Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
a25b027e
Commit
a25b027e
authored
Jan 11, 2012
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated gpu optical_flow sample
parent
3aa53764
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
495 additions
and
271 deletions
+495
-271
opengl_interop.hpp
modules/core/include/opencv2/core/opengl_interop.hpp
+1
-1
opengl_interop.cpp
modules/core/src/opengl_interop.cpp
+3
-1
gpu.hpp
modules/gpu/include/opencv2/gpu/gpu.hpp
+2
-0
canny.cu
modules/gpu/src/cuda/canny.cu
+6
-6
optical_flow.cu
modules/gpu/src/cuda/optical_flow.cu
+217
-0
optical_flow.cpp
modules/gpu/src/optical_flow.cpp
+41
-0
optical_flow.cpp
samples/gpu/optical_flow.cpp
+225
-263
No files found.
modules/core/include/opencv2/core/opengl_interop.hpp
View file @
a25b027e
...
...
@@ -265,7 +265,7 @@ namespace cv
}
//! render OpenGL arrays
CV_EXPORTS
void
render
(
const
GlArrays
&
arr
,
int
mode
=
RenderMode
::
POINTS
);
CV_EXPORTS
void
render
(
const
GlArrays
&
arr
,
int
mode
=
RenderMode
::
POINTS
,
Scalar
color
=
Scalar
::
all
(
255
)
);
CV_EXPORTS
void
render
(
const
std
::
string
&
str
,
const
Ptr
<
GlFont
>&
font
,
Scalar
color
,
Point2d
pos
);
...
...
modules/core/src/opengl_interop.cpp
View file @
a25b027e
...
...
@@ -1325,11 +1325,13 @@ void cv::render(const GlTexture& tex, Rect_<double> wndRect, Rect_<double> texRe
#endif
}
void
cv
::
render
(
const
GlArrays
&
arr
,
int
mode
)
void
cv
::
render
(
const
GlArrays
&
arr
,
int
mode
,
Scalar
color
)
{
#ifndef HAVE_OPENGL
throw_nogl
;
#else
glColor3d
(
color
[
0
]
/
255.0
,
color
[
1
]
/
255.0
,
color
[
3
]
/
255.0
);
arr
.
bind
();
glDrawArrays
(
mode
,
0
,
arr
.
size
().
area
());
...
...
modules/gpu/include/opencv2/gpu/gpu.hpp
View file @
a25b027e
...
...
@@ -1734,6 +1734,8 @@ CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
float
pos
,
GpuMat
&
newFrame
,
GpuMat
&
buf
,
Stream
&
stream
=
Stream
::
Null
());
CV_EXPORTS
void
createOpticalFlowNeedleMap
(
const
GpuMat
&
u
,
const
GpuMat
&
v
,
GpuMat
&
vertex
,
GpuMat
&
colors
);
}
// namespace gpu
//! Speckle filtering - filters small connected components on diparity image.
...
...
modules/gpu/src/cuda/canny.cu
View file @
a25b027e
...
...
@@ -81,7 +81,7 @@ namespace cv { namespace gpu { namespace device
calcSobelRowPass<<<grid, block>>>(src, dx_buf, dy_buf, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(
cudaThreadSynchronize()
);
cudaSafeCall(
cudaDeviceSynchronize()
);
}
struct L1
...
...
@@ -171,7 +171,7 @@ namespace cv { namespace gpu { namespace device
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(
cudaThreadSynchronize()
);
cudaSafeCall(
cudaDeviceSynchronize()
);
}
//////////////////////////////////////////////////////////////////////////////////////////
...
...
@@ -252,7 +252,7 @@ namespace cv { namespace gpu { namespace device
calcMap<<<grid, block>>>(dx, dy, mag, map, rows, cols, low_thresh, high_thresh);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(
cudaThreadSynchronize()
);
cudaSafeCall(
cudaDeviceSynchronize()
);
}
//////////////////////////////////////////////////////////////////////////////////////////
...
...
@@ -345,7 +345,7 @@ namespace cv { namespace gpu { namespace device
edgesHysteresisLocal<<<grid, block>>>(map, st1, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(
cudaThreadSynchronize()
);
cudaSafeCall(
cudaDeviceSynchronize()
);
}
__constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
...
...
@@ -460,7 +460,7 @@ namespace cv { namespace gpu { namespace device
edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, rows, cols, count);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(
cudaThreadSynchronize()
);
cudaSafeCall(
cudaDeviceSynchronize()
);
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
...
...
@@ -485,7 +485,7 @@ namespace cv { namespace gpu { namespace device
getEdges<<<grid, block>>>(map, dst, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(
cudaThreadSynchronize()
);
cudaSafeCall(
cudaDeviceSynchronize()
);
}
} // namespace canny
}}} // namespace cv { namespace gpu { namespace device
modules/gpu/src/cuda/optical_flow.cu
0 → 100644
View file @
a25b027e
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/gpu/device/common.hpp"
namespace cv { namespace gpu { namespace device
{
namespace optical_flow
{
#define NEEDLE_MAP_SCALE 16
#define MAX_FLOW 30.0f
#define NUM_VERTS_PER_ARROW 6
__global__ void NeedleMapAverageKernel(const DevMem2Df u, const PtrStepf v, PtrStepf u_avg, PtrStepf v_avg)
{
__shared__ float smem[2 * NEEDLE_MAP_SCALE];
volatile float* u_col_sum = smem;
volatile float* v_col_sum = u_col_sum + NEEDLE_MAP_SCALE;
const int x = blockIdx.x * NEEDLE_MAP_SCALE + threadIdx.x;
const int y = blockIdx.y * NEEDLE_MAP_SCALE;
u_col_sum[threadIdx.x] = 0;
v_col_sum[threadIdx.x] = 0;
#pragma unroll
for(int i = 0; i < NEEDLE_MAP_SCALE; ++i)
{
u_col_sum[threadIdx.x] += u(::min(y + i, u.rows - 1), x);
v_col_sum[threadIdx.x] += v(::min(y + i, u.rows - 1), x);
}
if (threadIdx.x < 8)
{
// now add the column sums
const uint X = threadIdx.x;
if (X | 0xfe == 0xfe) // bit 0 is 0
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 1];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 1];
}
if (X | 0xfe == 0xfc) // bits 0 & 1 == 0
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 2];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 2];
}
if (X | 0xf8 == 0xf8)
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 4];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 4];
}
if (X == 0)
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 8];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 8];
}
}
if (threadIdx.x == 0)
{
const float coeff = 1.0f / (NEEDLE_MAP_SCALE * NEEDLE_MAP_SCALE);
u_col_sum[0] *= coeff;
v_col_sum[0] *= coeff;
u_avg(blockIdx.y, blockIdx.x) = u_col_sum[0];
v_avg(blockIdx.y, blockIdx.x) = v_col_sum[0];
}
}
void NeedleMapAverage_gpu(DevMem2Df u, DevMem2Df v, DevMem2Df u_avg, DevMem2Df v_avg)
{
const dim3 block(NEEDLE_MAP_SCALE);
const dim3 grid(u_avg.cols, u_avg.rows);
NeedleMapAverageKernel<<<grid, block>>>(u, v, u_avg, v_avg);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void NeedleMapVertexKernel(const DevMem2Df u_avg, const PtrStepf v_avg, float* vertex_data, float* color_data, float xscale, float yscale)
{
// test - just draw a triangle at each pixel
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const float arrow_x = x * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
const float arrow_y = y * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
float3 v[NUM_VERTS_PER_ARROW];
if (x < u_avg.cols && y < u_avg.rows)
{
const float u_avg_val = u_avg(y, x);
const float v_avg_val = v_avg(y, x);
const float theta = ::atan2f(v_avg_val, u_avg_val) + CV_PI;
float r = ::sqrtf(v_avg_val * v_avg_val + u_avg_val * u_avg_val);
r = fmin(14.0f * (r / MAX_FLOW), 14.0f);
v[0].z = 1.0f;
v[1].z = 0.7f;
v[2].z = 0.7f;
v[3].z = 0.7f;
v[4].z = 0.7f;
v[5].z = 1.0f;
v[0].x = arrow_x;
v[0].y = arrow_y;
v[5].x = arrow_x;
v[5].y = arrow_y;
v[2].x = arrow_x + r * ::cosf(theta);
v[2].y = arrow_y + r * ::sinf(theta);
v[3].x = v[2].x;
v[3].y = v[2].y;
r = ::fmin(r, 2.5f);
v[1].x = arrow_x + r * ::cosf(theta - CV_PI / 2.0f);
v[1].y = arrow_y + r * ::sinf(theta - CV_PI / 2.0f);
v[4].x = arrow_x + r * ::cosf(theta + CV_PI / 2.0f);
v[4].y = arrow_y + r * ::sinf(theta + CV_PI / 2.0f);
int indx = (y * u_avg.cols + x) * NUM_VERTS_PER_ARROW * 3;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[0].x * xscale;
vertex_data[indx++] = v[0].y * yscale;
vertex_data[indx++] = v[0].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[1].x * xscale;
vertex_data[indx++] = v[1].y * yscale;
vertex_data[indx++] = v[1].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[2].x * xscale;
vertex_data[indx++] = v[2].y * yscale;
vertex_data[indx++] = v[2].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[3].x * xscale;
vertex_data[indx++] = v[3].y * yscale;
vertex_data[indx++] = v[3].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[4].x * xscale;
vertex_data[indx++] = v[4].y * yscale;
vertex_data[indx++] = v[4].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[5].x * xscale;
vertex_data[indx++] = v[5].y * yscale;
vertex_data[indx++] = v[5].z;
}
}
void CreateOpticalFlowNeedleMap_gpu(DevMem2Df u_avg, DevMem2Df v_avg, float* vertex_buffer, float* color_data, float xscale, float yscale)
{
const dim3 block(16);
const dim3 grid(divUp(u_avg.cols, block.x), divUp(u_avg.rows, block.y));
NeedleMapVertexKernel<<<grid, block>>>(u_avg, v_avg, vertex_buffer, color_data, xscale, yscale);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
}}}
modules/gpu/src/optical_flow.cpp
View file @
a25b027e
...
...
@@ -50,6 +50,7 @@ using namespace std;
void
cv
::
gpu
::
BroxOpticalFlow
::
operator
()(
const
GpuMat
&
,
const
GpuMat
&
,
GpuMat
&
,
GpuMat
&
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
interpolateFrames
(
const
GpuMat
&
,
const
GpuMat
&
,
const
GpuMat
&
,
const
GpuMat
&
,
const
GpuMat
&
,
const
GpuMat
&
,
float
,
GpuMat
&
,
GpuMat
&
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
createOpticalFlowNeedleMap
(
const
GpuMat
&
,
const
GpuMat
&
,
GpuMat
&
,
GpuMat
&
)
{
throw_nogpu
();
}
#else
...
...
@@ -188,4 +189,44 @@ void cv::gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, cons
cudaSafeCall
(
cudaDeviceSynchronize
()
);
}
namespace
cv
{
namespace
gpu
{
namespace
device
{
namespace
optical_flow
{
void
NeedleMapAverage_gpu
(
DevMem2Df
u
,
DevMem2Df
v
,
DevMem2Df
u_avg
,
DevMem2Df
v_avg
);
void
CreateOpticalFlowNeedleMap_gpu
(
DevMem2Df
u_avg
,
DevMem2Df
v_avg
,
float
*
vertex_buffer
,
float
*
color_data
,
float
xscale
,
float
yscale
);
}
}}}
void
cv
::
gpu
::
createOpticalFlowNeedleMap
(
const
GpuMat
&
u
,
const
GpuMat
&
v
,
GpuMat
&
vertex
,
GpuMat
&
colors
)
{
using
namespace
cv
::
gpu
::
device
::
optical_flow
;
CV_Assert
(
u
.
type
()
==
CV_32FC1
);
CV_Assert
(
v
.
type
()
==
u
.
type
()
&&
v
.
size
()
==
u
.
size
());
const
int
NEEDLE_MAP_SCALE
=
16
;
const
int
x_needles
=
u
.
cols
/
NEEDLE_MAP_SCALE
;
const
int
y_needles
=
u
.
rows
/
NEEDLE_MAP_SCALE
;
GpuMat
u_avg
(
y_needles
,
x_needles
,
CV_32FC1
);
GpuMat
v_avg
(
y_needles
,
x_needles
,
CV_32FC1
);
NeedleMapAverage_gpu
(
u
,
v
,
u_avg
,
v_avg
);
const
int
NUM_VERTS_PER_ARROW
=
6
;
const
int
num_arrows
=
x_needles
*
y_needles
*
NUM_VERTS_PER_ARROW
;
vertex
.
create
(
1
,
num_arrows
,
CV_32FC3
);
colors
.
create
(
1
,
num_arrows
,
CV_32FC3
);
colors
.
setTo
(
Scalar
::
all
(
1.0
));
CreateOpticalFlowNeedleMap_gpu
(
u_avg
,
v_avg
,
vertex
.
ptr
<
float
>
(),
colors
.
ptr
<
float
>
(),
1.0
f
/
u
.
cols
,
1.0
f
/
u
.
rows
);
cvtColor
(
colors
,
colors
,
COLOR_HSV2RGB
);
}
#endif
/* HAVE_CUDA */
samples/gpu/optical_flow.cpp
View file @
a25b027e
...
...
@@ -4,132 +4,245 @@
#include "cvconfig.h"
#include "opencv2/core/core.hpp"
#include "opencv2/core/opengl_interop.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp"
#ifdef HAVE_CUDA
#include "NPP_staging/NPP_staging.hpp"
#endif
using
namespace
std
;
using
namespace
cv
;
using
namespace
cv
::
gpu
;
#if !defined(HAVE_CUDA)
int
main
(
int
argc
,
const
char
*
argv
[])
{
cout
<<
"Please compile the library with CUDA support"
<<
endl
;
return
-
1
;
}
#else
void
getFlowField
(
const
Mat
&
u
,
const
Mat
&
v
,
Mat
&
flowField
);
#define PARAM_LEFT "--left"
#define PARAM_RIGHT "--right"
#define PARAM_SCALE "--scale"
#define PARAM_ALPHA "--alpha"
#define PARAM_GAMMA "--gamma"
#define PARAM_INNER "--inner"
#define PARAM_OUTER "--outer"
#define PARAM_SOLVER "--solver"
#define PARAM_TIME_STEP "--time_step"
#define PARAM_HELP "--help"
#ifdef HAVE_OPENGL
bool
help_showed
=
false
;
void
needleMapDraw
(
void
*
userdata
)
;
void
printHelp
()
{
cout
<<
"Usage help:
\n
"
;
cout
<<
setiosflags
(
ios
::
left
);
cout
<<
"
\t
"
<<
setw
(
15
)
<<
PARAM_ALPHA
<<
" - set alpha
\n
"
;
cout
<<
"
\t
"
<<
setw
(
15
)
<<
PARAM_GAMMA
<<
" - set gamma
\n
"
;
cout
<<
"
\t
"
<<
setw
(
15
)
<<
PARAM_INNER
<<
" - set number of inner iterations
\n
"
;
cout
<<
"
\t
"
<<
setw
(
15
)
<<
PARAM_LEFT
<<
" - specify left image
\n
"
;
cout
<<
"
\t
"
<<
setw
(
15
)
<<
PARAM_RIGHT
<<
" - specify right image
\n
"
;
cout
<<
"
\t
"
<<
setw
(
15
)
<<
PARAM_OUTER
<<
" - set number of outer iterations
\n
"
;
cout
<<
"
\t
"
<<
setw
(
15
)
<<
PARAM_SCALE
<<
" - set pyramid scale factor
\n
"
;
cout
<<
"
\t
"
<<
setw
(
15
)
<<
PARAM_SOLVER
<<
" - set number of basic solver iterations
\n
"
;
cout
<<
"
\t
"
<<
setw
(
15
)
<<
PARAM_TIME_STEP
<<
" - set frame interpolation time step
\n
"
;
cout
<<
"
\t
"
<<
setw
(
15
)
<<
PARAM_HELP
<<
" - display this help message
\n
"
;
help_showed
=
true
;
}
#endif
int
processCommandLine
(
int
argc
,
const
char
*
argv
[],
float
&
timeStep
,
string
&
frame0Name
,
string
&
frame1Name
,
BroxOpticalFlow
&
flow
)
int
main
(
int
argc
,
const
char
*
argv
[]
)
{
timeStep
=
0.25
f
;
for
(
int
iarg
=
1
;
iarg
<
argc
;
++
iarg
)
try
{
if
(
strcmp
(
argv
[
iarg
],
PARAM_LEFT
)
==
0
)
const
char
*
keys
=
"{ h | help | false | print help message }"
"{ l | left | | specify left image }"
"{ r | right | | specify right image }"
"{ s | scale | 0.8 | set pyramid scale factor }"
"{ a | alpha | 0.197 | set alpha }"
"{ g | gamma | 50.0 | set gamma }"
"{ i | inner | 10 | set number of inner iterations }"
"{ o | outer | 77 | set number of outer iterations }"
"{ si | solver | 10 | set number of basic solver iterations }"
"{ t | time_step | 0.1 | set frame interpolation time step }"
;
CommandLineParser
cmd
(
argc
,
argv
,
keys
);
if
(
cmd
.
get
<
bool
>
(
"help"
))
{
if
(
iarg
+
1
<
argc
)
frame0Name
=
argv
[
++
iarg
];
else
return
-
1
;
}
if
(
strcmp
(
argv
[
iarg
],
PARAM_RIGHT
)
==
0
)
{
if
(
iarg
+
1
<
argc
)
frame1Name
=
argv
[
++
iarg
];
else
return
-
1
;
}
else
if
(
strcmp
(
argv
[
iarg
],
PARAM_SCALE
)
==
0
)
{
if
(
iarg
+
1
<
argc
)
flow
.
scale_factor
=
static_cast
<
float
>
(
atof
(
argv
[
++
iarg
]));
else
return
-
1
;
}
else
if
(
strcmp
(
argv
[
iarg
],
PARAM_ALPHA
)
==
0
)
{
if
(
iarg
+
1
<
argc
)
flow
.
alpha
=
static_cast
<
float
>
(
atof
(
argv
[
++
iarg
]));
else
return
-
1
;
}
else
if
(
strcmp
(
argv
[
iarg
],
PARAM_GAMMA
)
==
0
)
{
if
(
iarg
+
1
<
argc
)
flow
.
gamma
=
static_cast
<
float
>
(
atof
(
argv
[
++
iarg
]));
else
return
-
1
;
}
else
if
(
strcmp
(
argv
[
iarg
],
PARAM_INNER
)
==
0
)
{
if
(
iarg
+
1
<
argc
)
flow
.
inner_iterations
=
atoi
(
argv
[
++
iarg
]);
else
return
-
1
;
cout
<<
"Usage: optical_float [options]"
<<
endl
;
cout
<<
"Avaible options:"
<<
endl
;
cmd
.
printParams
();
return
0
;
}
else
if
(
strcmp
(
argv
[
iarg
],
PARAM_OUTER
)
==
0
)
string
frame0Name
=
cmd
.
get
<
string
>
(
"left"
);
string
frame1Name
=
cmd
.
get
<
string
>
(
"right"
);
float
scale
=
cmd
.
get
<
float
>
(
"scale"
);
float
alpha
=
cmd
.
get
<
float
>
(
"alpha"
);
float
gamma
=
cmd
.
get
<
float
>
(
"gamma"
);
int
inner_iterations
=
cmd
.
get
<
int
>
(
"inner"
);
int
outer_iterations
=
cmd
.
get
<
int
>
(
"outer"
);
int
solver_iterations
=
cmd
.
get
<
int
>
(
"solver"
);
float
timeStep
=
cmd
.
get
<
float
>
(
"time_step"
);
if
(
frame0Name
.
empty
()
||
frame1Name
.
empty
())
{
if
(
iarg
+
1
<
argc
)
flow
.
outer_iterations
=
atoi
(
argv
[
++
iarg
]);
else
return
-
1
;
cerr
<<
"Missing input file names"
<<
endl
;
return
-
1
;
}
else
if
(
strcmp
(
argv
[
iarg
],
PARAM_SOLVER
)
==
0
)
Mat
frame0Color
=
imread
(
frame0Name
);
Mat
frame1Color
=
imread
(
frame1Name
);
if
(
frame0Color
.
empty
()
||
frame1Color
.
empty
())
{
if
(
iarg
+
1
<
argc
)
flow
.
solver_iterations
=
atoi
(
argv
[
++
iarg
]);
else
return
-
1
;
cout
<<
"Can't load input images"
<<
endl
;
return
-
1
;
}
else
if
(
strcmp
(
argv
[
iarg
],
PARAM_TIME_STEP
)
==
0
)
cout
<<
"OpenCV / NVIDIA Computer Vision"
<<
endl
;
cout
<<
"Optical Flow Demo: Frame Interpolation"
<<
endl
;
cout
<<
"========================================="
<<
endl
;
namedWindow
(
"Forward flow"
);
namedWindow
(
"Backward flow"
);
namedWindow
(
"Needle Map"
,
WINDOW_OPENGL
);
namedWindow
(
"Interpolated frame"
);
setGlDevice
();
cout
<<
"Press:"
<<
endl
;
cout
<<
"
\t
ESC to quit"
<<
endl
;
cout
<<
"
\t
'a' to move to the previous frame"
<<
endl
;
cout
<<
"
\t
's' to move to the next frame
\n
"
<<
endl
;
frame0Color
.
convertTo
(
frame0Color
,
CV_32F
,
1.0
/
255.0
);
frame1Color
.
convertTo
(
frame1Color
,
CV_32F
,
1.0
/
255.0
);
Mat
frame0Gray
,
frame1Gray
;
cvtColor
(
frame0Color
,
frame0Gray
,
COLOR_BGR2GRAY
);
cvtColor
(
frame1Color
,
frame1Gray
,
COLOR_BGR2GRAY
);
GpuMat
d_frame0
(
frame0Gray
);
GpuMat
d_frame1
(
frame1Gray
);
cout
<<
"Estimating optical flow"
<<
endl
;
BroxOpticalFlow
d_flow
(
alpha
,
gamma
,
scale
,
inner_iterations
,
outer_iterations
,
solver_iterations
);
cout
<<
"
\t
Forward..."
<<
endl
;
GpuMat
d_fu
,
d_fv
;
d_flow
(
d_frame0
,
d_frame1
,
d_fu
,
d_fv
);
Mat
flowFieldForward
;
getFlowField
(
Mat
(
d_fu
),
Mat
(
d_fv
),
flowFieldForward
);
cout
<<
"
\t
Backward..."
<<
endl
;
GpuMat
d_bu
,
d_bv
;
d_flow
(
d_frame1
,
d_frame0
,
d_bu
,
d_bv
);
Mat
flowFieldBackward
;
getFlowField
(
Mat
(
d_bu
),
Mat
(
d_bv
),
flowFieldBackward
);
#ifdef HAVE_OPENGL
cout
<<
"Create Optical Flow Needle Map..."
<<
endl
;
GpuMat
d_vertex
,
d_colors
;
createOpticalFlowNeedleMap
(
d_bu
,
d_bv
,
d_vertex
,
d_colors
);
#endif
cout
<<
"Interpolating..."
<<
endl
;
// first frame color components
GpuMat
d_b
,
d_g
,
d_r
;
// second frame color components
GpuMat
d_bt
,
d_gt
,
d_rt
;
// prepare color components on host and copy them to device memory
Mat
channels
[
3
];
cv
::
split
(
frame0Color
,
channels
);
d_b
.
upload
(
channels
[
0
]);
d_g
.
upload
(
channels
[
1
]);
d_r
.
upload
(
channels
[
2
]);
cv
::
split
(
frame1Color
,
channels
);
d_bt
.
upload
(
channels
[
0
]);
d_gt
.
upload
(
channels
[
1
]);
d_rt
.
upload
(
channels
[
2
]);
// temporary buffer
GpuMat
d_buf
;
// intermediate frame color components (GPU memory)
GpuMat
d_rNew
,
d_gNew
,
d_bNew
;
GpuMat
d_newFrame
;
vector
<
Mat
>
frames
;
frames
.
reserve
(
static_cast
<
int
>
(
1.0
f
/
timeStep
)
+
2
);
frames
.
push_back
(
frame0Color
);
// compute interpolated frames
for
(
float
timePos
=
timeStep
;
timePos
<
1.0
f
;
timePos
+=
timeStep
)
{
if
(
iarg
+
1
<
argc
)
timeStep
=
static_cast
<
float
>
(
atof
(
argv
[
++
iarg
]));
else
return
-
1
;
// interpolate blue channel
interpolateFrames
(
d_b
,
d_bt
,
d_fu
,
d_fv
,
d_bu
,
d_bv
,
timePos
,
d_bNew
,
d_buf
);
// interpolate green channel
interpolateFrames
(
d_g
,
d_gt
,
d_fu
,
d_fv
,
d_bu
,
d_bv
,
timePos
,
d_gNew
,
d_buf
);
// interpolate red channel
interpolateFrames
(
d_r
,
d_rt
,
d_fu
,
d_fv
,
d_bu
,
d_bv
,
timePos
,
d_rNew
,
d_buf
);
GpuMat
channels
[]
=
{
d_bNew
,
d_gNew
,
d_rNew
};
merge
(
channels
,
3
,
d_newFrame
);
frames
.
push_back
(
Mat
(
d_newFrame
));
cout
<<
setprecision
(
4
)
<<
timePos
*
100.0
f
<<
"%
\r
"
;
}
else
if
(
strcmp
(
argv
[
iarg
],
PARAM_HELP
)
==
0
)
frames
.
push_back
(
frame1Color
);
cout
<<
setw
(
5
)
<<
"100%"
<<
endl
;
cout
<<
"Done"
<<
endl
;
imshow
(
"Forward flow"
,
flowFieldForward
);
imshow
(
"Backward flow"
,
flowFieldBackward
);
#ifdef HAVE_OPENGL
GlArrays
arr
;
arr
.
setVertexArray
(
d_vertex
);
arr
.
setColorArray
(
d_colors
,
false
);
setOpenGlDrawCallback
(
"Needle Map"
,
needleMapDraw
,
&
arr
);
#endif
int
currentFrame
=
0
;
imshow
(
"Interpolated frame"
,
frames
[
currentFrame
]);
while
(
true
)
{
printHelp
();
return
0
;
int
key
=
toupper
(
waitKey
(
10
));
switch
(
key
)
{
case
27
:
return
0
;
break
;
case
'A'
:
if
(
currentFrame
>
0
)
--
currentFrame
;
imshow
(
"Interpolated frame"
,
frames
[
currentFrame
]);
break
;
case
'S'
:
if
(
currentFrame
<
frames
.
size
()
-
1
)
++
currentFrame
;
imshow
(
"Interpolated frame"
,
frames
[
currentFrame
]);
break
;
}
}
}
catch
(
const
exception
&
ex
)
{
cerr
<<
ex
.
what
()
<<
endl
;
return
-
1
;
}
catch
(...)
{
cerr
<<
"Unknow error"
<<
endl
;
return
-
1
;
}
return
0
;
}
...
...
@@ -181,171 +294,20 @@ void getFlowField(const Mat& u, const Mat& v, Mat& flowField)
}
}
int
main
(
int
argc
,
const
char
*
argv
[])
{
string
frame0Name
,
frame1Name
;
float
timeStep
=
0.01
f
;
BroxOpticalFlow
d_flow
(
0.197
f
/*alpha*/
,
50.0
f
/*gamma*/
,
0.8
f
/*scale_factor*/
,
10
/*inner_iterations*/
,
77
/*outer_iterations*/
,
10
/*solver_iterations*/
);
int
result
=
processCommandLine
(
argc
,
argv
,
timeStep
,
frame0Name
,
frame1Name
,
d_flow
);
if
(
help_showed
)
return
-
1
;
if
(
argc
==
1
||
result
)
{
printHelp
();
return
result
;
}
if
(
frame0Name
.
empty
()
||
frame1Name
.
empty
())
{
cout
<<
"Missing input file names
\n
"
;
return
-
1
;
}
Mat
frame0Color
=
imread
(
frame0Name
);
Mat
frame1Color
=
imread
(
frame1Name
);
if
(
frame0Color
.
empty
()
||
frame1Color
.
empty
())
{
cout
<<
"Can't load input images
\n
"
;
return
-
1
;
}
cout
<<
"OpenCV / NVIDIA Computer Vision
\n
"
;
cout
<<
"Optical Flow Demo: Frame Interpolation
\n
"
;
cout
<<
"=========================================
\n
"
;
cout
<<
"Press:
\n
ESC to quit
\n
'a' to move to the previous frame
\n
's' to move to the next frame
\n
"
;
frame0Color
.
convertTo
(
frame0Color
,
CV_32F
,
1.0
/
255.0
);
frame1Color
.
convertTo
(
frame1Color
,
CV_32F
,
1.0
/
255.0
);
Mat
frame0Gray
,
frame1Gray
;
cvtColor
(
frame0Color
,
frame0Gray
,
COLOR_BGR2GRAY
);
cvtColor
(
frame1Color
,
frame1Gray
,
COLOR_BGR2GRAY
);
GpuMat
d_frame0
(
frame0Gray
);
GpuMat
d_frame1
(
frame1Gray
);
Mat
fu
,
fv
;
Mat
bu
,
bv
;
GpuMat
d_fu
,
d_fv
;
GpuMat
d_bu
,
d_bv
;
cout
<<
"Estimating optical flow
\n
Forward...
\n
"
;
d_flow
(
d_frame0
,
d_frame1
,
d_fu
,
d_fv
);
d_flow
(
d_frame1
,
d_frame0
,
d_bu
,
d_bv
);
d_fu
.
download
(
fu
);
d_fv
.
download
(
fv
);
d_bu
.
download
(
bu
);
d_bv
.
download
(
bv
);
// first frame color components (GPU memory)
GpuMat
d_b
,
d_g
,
d_r
;
// second frame color components (GPU memory)
GpuMat
d_bt
,
d_gt
,
d_rt
;
// prepare color components on host and copy them to device memory
Mat
channels
[
3
];
cv
::
split
(
frame0Color
,
channels
);
d_b
.
upload
(
channels
[
0
]);
d_g
.
upload
(
channels
[
1
]);
d_r
.
upload
(
channels
[
2
]);
cv
::
split
(
frame1Color
,
channels
);
d_bt
.
upload
(
channels
[
0
]);
d_gt
.
upload
(
channels
[
1
]);
d_rt
.
upload
(
channels
[
2
]);
cout
<<
"Interpolating...
\n
"
;
cout
.
precision
(
4
);
// temporary buffer
GpuMat
d_buf
;
// intermediate frame color components (GPU memory)
GpuMat
d_rNew
,
d_gNew
,
d_bNew
;
GpuMat
d_newFrame
;
vector
<
Mat
>
frames
;
frames
.
reserve
(
1.0
f
/
timeStep
+
2
);
#ifdef HAVE_OPENGL
frames
.
push_back
(
frame0Color
);
// compute interpolated frames
for
(
float
timePos
=
timeStep
;
timePos
<
1.0
f
;
timePos
+=
timeStep
)
{
// interpolate blue channel
interpolateFrames
(
d_b
,
d_bt
,
d_fu
,
d_fv
,
d_bu
,
d_bv
,
timePos
,
d_bNew
,
d_buf
);
// interpolate green channel
interpolateFrames
(
d_g
,
d_gt
,
d_fu
,
d_fv
,
d_bu
,
d_bv
,
timePos
,
d_gNew
,
d_buf
);
// interpolate red channel
interpolateFrames
(
d_r
,
d_rt
,
d_fu
,
d_fv
,
d_bu
,
d_bv
,
timePos
,
d_rNew
,
d_buf
);
GpuMat
channels
[]
=
{
d_bNew
,
d_gNew
,
d_rNew
};
merge
(
channels
,
3
,
d_newFrame
);
Mat
newFrame
;
d_newFrame
.
download
(
newFrame
);
frames
.
push_back
(
newFrame
);
cout
<<
timePos
*
100.0
f
<<
"%
\r
"
;
}
cout
<<
setw
(
5
)
<<
"100%
\n
"
;
frames
.
push_back
(
frame1Color
);
int
currentFrame
;
currentFrame
=
0
;
Mat
flowFieldForward
;
Mat
flowFieldBackward
;
getFlowField
(
fu
,
fv
,
flowFieldForward
);
getFlowField
(
bu
,
bv
,
flowFieldBackward
);
void
needleMapDraw
(
void
*
userdata
)
{
const
GlArrays
*
arr
=
static_cast
<
const
GlArrays
*>
(
userdata
);
imshow
(
"Forward flow"
,
flowFieldForward
);
imshow
(
"Backward flow"
,
flowFieldBackward
);
GlCamera
camera
;
camera
.
setOrthoProjection
(
0.0
,
1.0
,
1.0
,
0.0
,
0.0
,
1.0
);
camera
.
lookAt
(
Point3d
(
0.0
,
0.0
,
1.0
),
Point3d
(
0.0
,
0.0
,
0.0
),
Point3d
(
0.0
,
1.0
,
0.0
));
imshow
(
"Interpolated frame"
,
frames
[
currentFrame
]);
camera
.
setupProjectionMatrix
();
camera
.
setupModelViewMatrix
();
bool
qPressed
=
false
;
while
(
!
qPressed
)
{
int
key
=
toupper
(
waitKey
(
10
));
switch
(
key
)
{
case
27
:
qPressed
=
true
;
break
;
case
'A'
:
if
(
currentFrame
>
0
)
--
currentFrame
;
imshow
(
"Interpolated frame"
,
frames
[
currentFrame
]);
break
;
case
'S'
:
if
(
currentFrame
<
frames
.
size
()
-
1
)
++
currentFrame
;
imshow
(
"Interpolated frame"
,
frames
[
currentFrame
]);
break
;
}
}
return
0
;
render
(
*
arr
,
RenderMode
::
TRIANGLES
);
}
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment