Commit a25b027e authored by Vladislav Vinogradov's avatar Vladislav Vinogradov

updated gpu optical_flow sample

parent 3aa53764
......@@ -265,7 +265,7 @@ namespace cv
}
//! render OpenGL arrays
CV_EXPORTS void render(const GlArrays& arr, int mode = RenderMode::POINTS);
CV_EXPORTS void render(const GlArrays& arr, int mode = RenderMode::POINTS, Scalar color = Scalar::all(255));
CV_EXPORTS void render(const std::string& str, const Ptr<GlFont>& font, Scalar color, Point2d pos);
......
......@@ -1325,11 +1325,13 @@ void cv::render(const GlTexture& tex, Rect_<double> wndRect, Rect_<double> texRe
#endif
}
void cv::render(const GlArrays& arr, int mode)
void cv::render(const GlArrays& arr, int mode, Scalar color)
{
#ifndef HAVE_OPENGL
throw_nogl;
#else
glColor3d(color[0] / 255.0, color[1] / 255.0, color[3] / 255.0);
arr.bind();
glDrawArrays(mode, 0, arr.size().area());
......
......@@ -1734,6 +1734,8 @@ CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
float pos, GpuMat& newFrame, GpuMat& buf,
Stream& stream = Stream::Null());
CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);
} // namespace gpu
//! Speckle filtering - filters small connected components on diparity image.
......
......@@ -81,7 +81,7 @@ namespace cv { namespace gpu { namespace device
calcSobelRowPass<<<grid, block>>>(src, dx_buf, dy_buf, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
cudaSafeCall( cudaDeviceSynchronize() );
}
struct L1
......@@ -171,7 +171,7 @@ namespace cv { namespace gpu { namespace device
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
cudaSafeCall( cudaDeviceSynchronize() );
}
//////////////////////////////////////////////////////////////////////////////////////////
......@@ -252,7 +252,7 @@ namespace cv { namespace gpu { namespace device
calcMap<<<grid, block>>>(dx, dy, mag, map, rows, cols, low_thresh, high_thresh);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
cudaSafeCall( cudaDeviceSynchronize() );
}
//////////////////////////////////////////////////////////////////////////////////////////
......@@ -345,7 +345,7 @@ namespace cv { namespace gpu { namespace device
edgesHysteresisLocal<<<grid, block>>>(map, st1, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
cudaSafeCall( cudaDeviceSynchronize() );
}
__constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
......@@ -460,7 +460,7 @@ namespace cv { namespace gpu { namespace device
edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, rows, cols, count);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
......@@ -485,7 +485,7 @@ namespace cv { namespace gpu { namespace device
getEdges<<<grid, block>>>(map, dst, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
cudaSafeCall( cudaDeviceSynchronize() );
}
} // namespace canny
}}} // namespace cv { namespace gpu { namespace device
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/gpu/device/common.hpp"
namespace cv { namespace gpu { namespace device
{
namespace optical_flow
{
#define NEEDLE_MAP_SCALE 16
#define MAX_FLOW 30.0f
#define NUM_VERTS_PER_ARROW 6
__global__ void NeedleMapAverageKernel(const DevMem2Df u, const PtrStepf v, PtrStepf u_avg, PtrStepf v_avg)
{
__shared__ float smem[2 * NEEDLE_MAP_SCALE];
volatile float* u_col_sum = smem;
volatile float* v_col_sum = u_col_sum + NEEDLE_MAP_SCALE;
const int x = blockIdx.x * NEEDLE_MAP_SCALE + threadIdx.x;
const int y = blockIdx.y * NEEDLE_MAP_SCALE;
u_col_sum[threadIdx.x] = 0;
v_col_sum[threadIdx.x] = 0;
#pragma unroll
for(int i = 0; i < NEEDLE_MAP_SCALE; ++i)
{
u_col_sum[threadIdx.x] += u(::min(y + i, u.rows - 1), x);
v_col_sum[threadIdx.x] += v(::min(y + i, u.rows - 1), x);
}
if (threadIdx.x < 8)
{
// now add the column sums
const uint X = threadIdx.x;
if (X | 0xfe == 0xfe) // bit 0 is 0
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 1];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 1];
}
if (X | 0xfe == 0xfc) // bits 0 & 1 == 0
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 2];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 2];
}
if (X | 0xf8 == 0xf8)
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 4];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 4];
}
if (X == 0)
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 8];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 8];
}
}
if (threadIdx.x == 0)
{
const float coeff = 1.0f / (NEEDLE_MAP_SCALE * NEEDLE_MAP_SCALE);
u_col_sum[0] *= coeff;
v_col_sum[0] *= coeff;
u_avg(blockIdx.y, blockIdx.x) = u_col_sum[0];
v_avg(blockIdx.y, blockIdx.x) = v_col_sum[0];
}
}
void NeedleMapAverage_gpu(DevMem2Df u, DevMem2Df v, DevMem2Df u_avg, DevMem2Df v_avg)
{
const dim3 block(NEEDLE_MAP_SCALE);
const dim3 grid(u_avg.cols, u_avg.rows);
NeedleMapAverageKernel<<<grid, block>>>(u, v, u_avg, v_avg);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void NeedleMapVertexKernel(const DevMem2Df u_avg, const PtrStepf v_avg, float* vertex_data, float* color_data, float xscale, float yscale)
{
// test - just draw a triangle at each pixel
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const float arrow_x = x * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
const float arrow_y = y * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
float3 v[NUM_VERTS_PER_ARROW];
if (x < u_avg.cols && y < u_avg.rows)
{
const float u_avg_val = u_avg(y, x);
const float v_avg_val = v_avg(y, x);
const float theta = ::atan2f(v_avg_val, u_avg_val) + CV_PI;
float r = ::sqrtf(v_avg_val * v_avg_val + u_avg_val * u_avg_val);
r = fmin(14.0f * (r / MAX_FLOW), 14.0f);
v[0].z = 1.0f;
v[1].z = 0.7f;
v[2].z = 0.7f;
v[3].z = 0.7f;
v[4].z = 0.7f;
v[5].z = 1.0f;
v[0].x = arrow_x;
v[0].y = arrow_y;
v[5].x = arrow_x;
v[5].y = arrow_y;
v[2].x = arrow_x + r * ::cosf(theta);
v[2].y = arrow_y + r * ::sinf(theta);
v[3].x = v[2].x;
v[3].y = v[2].y;
r = ::fmin(r, 2.5f);
v[1].x = arrow_x + r * ::cosf(theta - CV_PI / 2.0f);
v[1].y = arrow_y + r * ::sinf(theta - CV_PI / 2.0f);
v[4].x = arrow_x + r * ::cosf(theta + CV_PI / 2.0f);
v[4].y = arrow_y + r * ::sinf(theta + CV_PI / 2.0f);
int indx = (y * u_avg.cols + x) * NUM_VERTS_PER_ARROW * 3;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[0].x * xscale;
vertex_data[indx++] = v[0].y * yscale;
vertex_data[indx++] = v[0].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[1].x * xscale;
vertex_data[indx++] = v[1].y * yscale;
vertex_data[indx++] = v[1].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[2].x * xscale;
vertex_data[indx++] = v[2].y * yscale;
vertex_data[indx++] = v[2].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[3].x * xscale;
vertex_data[indx++] = v[3].y * yscale;
vertex_data[indx++] = v[3].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[4].x * xscale;
vertex_data[indx++] = v[4].y * yscale;
vertex_data[indx++] = v[4].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[5].x * xscale;
vertex_data[indx++] = v[5].y * yscale;
vertex_data[indx++] = v[5].z;
}
}
void CreateOpticalFlowNeedleMap_gpu(DevMem2Df u_avg, DevMem2Df v_avg, float* vertex_buffer, float* color_data, float xscale, float yscale)
{
const dim3 block(16);
const dim3 grid(divUp(u_avg.cols, block.x), divUp(u_avg.rows, block.y));
NeedleMapVertexKernel<<<grid, block>>>(u_avg, v_avg, vertex_buffer, color_data, xscale, yscale);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
}}}
......@@ -50,6 +50,7 @@ using namespace std;
void cv::gpu::BroxOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::interpolateFrames(const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
#else
......@@ -188,4 +189,44 @@ void cv::gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, cons
cudaSafeCall( cudaDeviceSynchronize() );
}
namespace cv { namespace gpu { namespace device
{
namespace optical_flow
{
void NeedleMapAverage_gpu(DevMem2Df u, DevMem2Df v, DevMem2Df u_avg, DevMem2Df v_avg);
void CreateOpticalFlowNeedleMap_gpu(DevMem2Df u_avg, DevMem2Df v_avg, float* vertex_buffer, float* color_data, float xscale, float yscale);
}
}}}
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors)
{
using namespace cv::gpu::device::optical_flow;
CV_Assert(u.type() == CV_32FC1);
CV_Assert(v.type() == u.type() && v.size() == u.size());
const int NEEDLE_MAP_SCALE = 16;
const int x_needles = u.cols / NEEDLE_MAP_SCALE;
const int y_needles = u.rows / NEEDLE_MAP_SCALE;
GpuMat u_avg(y_needles, x_needles, CV_32FC1);
GpuMat v_avg(y_needles, x_needles, CV_32FC1);
NeedleMapAverage_gpu(u, v, u_avg, v_avg);
const int NUM_VERTS_PER_ARROW = 6;
const int num_arrows = x_needles * y_needles * NUM_VERTS_PER_ARROW;
vertex.create(1, num_arrows, CV_32FC3);
colors.create(1, num_arrows, CV_32FC3);
colors.setTo(Scalar::all(1.0));
CreateOpticalFlowNeedleMap_gpu(u_avg, v_avg, vertex.ptr<float>(), colors.ptr<float>(), 1.0f / u.cols, 1.0f / u.rows);
cvtColor(colors, colors, COLOR_HSV2RGB);
}
#endif /* HAVE_CUDA */
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment