
,
0
));
}
inputDims
=
-
1
;
// Next time paddings are filled for all the dimensions.
}
virtual
bool
supportBackend
(
int
backendId
)
CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
)
return
INF_ENGINE_VER_MAJOR_GE
(
INF_ENGINE_RELEASE_2019R1
)
&&
(
preferableTarget
!=
DNN_TARGET_MYRIAD
||
(
dstRanges
.
size
()
==
4
&&
paddings
[
0
].
first
==
0
&&
paddings
[
0
].
second
==
0
));
#endif
return
backendId
==
DNN_BACKEND_OPENCV
||
(
backendId
==
DNN_BACKEND_HALIDE
&&
haveHalide
()
&&
dstRanges
.
size
()
==
4
);
}
...
...
@@ -109,7 +118,7 @@ public:
{
std
::
vector
<
float
>
paddingValue_fp32
(
1
,
paddingValue
);
std
::
vector
<
int16_t
>
paddingValue_fp16
(
1
);
convertFp16
(
paddingValue_fp32
,
paddingValue_fp16
);
c
v
::
c
onvertFp16
(
paddingValue_fp32
,
paddingValue_fp16
);
outputs
[
0
].
setTo
(
paddingValue_fp16
[
0
]);
}
else
...
...
@@ -173,6 +182,32 @@ public:
return
Ptr
<
BackendNode
>
();
}
virtual
Ptr
<
BackendNode
>
initInfEngine
(
const
std
::
vector
<
Ptr
<
BackendWrapper
>
>&
)
CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
InferenceEngine
::
Builder
::
Layer
ieLayer
(
name
);
ieLayer
.
setName
(
name
);
ieLayer
.
setType
(
"Pad"
);
std
::
vector
<
int
>
begins
(
paddings
.
size
(),
0
),
ends
(
paddings
.
size
(),
0
);
for
(
int
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
begins
[
i
]
=
paddings
[
i
].
first
;
ends
[
i
]
=
paddings
[
i
].
second
;
}
ieLayer
.
getParameters
()[
"pads_begin"
]
=
begins
;
ieLayer
.
getParameters
()[
"pads_end"
]
=
ends
;
ieLayer
.
getParameters
()[
"pad_mode"
]
=
paddingType
;
if
(
paddingType
==
"constant"
)
ieLayer
.
getParameters
()[
"pad_value"
]
=
paddingValue
;
ieLayer
.
setInputPorts
(
std
::
vector
<
InferenceEngine
::
Port
>
(
1
));
ieLayer
.
setOutputPorts
(
std
::
vector
<
InferenceEngine
::
Port
>
(
1
));
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
ieLayer
));
#endif
return
Ptr
<
BackendNode
>
();
}
private
:
std
::
vector
<
std
::
pair
<
int
,
int
>
>
paddings
;
// Pairs pad before, pad after.
std
::
vector
<
Range
>
dstRanges
;
...
...
modules/dnn/src/layers/pooling_layer.cpp
View file @
a2bbfa1d
...
...
@@ -140,7 +140,7 @@ public:
#ifdef HAVE_OPENCL
poolOp
.
release
();
#endif
computeMaxIdx
=
type
==
MAX
;
computeMaxIdx
=
type
==
MAX
&&
outputs
.
size
()
==
2
;
}
virtual
bool
supportBackend
(
int
backendId
)
CV_OVERRIDE
...
...
modules/dnn/test/test_backends.cpp
View file @
a2bbfa1d
...
...
@@ -289,12 +289,7 @@ TEST_P(DNNTestNetwork, OpenFace)
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
)
throw
SkipTestException
(
"Test is disabled for Myriad targets"
);
#elif INF_ENGINE_VER_MAJOR_GE(2019010000)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
&&
getInferenceEngineVPUType
()
==
CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
throw
SkipTestException
(
"Test is disabled for MyriadX target"
);
#else
#elif INF_ENGINE_VER_MAJOR_EQ(2018030000)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_OPENCL_FP16
)
throw
SkipTestException
(
"Test has been fixed in OpenVINO 2018R4"
);
#endif
...
...
modules/dnn/test/test_halide_layers.cpp
View file @
a2bbfa1d
...
...
@@ -561,12 +561,6 @@ TEST_P(ReLU, Accuracy)
float
negativeSlope
=
get
<
0
>
(
GetParam
());
Backend
backendId
=
get
<
0
>
(
get
<
1
>
(
GetParam
()));
Target
targetId
=
get
<
1
>
(
get
<
1
>
(
GetParam
()));
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
negativeSlope
<
0
)
throw
SkipTestException
(
"Test is disabled"
);
#endif
LayerParams
lp
;
lp
.
set
(
"negative_slope"
,
negativeSlope
);
...
...
@@ -589,13 +583,6 @@ TEST_P(NoParamActivation, Accuracy)
LayerParams
lp
;
lp
.
type
=
get
<
0
>
(
GetParam
());
lp
.
name
=
"testLayer"
;
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
lp
.
type
==
"AbsVal"
)
throw
SkipTestException
(
"Test is disabled"
);
#endif
testInPlaceActivation
(
lp
,
backendId
,
targetId
);
}
INSTANTIATE_TEST_CASE_P
(
Layer_Test_Halide
,
NoParamActivation
,
Combine
(
...
...
modules/dnn/test/test_onnx_importer.cpp
View file @
a2bbfa1d
...
...
@@ -379,7 +379,7 @@ TEST_P(Test_ONNX_nets, LResNet100E_IR)
lInf
=
0.035
;
}
else
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_CPU
)
{
l1
=
4.
5
e-5
;
l1
=
4.
6
e-5
;
lInf
=
1.9e-4
;
}
testONNXModels
(
"LResNet100E_IR"
,
pb
,
l1
,
lInf
);
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
a2bbfa1d
...
...
@@ -140,10 +140,6 @@ TEST_P(Test_TensorFlow_layers, padding)
TEST_P
(
Test_TensorFlow_layers
,
padding_same
)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
)
throw
SkipTestException
(
"Test is disabled for DLIE"
);
#endif
#if defined(INF_ENGINE_RELEASE)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
&&
getInferenceEngineVPUType
()
==
CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
...
...
@@ -251,10 +247,6 @@ TEST_P(Test_TensorFlow_layers, reshape)
TEST_P
(
Test_TensorFlow_layers
,
flatten
)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
)
throw
SkipTestException
(
"Test is disabled for DLIE"
);
#endif
#if defined(INF_ENGINE_RELEASE)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
&&
getInferenceEngineVPUType
()
==
CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2
...
...
@@ -267,11 +259,6 @@ TEST_P(Test_TensorFlow_layers, flatten)
TEST_P
(
Test_TensorFlow_layers
,
unfused_flatten
)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
)
throw
SkipTestException
(
"Test is disabled for DLIE"
);
#endif
runTensorFlowNet
(
"unfused_flatten"
);
runTensorFlowNet
(
"unfused_flatten_unknown_batch"
);
}
...
...
@@ -320,11 +307,14 @@ class Test_TensorFlow_nets : public DNNTestLayer {};
TEST_P
(
Test_TensorFlow_nets
,
MobileNet_SSD
)
{
checkBackend
();
if
((
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
!=
DNN_TARGET_CPU
)
||
(
backend
==
DNN_BACKEND_OPENCV
&&
target
==
DNN_TARGET_OPENCL_FP16
))
throw
SkipTestException
(
""
);
#if defined(INF_ENGINE_RELEASE)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
&&
getInferenceEngineVPUType
()
==
CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
throw
SkipTestException
(
"Test is disabled for MyriadX"
);
#endif
checkBackend
();
std
::
string
netPath
=
findDataFile
(
"dnn/ssd_mobilenet_v1_coco.pb"
,
false
);
std
::
string
netConfig
=
findDataFile
(
"dnn/ssd_mobilenet_v1_coco.pbtxt"
,
false
);
std
::
string
imgPath
=
findDataFile
(
"dnn/street.png"
,
false
);
...
...
@@ -333,30 +323,18 @@ TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
resize
(
imread
(
imgPath
),
inp
,
Size
(
300
,
300
));
inp
=
blobFromImage
(
inp
,
1.0
f
/
127.5
,
Size
(),
Scalar
(
127.5
,
127.5
,
127.5
),
true
);
std
::
vector
<
String
>
outNames
(
3
);
outNames
[
0
]
=
"concat"
;
outNames
[
1
]
=
"concat_1"
;
outNames
[
2
]
=
"detection_out"
;
std
::
vector
<
Mat
>
refs
(
outNames
.
size
());
for
(
int
i
=
0
;
i
<
outNames
.
size
();
++
i
)
{
std
::
string
path
=
findDataFile
(
"dnn/tensorflow/ssd_mobilenet_v1_coco."
+
outNames
[
i
]
+
".npy"
,
false
);
refs
[
i
]
=
blobFromNPY
(
path
);
}
Mat
ref
=
blobFromNPY
(
findDataFile
(
"dnn/tensorflow/ssd_mobilenet_v1_coco.detection_out.npy"
,
false
));
Net
net
=
readNetFromTensorflow
(
netPath
,
netConfig
);
net
.
setPreferableBackend
(
backend
);
net
.
setPreferableTarget
(
target
);
net
.
setInput
(
inp
);
Mat
out
=
net
.
forward
();
std
::
vector
<
Mat
>
output
;
net
.
forward
(
output
,
outNames
);
normAssert
(
refs
[
0
].
reshape
(
1
,
1
),
output
[
0
].
reshape
(
1
,
1
),
""
,
1e-5
,
1.5e-4
);
normAssert
(
refs
[
1
].
reshape
(
1
,
1
),
output
[
1
].
reshape
(
1
,
1
),
""
,
1e-5
,
3e-4
);
normAssertDetections
(
refs
[
2
],
output
[
2
],
""
,
0.2
);
double
scoreDiff
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
0.0043
:
default_l1
;
double
iouDiff
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
0.037
:
default_lInf
;
normAssertDetections
(
ref
,
out
,
""
,
0.2
,
scoreDiff
,
iouDiff
);
}
TEST_P
(
Test_TensorFlow_nets
,
Inception_v2_SSD
)
...
...
@@ -597,10 +575,6 @@ TEST_P(Test_TensorFlow_layers, fp16_weights)
TEST_P
(
Test_TensorFlow_layers
,
fp16_padding_same
)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
)
throw
SkipTestException
(
"Test is disabled for DLIE"
);
#endif
#if defined(INF_ENGINE_RELEASE)
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
&&
getInferenceEngineVPUType
()
==
CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment