Commit a2620f72 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #10370 from pengli:dnn

parents 047ad4ff c5fc8e03
...@@ -258,6 +258,12 @@ class OCL4DNNConvSpatial ...@@ -258,6 +258,12 @@ class OCL4DNNConvSpatial
int lx, int ly, int lz, int lx, int ly, int lz,
bool swizzle, bool nullLocal); bool swizzle, bool nullLocal);
void generateTunerItems(std::vector< cv::Ptr<tunerParam> > &tunerItems); void generateTunerItems(std::vector< cv::Ptr<tunerParam> > &tunerItems);
void generate_dwconv_tuneritems(std::vector< cv::Ptr<tunerParam> > &tunerItems,
int blockM, int blockK, int blockN);
void generate_gemmlike_tuneritems(std::vector< cv::Ptr<tunerParam> > &tunerItems,
int blockM, int blockK, int blockN);
void generate_idlf_tuneritems(std::vector< cv::Ptr<tunerParam> > &tunerItems,
int blockM, int blockK, int simd_size);
void setFusionDefine(ocl4dnnFusedActiv_t fused_activ, bool fused_eltwise); void setFusionDefine(ocl4dnnFusedActiv_t fused_activ, bool fused_eltwise);
void setFusionArg(ocl4dnnFusedActiv_t fused_activ, bool fused_eltwise, ocl::Kernel &kernel, cl_uint &argIdx); void setFusionArg(ocl4dnnFusedActiv_t fused_activ, bool fused_eltwise, ocl::Kernel &kernel, cl_uint &argIdx);
......
...@@ -257,11 +257,7 @@ void OCL4DNNConvSpatial<Dtype>::setupKernelDetails(int32_t kernelType, ...@@ -257,11 +257,7 @@ void OCL4DNNConvSpatial<Dtype>::setupKernelDetails(int32_t kernelType,
addDef("INPUT_DEPTH", channels_ / group_); addDef("INPUT_DEPTH", channels_ / group_);
addDef("TOTAL_INPUT_DEPTH_SIZE", channels_); addDef("TOTAL_INPUT_DEPTH_SIZE", channels_);
addDef("TOTAL_OUTPUT_DEPTH", num_output_); addDef("TOTAL_OUTPUT_DEPTH", num_output_);
addDef("INPUT_START_X", 0);
addDef("INPUT_START_Y", 0);
addDef("INPUT_START_Z", 0);
addDef("NUM_FILTERS", M_); addDef("NUM_FILTERS", M_);
addDef("OUT_BUFF_OFFSET", 0);
addDef("TILE_X", tile_x); addDef("TILE_X", tile_x);
addDef("TILE_Y", tile_y); addDef("TILE_Y", tile_y);
addDef("TILE_Y_STRIDE", tile_y_stride); addDef("TILE_Y_STRIDE", tile_y_stride);
...@@ -1331,75 +1327,127 @@ bool OCL4DNNConvSpatial<float>::createConvolutionKernel(int32_t kernelType, ...@@ -1331,75 +1327,127 @@ bool OCL4DNNConvSpatial<float>::createConvolutionKernel(int32_t kernelType,
} }
template<> template<>
void OCL4DNNConvSpatial<float>::generateTunerItems(std::vector< cv::Ptr<tunerParam> > &tunerItems) void OCL4DNNConvSpatial<float>::generate_gemmlike_tuneritems(std::vector< cv::Ptr<tunerParam> > &tunerItems,
int blockM, int blockK, int blockN)
{ {
if (ocl::Device::getDefault().intelSubgroupsSupport()) if (group_ != 1 || ((M_ % 8 != 0) || (M_ % 32 == 24)))
{ return;
//depth_wise kernels
if (dwconv_) if (blockM != 1 && blockM != 2)
return;
if (blockN != 32)
return;
if (blockK != 8 && blockK != 16)
return;
if (blockK == 16)
{ {
tunerItems.push_back(makePtr<tunerParam>(KERNEL_TYPE_DWCONV, 1, 1, 1)); if ((blockM == 1 && (kernel_w_ > 4)) || M_ % 32 != 0)
if (group_ > 8) return;
if ((blockM == 2) || M_ % 32 != 0)
return; return;
} }
/* IDLF kernels are using Intel specific extension which make tunerItems.push_back(makePtr<tunerParam>(KERNEL_TYPE_GEMM_LIKE, blockM, blockK, blockN));
them intel only. */ }
// Generates static key_
template<>
void OCL4DNNConvSpatial<float>::generate_idlf_tuneritems(std::vector< cv::Ptr<tunerParam> > &tunerItems,
int blockM, int blockK, int simd_size)
{
int max_compute_units = ocl::Device::getDefault().maxComputeUnits(); int max_compute_units = ocl::Device::getDefault().maxComputeUnits();
int kernelCnt = 0;
if (group_ == 1 && ((M_ % 8 == 0) && (M_ % 32 != 24))) {
tunerItems.push_back(makePtr<tunerParam>(KERNEL_TYPE_GEMM_LIKE, 1, 8, 32));
tunerItems.push_back(makePtr<tunerParam>(KERNEL_TYPE_GEMM_LIKE, 2, 8, 32));
if (kernel_w_ < 4 && M_ % 32 == 0) if (simd_size != 8 && simd_size != 16)
tunerItems.push_back(makePtr<tunerParam>(KERNEL_TYPE_GEMM_LIKE, 1, 16, 32)); return;
}
for (int simd_size = 8; simd_size <= 16; simd_size += 8) {
if (simd_size == 8 && !((group_ == 1 || M_ % 8 == 0))) if (simd_size == 8 && !((group_ == 1 || M_ % 8 == 0)))
continue; return;
if (simd_size == 16 && !(group_ == 1 || M_ % 16 == 0)) if (simd_size == 16 && !(group_ == 1 || M_ % 16 == 0))
continue; return;
const int width_max = 14, height_max = 8, block_size_max = 32;
for (uint32_t width = width_max; width > 0; width--) { int width_max, height_max, block_size_max;
int candidate = 0; width_max = 14;
if (width > output_w_) height_max = 14;
continue; block_size_max = 32;
for (uint32_t height = height_max; height > 0; height--) {
if (width * height > block_size_max || height > output_h_) if (blockM > width_max)
continue; return;
if (blockK > height_max)
return;
if (blockM > output_w_)
return;
if (blockK > output_h_)
return;
// Only when the work items count is less than the device // Only when the work items count is less than the device
// max work items or the M_ is less than 16, we will tune // max work items or the M_ is less than 16, we will tune
// for simd 8. // for simd 8.
if (simd_size == 8 && if (simd_size == 8 && M_ >= 16 &&
M_ >= 16 && ((num_ * M_ * output_w_ * output_h_ / static_cast<float>(blockM * blockK)) >=
((num_ * M_ * output_w_ * output_h_ / static_cast<float>(width * height)) >=
max_compute_units * 7 * 16)) max_compute_units * 7 * 16))
continue; return;
int actual_tile_x = kernel_w_ * dilation_w_ + (width - 1) * stride_w_;
int actual_tile_x = kernel_w_ * dilation_w_ + (blockM - 1) * stride_w_ ;
int tile_x = alignSize(actual_tile_x, 4); int tile_x = alignSize(actual_tile_x, 4);
int tile_y = kernel_h_ * dilation_h_ + (height - 1) * stride_h_; int tile_y = kernel_h_ * dilation_h_ + (blockK - 1) * stride_h_;
if (tile_x > (4 * simd_size)) if (tile_x > (4 * simd_size))
continue; return;
// If actual_tile_x is multiple of 4, we may waste some IO bandwidth.
// This could reduce 75% tuning candidates. It has slightly performance if ((blockM * blockK + divUp(tile_x * tile_y, simd_size)) > block_size_max)
// impact for the final tuning result, less than 2% for most cases. return;
if (actual_tile_x % 4 != 0)
continue;
if ((width * height + divUp(tile_x * tile_y, simd_size)) > block_size_max)
continue;
int tile_y_stride = (4 * simd_size) / tile_x; int tile_y_stride = (4 * simd_size) / tile_x;
int invec_size = divUp(tile_y, tile_y_stride);
if (invec_size > 4)
return;
if (divUp(tile_y, tile_y_stride) < 4) { tunerItems.push_back(makePtr<tunerParam>(KERNEL_TYPE_INTEL_IDLF, blockM, blockK, simd_size));
tunerItems.push_back(makePtr<tunerParam>(KERNEL_TYPE_INTEL_IDLF, width, height, simd_size)); }
candidate++;
} template<>
if (candidate >= 4 && height == 2) void OCL4DNNConvSpatial<float>::generate_dwconv_tuneritems(std::vector< cv::Ptr<tunerParam> > &tunerItems,
int blockM, int blockK, int blockN)
{
if (!dwconv_)
return;
tunerItems.push_back(makePtr<tunerParam>(KERNEL_TYPE_DWCONV, blockM, blockK, blockN));
}
template<>
void OCL4DNNConvSpatial<float>::generateTunerItems(std::vector< cv::Ptr<tunerParam> > &tunerItems)
{
if (ocl::Device::getDefault().intelSubgroupsSupport())
{
// depthwise kernel
generate_dwconv_tuneritems(tunerItems, 1, 1, 1);
if (tunerItems.size() > 0 && group_ > 8)
return;
// gemm like kernel
generate_gemmlike_tuneritems(tunerItems, 1, 8, 32);
generate_gemmlike_tuneritems(tunerItems, 2, 8, 32);
generate_gemmlike_tuneritems(tunerItems, 1, 16, 32);
// idlf kernel
for (int simd_size = 8; simd_size <= 16; simd_size += 8)
{
int width_max, height_max;
width_max = 14;
height_max = 14;
for (uint32_t width = width_max; width > 0; width--)
{
for (uint32_t height = height_max; height > 0; height--)
{
generate_idlf_tuneritems(tunerItems, width, height, simd_size);
if (tunerItems.size() >= 8 && height == 2)
break; break;
} }
kernelCnt += candidate; if (tunerItems.size() >= 12 && width == 2)
if (kernelCnt >= 12 && width == 2)
break; break;
} }
} }
......
...@@ -189,10 +189,8 @@ __kernel void ConvolveBasic( ...@@ -189,10 +189,8 @@ __kernel void ConvolveBasic(
// NDRange: (output_width+pad)/ OUT_BLOCK_WIDTH, (output_height+pad)/OUT_BLOCK_HEIGHT, NUM_FILTERS/OUT_BLOCK_DEPTH // NDRange: (output_width+pad)/ OUT_BLOCK_WIDTH, (output_height+pad)/OUT_BLOCK_HEIGHT, NUM_FILTERS/OUT_BLOCK_DEPTH
// NOTE: for beignet this reqd_work_group_size does not guarantee that SIMD16 mode will be used, the compiler could choose to use two SIMD8 threads, and if that happens the code will break. // NOTE: for beignet this reqd_work_group_size does not guarantee that SIMD16 mode will be used, the compiler could choose to use two SIMD8 threads, and if that happens the code will break.
#ifndef __BEIGNET__
__attribute__((reqd_work_group_size(1, 1, SIMD_SIZE))) __attribute__((reqd_work_group_size(1, 1, SIMD_SIZE)))
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE))) __attribute__((intel_reqd_sub_group_size(SIMD_SIZE)))
#endif
__kernel void __kernel void
convolve_simd( convolve_simd(
ELTWISE_DATA_ARG ELTWISE_DATA_ARG
...@@ -232,12 +230,12 @@ convolve_simd( ...@@ -232,12 +230,12 @@ convolve_simd(
int curr_local_y = ( lid / ( TILE_X / 4 ) ); int curr_local_y = ( lid / ( TILE_X / 4 ) );
int curr_local_x = ( lid % ( TILE_X / 4 ) ) * 4; int curr_local_x = ( lid % ( TILE_X / 4 ) ) * 4;
int curr_y = or * STRIDE_Y + INPUT_START_Y + curr_local_y; int curr_y = or * STRIDE_Y + curr_local_y;
int curr_x = oc * STRIDE_X + INPUT_START_X + curr_local_x; int curr_x = oc * STRIDE_X + curr_local_x;
#if INPUT_PAD_W != 0 || INPUT_PAD_H != 0 #if INPUT_PAD_W != 0 || INPUT_PAD_H != 0
int saved_y = curr_y; int saved_y = curr_y;
#endif #endif
in_addr = input_batch_offset + INPUT_START_Z * input_height * input_width in_addr = input_batch_offset
+ (curr_y - INPUT_PAD_H) * input_width // y tile offset + (curr_y - INPUT_PAD_H) * input_width // y tile offset
+ curr_x - INPUT_PAD_W; // x tile offset + curr_x - INPUT_PAD_W; // x tile offset
union { union {
...@@ -363,7 +361,7 @@ convolve_simd( ...@@ -363,7 +361,7 @@ convolve_simd(
fm = fm % ALIGNED_NUM_FILTERS; fm = fm % ALIGNED_NUM_FILTERS;
if ((ALIGNED_NUM_FILTERS == NUM_FILTERS || fm < NUM_FILTERS)) { if ((ALIGNED_NUM_FILTERS == NUM_FILTERS || fm < NUM_FILTERS)) {
unsigned int out_addr = OUT_BUFF_OFFSET + ( num_in_batch * TOTAL_OUTPUT_DEPTH + fm ) * output_width * output_height; unsigned int out_addr = ( num_in_batch * TOTAL_OUTPUT_DEPTH + fm ) * output_width * output_height;
out_addr += or * output_width + oc; out_addr += or * output_width + oc;
// we need this address calculation for biases because we support views and batching // we need this address calculation for biases because we support views and batching
#if APPLY_BIAS #if APPLY_BIAS
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment