Commit 9ef742bb authored by Alexander Alekhin's avatar Alexander Alekhin Committed by GitHub

Merge pull request #9082 from terfendail:imgwarp_avx

AVX and SSE4.1 optimized implementation of resize and warp functions migrated
parents 928bfe0b fadf25ac
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Geometrical transforms on images and matrices: rotation, zoom etc.
//
// */
#include "precomp.hpp"
#include "imgwarp.hpp"
namespace cv
{
namespace opt_AVX2
{
class resizeNNInvokerAVX4 :
public ParallelLoopBody
{
public:
resizeNNInvokerAVX4(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=AVX
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int avxWidth = width - (width & 0x7);
const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1);
if(((int64)(dst.data + dst.step) & 0x1f) == 0)
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 8)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1);
_mm256_maskstore_epi32((int*)D, mask, pixels);
D += 32;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
else
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 8)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1);
_mm256_storeu_si256((__m256i*)D, pixels);
D += 32;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerAVX4(const resizeNNInvokerAVX4&);
resizeNNInvokerAVX4& operator=(const resizeNNInvokerAVX4&);
};
class resizeNNInvokerAVX2 :
public ParallelLoopBody
{
public:
resizeNNInvokerAVX2(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=AVX
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
//int avxWidth = (width - 1) - ((width - 1) & 0x7);
int avxWidth = width - (width & 0xf);
const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1);
const __m256i CV_DECL_ALIGNED(64) shuffle_mask = _mm256_set_epi8(15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0,
15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0);
const __m256i CV_DECL_ALIGNED(64) permute_mask = _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0);
//const __m256i CV_DECL_ALIGNED(64) shift_shuffle_mask = _mm256_set_epi8(13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2,
// 13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2);
if(((int64)(dst.data + dst.step) & 0x1f) == 0)
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
const uchar* S2 = S - 2;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 16)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1);
const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8);
__m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2);
__m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1);
__m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa);
__m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask);
__m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask);
_mm256_maskstore_epi32((int*)D, mask, ints_permuted);
D += 32;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
else
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
const uchar* S2 = S - 2;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 16)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1);
const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8);
__m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2);
__m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1);
__m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa);
__m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask);
__m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask);
_mm256_storeu_si256((__m256i*)D, ints_permuted);
D += 32;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerAVX2(const resizeNNInvokerAVX2&);
resizeNNInvokerAVX2& operator=(const resizeNNInvokerAVX2&);
};
void resizeNN2_AVX2(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerAVX2 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
void resizeNN4_AVX2(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerAVX4 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
int warpAffineBlockline(int *adelta, int *bdelta, short* xy, short* alpha, int X0, int Y0, int bw)
{
const int AB_BITS = MAX(10, (int)INTER_BITS);
int x1 = 0;
__m256i fxy_mask = _mm256_set1_epi32(INTER_TAB_SIZE - 1);
__m256i XX = _mm256_set1_epi32(X0), YY = _mm256_set1_epi32(Y0);
for (; x1 <= bw - 16; x1 += 16)
{
__m256i tx0, tx1, ty0, ty1;
tx0 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(adelta + x1)), XX);
ty0 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(bdelta + x1)), YY);
tx1 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(adelta + x1 + 8)), XX);
ty1 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(bdelta + x1 + 8)), YY);
tx0 = _mm256_srai_epi32(tx0, AB_BITS - INTER_BITS);
ty0 = _mm256_srai_epi32(ty0, AB_BITS - INTER_BITS);
tx1 = _mm256_srai_epi32(tx1, AB_BITS - INTER_BITS);
ty1 = _mm256_srai_epi32(ty1, AB_BITS - INTER_BITS);
__m256i fx_ = _mm256_packs_epi32(_mm256_and_si256(tx0, fxy_mask),
_mm256_and_si256(tx1, fxy_mask));
__m256i fy_ = _mm256_packs_epi32(_mm256_and_si256(ty0, fxy_mask),
_mm256_and_si256(ty1, fxy_mask));
tx0 = _mm256_packs_epi32(_mm256_srai_epi32(tx0, INTER_BITS),
_mm256_srai_epi32(tx1, INTER_BITS));
ty0 = _mm256_packs_epi32(_mm256_srai_epi32(ty0, INTER_BITS),
_mm256_srai_epi32(ty1, INTER_BITS));
fx_ = _mm256_adds_epi16(fx_, _mm256_slli_epi16(fy_, INTER_BITS));
fx_ = _mm256_permute4x64_epi64(fx_, (3 << 6) + (1 << 4) + (2 << 2) + 0);
_mm256_storeu_si256((__m256i*)(xy + x1 * 2), _mm256_unpacklo_epi16(tx0, ty0));
_mm256_storeu_si256((__m256i*)(xy + x1 * 2 + 16), _mm256_unpackhi_epi16(tx0, ty0));
_mm256_storeu_si256((__m256i*)(alpha + x1), fx_);
}
_mm256_zeroupper();
return x1;
}
}
}
/* End of file. */
......@@ -52,6 +52,7 @@
#include "hal_replacement.hpp"
#include "opencv2/core/openvx/ovx_defs.hpp"
#include "imgwarp.hpp"
using namespace cv;
......@@ -417,308 +418,6 @@ private:
resizeNNInvoker& operator=(const resizeNNInvoker&);
};
#if CV_AVX2
class resizeNNInvokerAVX4 :
public ParallelLoopBody
{
public:
resizeNNInvokerAVX4(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=AVX
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x, pix_size = (int)src.elemSize();
int width = dsize.width;
int avxWidth = width - (width & 0x7);
const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1);
if(((int64)(dst.data + dst.step) & 0x1f) == 0)
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
#pragma unroll(4)
for(x = 0; x < avxWidth; x += 8)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1);
_mm256_maskstore_epi32((int*)D, mask, pixels);
D += 32;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
else
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
#pragma unroll(4)
for(x = 0; x < avxWidth; x += 8)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1);
_mm256_storeu_si256((__m256i*)D, pixels);
D += 32;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerAVX4(const resizeNNInvokerAVX4&);
resizeNNInvokerAVX4& operator=(const resizeNNInvokerAVX4&);
};
class resizeNNInvokerAVX2 :
public ParallelLoopBody
{
public:
resizeNNInvokerAVX2(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=AVX
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x, pix_size = (int)src.elemSize();
int width = dsize.width;
//int avxWidth = (width - 1) - ((width - 1) & 0x7);
int avxWidth = width - (width & 0xf);
const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1);
const __m256i CV_DECL_ALIGNED(64) shuffle_mask = _mm256_set_epi8(15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0,
15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0);
const __m256i CV_DECL_ALIGNED(64) permute_mask = _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0);
const __m256i CV_DECL_ALIGNED(64) shift_shuffle_mask = _mm256_set_epi8(13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2,
13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2);
if(((int64)(dst.data + dst.step) & 0x1f) == 0)
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
const uchar* S2 = S - 2;
#pragma unroll(4)
for(x = 0; x < avxWidth; x += 16)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1);
const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8);
__m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2);
__m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1);
__m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa);
__m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask);
__m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask);
_mm256_maskstore_epi32((int*)D, mask, ints_permuted);
D += 32;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
else
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
const uchar* S2 = S - 2;
#pragma unroll(4)
for(x = 0; x < avxWidth; x += 16)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1);
const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8);
__m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2);
__m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1);
__m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa);
__m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask);
__m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask);
_mm256_storeu_si256((__m256i*)D, ints_permuted);
D += 32;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerAVX2(const resizeNNInvokerAVX2&);
resizeNNInvokerAVX2& operator=(const resizeNNInvokerAVX2&);
};
#endif
#if CV_SSE4_1
class resizeNNInvokerSSE2 :
public ParallelLoopBody
{
public:
resizeNNInvokerSSE2(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=SSE4.2
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int sseWidth = width - (width & 0x7);
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
__m128i CV_DECL_ALIGNED(64) pixels = _mm_set1_epi16(0);
for(x = 0; x < sseWidth; x += 8)
{
ushort imm = *(ushort*)(S + x_ofs[x + 0]);
pixels = _mm_insert_epi16(pixels, imm, 0);
imm = *(ushort*)(S + x_ofs[x + 1]);
pixels = _mm_insert_epi16(pixels, imm, 1);
imm = *(ushort*)(S + x_ofs[x + 2]);
pixels = _mm_insert_epi16(pixels, imm, 2);
imm = *(ushort*)(S + x_ofs[x + 3]);
pixels = _mm_insert_epi16(pixels, imm, 3);
imm = *(ushort*)(S + x_ofs[x + 4]);
pixels = _mm_insert_epi16(pixels, imm, 4);
imm = *(ushort*)(S + x_ofs[x + 5]);
pixels = _mm_insert_epi16(pixels, imm, 5);
imm = *(ushort*)(S + x_ofs[x + 6]);
pixels = _mm_insert_epi16(pixels, imm, 6);
imm = *(ushort*)(S + x_ofs[x + 7]);
pixels = _mm_insert_epi16(pixels, imm, 7);
_mm_storeu_si128((__m128i*)D, pixels);
D += 16;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerSSE2(const resizeNNInvokerSSE2&);
resizeNNInvokerSSE2& operator=(const resizeNNInvokerSSE2&);
};
class resizeNNInvokerSSE4 :
public ParallelLoopBody
{
public:
resizeNNInvokerSSE4(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=SSE4.2
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int sseWidth = width - (width & 0x3);
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
__m128i CV_DECL_ALIGNED(64) pixels = _mm_set1_epi16(0);
for(x = 0; x < sseWidth; x += 4)
{
int imm = *(int*)(S + x_ofs[x + 0]);
pixels = _mm_insert_epi32(pixels, imm, 0);
imm = *(int*)(S + x_ofs[x + 1]);
pixels = _mm_insert_epi32(pixels, imm, 1);
imm = *(int*)(S + x_ofs[x + 2]);
pixels = _mm_insert_epi32(pixels, imm, 2);
imm = *(int*)(S + x_ofs[x + 3]);
pixels = _mm_insert_epi32(pixels, imm, 3);
_mm_storeu_si128((__m128i*)D, pixels);
D += 16;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerSSE4(const resizeNNInvokerSSE4&);
resizeNNInvokerSSE4& operator=(const resizeNNInvokerSSE4&);
};
#endif
static void
resizeNN( const Mat& src, Mat& dst, double fx, double fy )
{
......@@ -737,35 +436,23 @@ resizeNN( const Mat& src, Mat& dst, double fx, double fy )
}
Range range(0, dsize.height);
#if CV_AVX2
if(checkHardwareSupport(CV_CPU_AVX2) && ((pix_size == 2) || (pix_size == 4)))
#if CV_TRY_AVX2
if(CV_CPU_HAS_SUPPORT_AVX2 && ((pix_size == 2) || (pix_size == 4)))
{
if(pix_size == 2)
{
resizeNNInvokerAVX2 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total()/(double)(1<<16));
}
else if (pix_size == 4)
{
resizeNNInvokerAVX4 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total()/(double)(1<<16));
}
opt_AVX2::resizeNN2_AVX2(range, src, dst, x_ofs, pix_size4, ify);
else
opt_AVX2::resizeNN4_AVX2(range, src, dst, x_ofs, pix_size4, ify);
}
else
#endif
#if CV_SSE4_1
if(checkHardwareSupport(CV_CPU_SSE4_1) && ((pix_size == 2) || (pix_size == 4)))
#if CV_TRY_SSE4_1
if(CV_CPU_HAS_SUPPORT_SSE4_1 && ((pix_size == 2) || (pix_size == 4)))
{
if(pix_size == 2)
{
resizeNNInvokerSSE2 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total()/(double)(1<<16));
}
else if(pix_size == 4)
{
resizeNNInvokerSSE4 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total()/(double)(1<<16));
}
opt_SSE4_1::resizeNN2_SSE4_1(range, src, dst, x_ofs, pix_size4, ify);
else
opt_SSE4_1::resizeNN4_SSE4_1(range, src, dst, x_ofs, pix_size4, ify);
}
else
#endif
......@@ -1229,50 +916,14 @@ struct VResizeCubicVec_32f
}
};
#if CV_SSE4_1
#if CV_TRY_SSE4_1
struct VResizeLanczos4Vec_32f16u
{
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3],
*S4 = src[4], *S5 = src[5], *S6 = src[6], *S7 = src[7];
short * dst = (short*)_dst;
int x = 0;
__m128 v_b0 = _mm_set1_ps(beta[0]), v_b1 = _mm_set1_ps(beta[1]),
v_b2 = _mm_set1_ps(beta[2]), v_b3 = _mm_set1_ps(beta[3]),
v_b4 = _mm_set1_ps(beta[4]), v_b5 = _mm_set1_ps(beta[5]),
v_b6 = _mm_set1_ps(beta[6]), v_b7 = _mm_set1_ps(beta[7]);
for( ; x <= width - 8; x += 8 )
{
__m128 v_dst0 = _mm_mul_ps(v_b0, _mm_loadu_ps(S0 + x));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b1, _mm_loadu_ps(S1 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b2, _mm_loadu_ps(S2 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b3, _mm_loadu_ps(S3 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b4, _mm_loadu_ps(S4 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b5, _mm_loadu_ps(S5 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b6, _mm_loadu_ps(S6 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b7, _mm_loadu_ps(S7 + x)));
__m128 v_dst1 = _mm_mul_ps(v_b0, _mm_loadu_ps(S0 + x + 4));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b1, _mm_loadu_ps(S1 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b2, _mm_loadu_ps(S2 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b3, _mm_loadu_ps(S3 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b4, _mm_loadu_ps(S4 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b5, _mm_loadu_ps(S5 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b6, _mm_loadu_ps(S6 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b7, _mm_loadu_ps(S7 + x + 4)));
__m128i v_dsti0 = _mm_cvtps_epi32(v_dst0);
__m128i v_dsti1 = _mm_cvtps_epi32(v_dst1);
_mm_storeu_si128((__m128i *)(dst + x), _mm_packus_epi32(v_dsti0, v_dsti1));
}
return x;
if (CV_CPU_HAS_SUPPORT_SSE4_1) return opt_SSE4_1::VResizeLanczos4Vec_32f16u_SSE41(_src, _dst, _beta, width);
else return 0;
}
};
......@@ -5462,8 +5113,8 @@ void cv::convertMaps( InputArray _map1, InputArray _map2,
#if CV_SSE2
bool useSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#endif
#if CV_SSE4_1
bool useSSE4_1 = checkHardwareSupport(CV_CPU_SSE4_1);
#if CV_TRY_SSE4_1
bool useSSE4_1 = CV_CPU_HAS_SUPPORT_SSE4_1;
#endif
const float scale = 1.f/INTER_TAB_SIZE;
......@@ -5496,29 +5147,10 @@ void cv::convertMaps( InputArray _map1, InputArray _map2,
vst2q_s16(dst1 + (x << 1), v_dst);
}
#elif CV_SSE4_1
#elif CV_TRY_SSE4_1
if (useSSE4_1)
{
for( ; x <= size.width - 16; x += 16 )
{
__m128i v_dst0 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_loadu_ps(src1f + x)),
_mm_cvtps_epi32(_mm_loadu_ps(src1f + x + 4)));
__m128i v_dst1 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_loadu_ps(src1f + x + 8)),
_mm_cvtps_epi32(_mm_loadu_ps(src1f + x + 12)));
__m128i v_dst2 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_loadu_ps(src2f + x)),
_mm_cvtps_epi32(_mm_loadu_ps(src2f + x + 4)));
__m128i v_dst3 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_loadu_ps(src2f + x + 8)),
_mm_cvtps_epi32(_mm_loadu_ps(src2f + x + 12)));
_mm_interleave_epi16(v_dst0, v_dst1, v_dst2, v_dst3);
_mm_storeu_si128((__m128i *)(dst1 + x * 2), v_dst0);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 8), v_dst1);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 16), v_dst2);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 24), v_dst3);
}
}
opt_SSE4_1::convertMaps_nninterpolate32f1c16s_SSE41(src1f, src2f, dst1, size.width);
else
#endif
for( ; x < size.width; x++ )
{
......@@ -5553,52 +5185,10 @@ void cv::convertMaps( InputArray _map1, InputArray _map2,
vandq_s32(v_ix1, v_mask)));
vst1q_u16(dst2 + x, vcombine_u16(v_dst0, v_dst1));
}
#elif CV_SSE4_1
#elif CV_TRY_SSE4_1
if (useSSE4_1)
{
__m128 v_its = _mm_set1_ps(INTER_TAB_SIZE);
__m128i v_its1 = _mm_set1_epi32(INTER_TAB_SIZE-1);
for( ; x <= size.width - 16; x += 16 )
{
__m128i v_ix0 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x), v_its));
__m128i v_ix1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x + 4), v_its));
__m128i v_iy0 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src2f + x), v_its));
__m128i v_iy1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src2f + x + 4), v_its));
__m128i v_dst10 = _mm_packs_epi32(_mm_srai_epi32(v_ix0, INTER_BITS),
_mm_srai_epi32(v_ix1, INTER_BITS));
__m128i v_dst12 = _mm_packs_epi32(_mm_srai_epi32(v_iy0, INTER_BITS),
_mm_srai_epi32(v_iy1, INTER_BITS));
__m128i v_dst20 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_iy0, v_its1), INTER_BITS),
_mm_and_si128(v_ix0, v_its1));
__m128i v_dst21 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_iy1, v_its1), INTER_BITS),
_mm_and_si128(v_ix1, v_its1));
_mm_storeu_si128((__m128i *)(dst2 + x), _mm_packus_epi32(v_dst20, v_dst21));
v_ix0 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x + 8), v_its));
v_ix1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x + 12), v_its));
v_iy0 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src2f + x + 8), v_its));
v_iy1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src2f + x + 12), v_its));
__m128i v_dst11 = _mm_packs_epi32(_mm_srai_epi32(v_ix0, INTER_BITS),
_mm_srai_epi32(v_ix1, INTER_BITS));
__m128i v_dst13 = _mm_packs_epi32(_mm_srai_epi32(v_iy0, INTER_BITS),
_mm_srai_epi32(v_iy1, INTER_BITS));
v_dst20 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_iy0, v_its1), INTER_BITS),
_mm_and_si128(v_ix0, v_its1));
v_dst21 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_iy1, v_its1), INTER_BITS),
_mm_and_si128(v_ix1, v_its1));
_mm_storeu_si128((__m128i *)(dst2 + x + 8), _mm_packus_epi32(v_dst20, v_dst21));
_mm_interleave_epi16(v_dst10, v_dst11, v_dst12, v_dst13);
_mm_storeu_si128((__m128i *)(dst1 + x * 2), v_dst10);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 8), v_dst11);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 16), v_dst12);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 24), v_dst13);
}
}
opt_SSE4_1::convertMaps_32f1c16s_SSE41(src1f, src2f, dst1, dst2, size.width);
else
#endif
for( ; x < size.width; x++ )
{
......@@ -5659,30 +5249,10 @@ void cv::convertMaps( InputArray _map1, InputArray _map2,
vandq_s32(v_ix1, v_mask)));
vst1q_u16(dst2 + x, vcombine_u16(v_dst0, v_dst1));
}
#elif CV_SSE4_1
#elif CV_TRY_SSE4_1
if (useSSE4_1)
{
__m128 v_its = _mm_set1_ps(INTER_TAB_SIZE);
__m128i v_its1 = _mm_set1_epi32(INTER_TAB_SIZE-1);
__m128i v_y_mask = _mm_set1_epi32((INTER_TAB_SIZE-1) << 16);
for( ; x <= size.width - 4; x += 4 )
{
__m128i v_src0 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x * 2), v_its));
__m128i v_src1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x * 2 + 4), v_its));
__m128i v_dst1 = _mm_packs_epi32(_mm_srai_epi32(v_src0, INTER_BITS),
_mm_srai_epi32(v_src1, INTER_BITS));
_mm_storeu_si128((__m128i *)(dst1 + x * 2), v_dst1);
// x0 y0 x1 y1 . . .
v_src0 = _mm_packs_epi32(_mm_and_si128(v_src0, v_its1),
_mm_and_si128(v_src1, v_its1));
__m128i v_dst2 = _mm_or_si128(_mm_srli_epi32(_mm_and_si128(v_src0, v_y_mask), 16 - INTER_BITS), // y0 0 y1 0 . . .
_mm_and_si128(v_src0, v_its1)); // 0 x0 0 x1 . . .
_mm_storel_epi64((__m128i *)(dst2 + x), _mm_packus_epi32(v_dst2, v_dst2));
}
}
opt_SSE4_1::convertMaps_32f2c16s_SSE41(src1f, dst1, dst2, size.width);
else
#endif
for( ; x < size.width; x++ )
{
......@@ -5864,14 +5434,14 @@ public:
const int AB_BITS = MAX(10, (int)INTER_BITS);
const int AB_SCALE = 1 << AB_BITS;
int round_delta = interpolation == INTER_NEAREST ? AB_SCALE/2 : AB_SCALE/INTER_TAB_SIZE/2, x, y, x1, y1;
#if CV_AVX2
bool useAVX2 = checkHardwareSupport(CV_CPU_AVX2);
#if CV_TRY_AVX2
bool useAVX2 = CV_CPU_HAS_SUPPORT_AVX2;
#endif
#if CV_SSE2
bool useSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#endif
#if CV_SSE4_1
bool useSSE4_1 = checkHardwareSupport(CV_CPU_SSE4_1);
#if CV_TRY_SSE4_1
bool useSSE4_1 = CV_CPU_HAS_SUPPORT_SSE4_1;
#endif
int bh0 = std::min(BLOCK_SZ/2, dst.rows);
......@@ -5909,31 +5479,10 @@ public:
vst2q_s16(xy + (x1 << 1), v_dst);
}
#elif CV_SSE4_1
#elif CV_TRY_SSE4_1
if (useSSE4_1)
{
__m128i v_X0 = _mm_set1_epi32(X0);
__m128i v_Y0 = _mm_set1_epi32(Y0);
for ( ; x1 <= bw - 16; x1 += 16)
{
__m128i v_x0 = _mm_packs_epi32(_mm_srai_epi32(_mm_add_epi32(v_X0, _mm_loadu_si128((__m128i const *)(adelta + x + x1))), AB_BITS),
_mm_srai_epi32(_mm_add_epi32(v_X0, _mm_loadu_si128((__m128i const *)(adelta + x + x1 + 4))), AB_BITS));
__m128i v_x1 = _mm_packs_epi32(_mm_srai_epi32(_mm_add_epi32(v_X0, _mm_loadu_si128((__m128i const *)(adelta + x + x1 + 8))), AB_BITS),
_mm_srai_epi32(_mm_add_epi32(v_X0, _mm_loadu_si128((__m128i const *)(adelta + x + x1 + 12))), AB_BITS));
__m128i v_y0 = _mm_packs_epi32(_mm_srai_epi32(_mm_add_epi32(v_Y0, _mm_loadu_si128((__m128i const *)(bdelta + x + x1))), AB_BITS),
_mm_srai_epi32(_mm_add_epi32(v_Y0, _mm_loadu_si128((__m128i const *)(bdelta + x + x1 + 4))), AB_BITS));
__m128i v_y1 = _mm_packs_epi32(_mm_srai_epi32(_mm_add_epi32(v_Y0, _mm_loadu_si128((__m128i const *)(bdelta + x + x1 + 8))), AB_BITS),
_mm_srai_epi32(_mm_add_epi32(v_Y0, _mm_loadu_si128((__m128i const *)(bdelta + x + x1 + 12))), AB_BITS));
_mm_interleave_epi16(v_x0, v_x1, v_y0, v_y1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2), v_x0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 8), v_x1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 16), v_y0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 24), v_y1);
}
}
opt_SSE4_1::WarpAffineInvoker_Blockline_SSE41(adelta + x, bdelta + x, xy, X0, Y0, bw);
else
#endif
for( ; x1 < bw; x1++ )
{
......@@ -5947,41 +5496,9 @@ public:
{
short* alpha = A + y1*bw;
x1 = 0;
#if CV_AVX2
#if CV_TRY_AVX2
if ( useAVX2 )
{
__m256i fxy_mask = _mm256_set1_epi32(INTER_TAB_SIZE - 1);
__m256i XX = _mm256_set1_epi32(X0), YY = _mm256_set1_epi32(Y0);
for( ; x1 <= bw - 16; x1 += 16 )
{
__m256i tx0, tx1, ty0, ty1;
tx0 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(adelta + x + x1)), XX);
ty0 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(bdelta + x + x1)), YY);
tx1 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(adelta + x + x1 + 8)), XX);
ty1 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(bdelta + x + x1 + 8)), YY);
tx0 = _mm256_srai_epi32(tx0, AB_BITS - INTER_BITS);
ty0 = _mm256_srai_epi32(ty0, AB_BITS - INTER_BITS);
tx1 = _mm256_srai_epi32(tx1, AB_BITS - INTER_BITS);
ty1 = _mm256_srai_epi32(ty1, AB_BITS - INTER_BITS);
__m256i fx_ = _mm256_packs_epi32(_mm256_and_si256(tx0, fxy_mask),
_mm256_and_si256(tx1, fxy_mask));
__m256i fy_ = _mm256_packs_epi32(_mm256_and_si256(ty0, fxy_mask),
_mm256_and_si256(ty1, fxy_mask));
tx0 = _mm256_packs_epi32(_mm256_srai_epi32(tx0, INTER_BITS),
_mm256_srai_epi32(tx1, INTER_BITS));
ty0 = _mm256_packs_epi32(_mm256_srai_epi32(ty0, INTER_BITS),
_mm256_srai_epi32(ty1, INTER_BITS));
fx_ = _mm256_adds_epi16(fx_, _mm256_slli_epi16(fy_, INTER_BITS));
fx_ = _mm256_permute4x64_epi64(fx_, (3 << 6) + (1 << 4) + (2 << 2) + 0);
_mm256_storeu_si256((__m256i*)(xy + x1*2), _mm256_unpacklo_epi16(tx0, ty0));
_mm256_storeu_si256((__m256i*)(xy + x1*2 + 16), _mm256_unpackhi_epi16(tx0, ty0));
_mm256_storeu_si256((__m256i*)(alpha + x1), fx_);
}
_mm256_zeroupper();
}
x1 = opt_AVX2::warpAffineBlockline(adelta + x, bdelta + x, xy, alpha, X0, Y0, bw);
#endif
#if CV_SSE2
if( useSSE2 )
......@@ -6477,18 +5994,10 @@ public:
int bw0 = std::min(BLOCK_SZ*BLOCK_SZ/bh0, width);
bh0 = std::min(BLOCK_SZ*BLOCK_SZ/bw0, height);
#if CV_SSE4_1
bool haveSSE4_1 = checkHardwareSupport(CV_CPU_SSE4_1);
__m128d v_M0 = _mm_set1_pd(M[0]);
__m128d v_M3 = _mm_set1_pd(M[3]);
__m128d v_M6 = _mm_set1_pd(M[6]);
__m128d v_intmax = _mm_set1_pd((double)INT_MAX);
__m128d v_intmin = _mm_set1_pd((double)INT_MIN);
__m128d v_2 = _mm_set1_pd(2),
v_zero = _mm_setzero_pd(),
v_1 = _mm_set1_pd(1),
v_its = _mm_set1_pd(INTER_TAB_SIZE);
__m128i v_itsi1 = _mm_set1_epi32(INTER_TAB_SIZE - 1);
#if CV_TRY_SSE4_1
Ptr<opt_SSE4_1::WarpPerspectiveLine_SSE4> pwarp_impl_sse4;
if(CV_CPU_HAS_SUPPORT_SSE4_1)
pwarp_impl_sse4 = opt_SSE4_1::WarpPerspectiveLine_SSE4::getImpl(M);
#endif
for( y = range.start; y < range.end; y += bh0 )
......@@ -6512,116 +6021,11 @@ public:
{
x1 = 0;
#if CV_SSE4_1
if (haveSSE4_1)
{
__m128d v_X0d = _mm_set1_pd(X0);
__m128d v_Y0d = _mm_set1_pd(Y0);
__m128d v_W0 = _mm_set1_pd(W0);
__m128d v_x1 = _mm_set_pd(1, 0);
for( ; x1 <= bw - 16; x1 += 16 )
{
// 0-3
__m128i v_X0, v_Y0;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X0 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y0 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 4-8
__m128i v_X1, v_Y1;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X1 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y1 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 8-11
__m128i v_X2, v_Y2;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X2 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y2 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 12-15
__m128i v_X3, v_Y3;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X3 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y3 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// convert to 16s
v_X0 = _mm_packs_epi32(v_X0, v_X1);
v_X1 = _mm_packs_epi32(v_X2, v_X3);
v_Y0 = _mm_packs_epi32(v_Y0, v_Y1);
v_Y1 = _mm_packs_epi32(v_Y2, v_Y3);
_mm_interleave_epi16(v_X0, v_X1, v_Y0, v_Y1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2), v_X0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 8), v_X1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 16), v_Y0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 24), v_Y1);
}
}
#if CV_TRY_SSE4_1
if (pwarp_impl_sse4)
pwarp_impl_sse4->processNN(M, xy, X0, Y0, W0, bw);
else
#endif
for( ; x1 < bw; x1++ )
{
double W = W0 + M[6]*x1;
......@@ -6640,129 +6044,11 @@ public:
short* alpha = A + y1*bw;
x1 = 0;
#if CV_SSE4_1
if (haveSSE4_1)
{
__m128d v_X0d = _mm_set1_pd(X0);
__m128d v_Y0d = _mm_set1_pd(Y0);
__m128d v_W0 = _mm_set1_pd(W0);
__m128d v_x1 = _mm_set_pd(1, 0);
for( ; x1 <= bw - 16; x1 += 16 )
{
// 0-3
__m128i v_X0, v_Y0;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X0 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y0 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 4-8
__m128i v_X1, v_Y1;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X1 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y1 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 8-11
__m128i v_X2, v_Y2;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X2 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y2 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 12-15
__m128i v_X3, v_Y3;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X3 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y3 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// store alpha
__m128i v_alpha0 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_Y0, v_itsi1), INTER_BITS),
_mm_and_si128(v_X0, v_itsi1));
__m128i v_alpha1 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_Y1, v_itsi1), INTER_BITS),
_mm_and_si128(v_X1, v_itsi1));
_mm_storeu_si128((__m128i *)(alpha + x1), _mm_packs_epi32(v_alpha0, v_alpha1));
v_alpha0 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_Y2, v_itsi1), INTER_BITS),
_mm_and_si128(v_X2, v_itsi1));
v_alpha1 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_Y3, v_itsi1), INTER_BITS),
_mm_and_si128(v_X3, v_itsi1));
_mm_storeu_si128((__m128i *)(alpha + x1 + 8), _mm_packs_epi32(v_alpha0, v_alpha1));
// convert to 16s
v_X0 = _mm_packs_epi32(_mm_srai_epi32(v_X0, INTER_BITS), _mm_srai_epi32(v_X1, INTER_BITS));
v_X1 = _mm_packs_epi32(_mm_srai_epi32(v_X2, INTER_BITS), _mm_srai_epi32(v_X3, INTER_BITS));
v_Y0 = _mm_packs_epi32(_mm_srai_epi32(v_Y0, INTER_BITS), _mm_srai_epi32(v_Y1, INTER_BITS));
v_Y1 = _mm_packs_epi32(_mm_srai_epi32(v_Y2, INTER_BITS), _mm_srai_epi32(v_Y3, INTER_BITS));
_mm_interleave_epi16(v_X0, v_X1, v_Y0, v_Y1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2), v_X0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 8), v_X1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 16), v_Y0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 24), v_Y1);
}
}
#if CV_TRY_SSE4_1
if (pwarp_impl_sse4)
pwarp_impl_sse4->process(M, xy, alpha, X0, Y0, W0, bw);
else
#endif
for( ; x1 < bw; x1++ )
{
double W = W0 + M[6]*x1;
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Geometrical transforms on images and matrices: rotation, zoom etc.
//
// */
#ifndef OPENCV_IMGPROC_IMGWARP_HPP
#define OPENCV_IMGPROC_IMGWARP_HPP
#include "precomp.hpp"
namespace cv
{
namespace opt_AVX2
{
#if CV_TRY_AVX2
void resizeNN2_AVX2(const Range&, const Mat&, Mat&, int*, int, double);
void resizeNN4_AVX2(const Range&, const Mat&, Mat&, int*, int, double);
int warpAffineBlockline(int *adelta, int *bdelta, short* xy, short* alpha, int X0, int Y0, int bw);
#endif
}
namespace opt_SSE4_1
{
#if CV_TRY_SSE4_1
void resizeNN2_SSE4_1(const Range&, const Mat&, Mat&, int*, int, double);
void resizeNN4_SSE4_1(const Range&, const Mat&, Mat&, int*, int, double);
int VResizeLanczos4Vec_32f16u_SSE41(const uchar** _src, uchar* _dst, const uchar* _beta, int width);
void convertMaps_nninterpolate32f1c16s_SSE41(const float* src1f, const float* src2f, short* dst1, int width);
void convertMaps_32f1c16s_SSE41(const float* src1f, const float* src2f, short* dst1, ushort* dst2, int width);
void convertMaps_32f2c16s_SSE41(const float* src1f, short* dst1, ushort* dst2, int width);
void WarpAffineInvoker_Blockline_SSE41(int *adelta, int *bdelta, short* xy, int X0, int Y0, int bw);
class WarpPerspectiveLine_SSE4
{
public:
static Ptr<WarpPerspectiveLine_SSE4> getImpl(const double *M);
virtual void processNN(const double *M, short* xy, double X0, double Y0, double W0, int bw) = 0;
virtual void process(const double *M, short* xy, short* alpha, double X0, double Y0, double W0, int bw) = 0;
virtual ~WarpPerspectiveLine_SSE4() {};
};
#endif
}
}
#endif
/* End of file. */
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Geometrical transforms on images and matrices: rotation, zoom etc.
//
// */
#include "precomp.hpp"
#include "imgwarp.hpp"
namespace cv
{
namespace opt_SSE4_1
{
class resizeNNInvokerSSE2 :
public ParallelLoopBody
{
public:
resizeNNInvokerSSE2(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=SSE4.2
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int sseWidth = width - (width & 0x7);
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
__m128i CV_DECL_ALIGNED(64) pixels = _mm_set1_epi16(0);
for(x = 0; x < sseWidth; x += 8)
{
ushort imm = *(ushort*)(S + x_ofs[x + 0]);
pixels = _mm_insert_epi16(pixels, imm, 0);
imm = *(ushort*)(S + x_ofs[x + 1]);
pixels = _mm_insert_epi16(pixels, imm, 1);
imm = *(ushort*)(S + x_ofs[x + 2]);
pixels = _mm_insert_epi16(pixels, imm, 2);
imm = *(ushort*)(S + x_ofs[x + 3]);
pixels = _mm_insert_epi16(pixels, imm, 3);
imm = *(ushort*)(S + x_ofs[x + 4]);
pixels = _mm_insert_epi16(pixels, imm, 4);
imm = *(ushort*)(S + x_ofs[x + 5]);
pixels = _mm_insert_epi16(pixels, imm, 5);
imm = *(ushort*)(S + x_ofs[x + 6]);
pixels = _mm_insert_epi16(pixels, imm, 6);
imm = *(ushort*)(S + x_ofs[x + 7]);
pixels = _mm_insert_epi16(pixels, imm, 7);
_mm_storeu_si128((__m128i*)D, pixels);
D += 16;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerSSE2(const resizeNNInvokerSSE2&);
resizeNNInvokerSSE2& operator=(const resizeNNInvokerSSE2&);
};
class resizeNNInvokerSSE4 :
public ParallelLoopBody
{
public:
resizeNNInvokerSSE4(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=SSE4.2
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int sseWidth = width - (width & 0x3);
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
__m128i CV_DECL_ALIGNED(64) pixels = _mm_set1_epi16(0);
for(x = 0; x < sseWidth; x += 4)
{
int imm = *(int*)(S + x_ofs[x + 0]);
pixels = _mm_insert_epi32(pixels, imm, 0);
imm = *(int*)(S + x_ofs[x + 1]);
pixels = _mm_insert_epi32(pixels, imm, 1);
imm = *(int*)(S + x_ofs[x + 2]);
pixels = _mm_insert_epi32(pixels, imm, 2);
imm = *(int*)(S + x_ofs[x + 3]);
pixels = _mm_insert_epi32(pixels, imm, 3);
_mm_storeu_si128((__m128i*)D, pixels);
D += 16;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerSSE4(const resizeNNInvokerSSE4&);
resizeNNInvokerSSE4& operator=(const resizeNNInvokerSSE4&);
};
void resizeNN2_SSE4_1(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerSSE2 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
void resizeNN4_SSE4_1(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerSSE4 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
int VResizeLanczos4Vec_32f16u_SSE41(const uchar** _src, uchar* _dst, const uchar* _beta, int width)
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3],
*S4 = src[4], *S5 = src[5], *S6 = src[6], *S7 = src[7];
short * dst = (short*)_dst;
int x = 0;
__m128 v_b0 = _mm_set1_ps(beta[0]), v_b1 = _mm_set1_ps(beta[1]),
v_b2 = _mm_set1_ps(beta[2]), v_b3 = _mm_set1_ps(beta[3]),
v_b4 = _mm_set1_ps(beta[4]), v_b5 = _mm_set1_ps(beta[5]),
v_b6 = _mm_set1_ps(beta[6]), v_b7 = _mm_set1_ps(beta[7]);
for (; x <= width - 8; x += 8)
{
__m128 v_dst0 = _mm_mul_ps(v_b0, _mm_loadu_ps(S0 + x));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b1, _mm_loadu_ps(S1 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b2, _mm_loadu_ps(S2 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b3, _mm_loadu_ps(S3 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b4, _mm_loadu_ps(S4 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b5, _mm_loadu_ps(S5 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b6, _mm_loadu_ps(S6 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b7, _mm_loadu_ps(S7 + x)));
__m128 v_dst1 = _mm_mul_ps(v_b0, _mm_loadu_ps(S0 + x + 4));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b1, _mm_loadu_ps(S1 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b2, _mm_loadu_ps(S2 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b3, _mm_loadu_ps(S3 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b4, _mm_loadu_ps(S4 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b5, _mm_loadu_ps(S5 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b6, _mm_loadu_ps(S6 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b7, _mm_loadu_ps(S7 + x + 4)));
__m128i v_dsti0 = _mm_cvtps_epi32(v_dst0);
__m128i v_dsti1 = _mm_cvtps_epi32(v_dst1);
_mm_storeu_si128((__m128i *)(dst + x), _mm_packus_epi32(v_dsti0, v_dsti1));
}
return x;
}
void convertMaps_nninterpolate32f1c16s_SSE41(const float* src1f, const float* src2f, short* dst1, int width)
{
int x = 0;
for (; x <= width - 16; x += 16)
{
__m128i v_dst0 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_loadu_ps(src1f + x)),
_mm_cvtps_epi32(_mm_loadu_ps(src1f + x + 4)));
__m128i v_dst1 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_loadu_ps(src1f + x + 8)),
_mm_cvtps_epi32(_mm_loadu_ps(src1f + x + 12)));
__m128i v_dst2 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_loadu_ps(src2f + x)),
_mm_cvtps_epi32(_mm_loadu_ps(src2f + x + 4)));
__m128i v_dst3 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_loadu_ps(src2f + x + 8)),
_mm_cvtps_epi32(_mm_loadu_ps(src2f + x + 12)));
_mm_interleave_epi16(v_dst0, v_dst1, v_dst2, v_dst3);
_mm_storeu_si128((__m128i *)(dst1 + x * 2), v_dst0);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 8), v_dst1);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 16), v_dst2);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 24), v_dst3);
}
for (; x < width; x++)
{
dst1[x * 2] = saturate_cast<short>(src1f[x]);
dst1[x * 2 + 1] = saturate_cast<short>(src2f[x]);
}
}
void convertMaps_32f1c16s_SSE41(const float* src1f, const float* src2f, short* dst1, ushort* dst2, int width)
{
int x = 0;
__m128 v_its = _mm_set1_ps(INTER_TAB_SIZE);
__m128i v_its1 = _mm_set1_epi32(INTER_TAB_SIZE - 1);
for (; x <= width - 16; x += 16)
{
__m128i v_ix0 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x), v_its));
__m128i v_ix1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x + 4), v_its));
__m128i v_iy0 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src2f + x), v_its));
__m128i v_iy1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src2f + x + 4), v_its));
__m128i v_dst10 = _mm_packs_epi32(_mm_srai_epi32(v_ix0, INTER_BITS),
_mm_srai_epi32(v_ix1, INTER_BITS));
__m128i v_dst12 = _mm_packs_epi32(_mm_srai_epi32(v_iy0, INTER_BITS),
_mm_srai_epi32(v_iy1, INTER_BITS));
__m128i v_dst20 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_iy0, v_its1), INTER_BITS),
_mm_and_si128(v_ix0, v_its1));
__m128i v_dst21 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_iy1, v_its1), INTER_BITS),
_mm_and_si128(v_ix1, v_its1));
_mm_storeu_si128((__m128i *)(dst2 + x), _mm_packus_epi32(v_dst20, v_dst21));
v_ix0 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x + 8), v_its));
v_ix1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x + 12), v_its));
v_iy0 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src2f + x + 8), v_its));
v_iy1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src2f + x + 12), v_its));
__m128i v_dst11 = _mm_packs_epi32(_mm_srai_epi32(v_ix0, INTER_BITS),
_mm_srai_epi32(v_ix1, INTER_BITS));
__m128i v_dst13 = _mm_packs_epi32(_mm_srai_epi32(v_iy0, INTER_BITS),
_mm_srai_epi32(v_iy1, INTER_BITS));
v_dst20 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_iy0, v_its1), INTER_BITS),
_mm_and_si128(v_ix0, v_its1));
v_dst21 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_iy1, v_its1), INTER_BITS),
_mm_and_si128(v_ix1, v_its1));
_mm_storeu_si128((__m128i *)(dst2 + x + 8), _mm_packus_epi32(v_dst20, v_dst21));
_mm_interleave_epi16(v_dst10, v_dst11, v_dst12, v_dst13);
_mm_storeu_si128((__m128i *)(dst1 + x * 2), v_dst10);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 8), v_dst11);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 16), v_dst12);
_mm_storeu_si128((__m128i *)(dst1 + x * 2 + 24), v_dst13);
}
for (; x < width; x++)
{
int ix = saturate_cast<int>(src1f[x] * INTER_TAB_SIZE);
int iy = saturate_cast<int>(src2f[x] * INTER_TAB_SIZE);
dst1[x * 2] = saturate_cast<short>(ix >> INTER_BITS);
dst1[x * 2 + 1] = saturate_cast<short>(iy >> INTER_BITS);
dst2[x] = (ushort)((iy & (INTER_TAB_SIZE - 1))*INTER_TAB_SIZE + (ix & (INTER_TAB_SIZE - 1)));
}
}
void convertMaps_32f2c16s_SSE41(const float* src1f, short* dst1, ushort* dst2, int width)
{
int x = 0;
__m128 v_its = _mm_set1_ps(INTER_TAB_SIZE);
__m128i v_its1 = _mm_set1_epi32(INTER_TAB_SIZE - 1);
__m128i v_y_mask = _mm_set1_epi32((INTER_TAB_SIZE - 1) << 16);
for (; x <= width - 4; x += 4)
{
__m128i v_src0 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x * 2), v_its));
__m128i v_src1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_loadu_ps(src1f + x * 2 + 4), v_its));
__m128i v_dst1 = _mm_packs_epi32(_mm_srai_epi32(v_src0, INTER_BITS),
_mm_srai_epi32(v_src1, INTER_BITS));
_mm_storeu_si128((__m128i *)(dst1 + x * 2), v_dst1);
// x0 y0 x1 y1 . . .
v_src0 = _mm_packs_epi32(_mm_and_si128(v_src0, v_its1),
_mm_and_si128(v_src1, v_its1));
__m128i v_dst2 = _mm_or_si128(_mm_srli_epi32(_mm_and_si128(v_src0, v_y_mask), 16 - INTER_BITS), // y0 0 y1 0 . . .
_mm_and_si128(v_src0, v_its1)); // 0 x0 0 x1 . . .
_mm_storel_epi64((__m128i *)(dst2 + x), _mm_packus_epi32(v_dst2, v_dst2));
}
for (; x < width; x++)
{
int ix = saturate_cast<int>(src1f[x * 2] * INTER_TAB_SIZE);
int iy = saturate_cast<int>(src1f[x * 2 + 1] * INTER_TAB_SIZE);
dst1[x * 2] = saturate_cast<short>(ix >> INTER_BITS);
dst1[x * 2 + 1] = saturate_cast<short>(iy >> INTER_BITS);
dst2[x] = (ushort)((iy & (INTER_TAB_SIZE - 1))*INTER_TAB_SIZE + (ix & (INTER_TAB_SIZE - 1)));
}
}
void WarpAffineInvoker_Blockline_SSE41(int *adelta, int *bdelta, short* xy, int X0, int Y0, int bw)
{
const int AB_BITS = MAX(10, (int)INTER_BITS);
int x1 = 0;
__m128i v_X0 = _mm_set1_epi32(X0);
__m128i v_Y0 = _mm_set1_epi32(Y0);
for (; x1 <= bw - 16; x1 += 16)
{
__m128i v_x0 = _mm_packs_epi32(_mm_srai_epi32(_mm_add_epi32(v_X0, _mm_loadu_si128((__m128i const *)(adelta + x1))), AB_BITS),
_mm_srai_epi32(_mm_add_epi32(v_X0, _mm_loadu_si128((__m128i const *)(adelta + x1 + 4))), AB_BITS));
__m128i v_x1 = _mm_packs_epi32(_mm_srai_epi32(_mm_add_epi32(v_X0, _mm_loadu_si128((__m128i const *)(adelta + x1 + 8))), AB_BITS),
_mm_srai_epi32(_mm_add_epi32(v_X0, _mm_loadu_si128((__m128i const *)(adelta + x1 + 12))), AB_BITS));
__m128i v_y0 = _mm_packs_epi32(_mm_srai_epi32(_mm_add_epi32(v_Y0, _mm_loadu_si128((__m128i const *)(bdelta + x1))), AB_BITS),
_mm_srai_epi32(_mm_add_epi32(v_Y0, _mm_loadu_si128((__m128i const *)(bdelta + x1 + 4))), AB_BITS));
__m128i v_y1 = _mm_packs_epi32(_mm_srai_epi32(_mm_add_epi32(v_Y0, _mm_loadu_si128((__m128i const *)(bdelta + x1 + 8))), AB_BITS),
_mm_srai_epi32(_mm_add_epi32(v_Y0, _mm_loadu_si128((__m128i const *)(bdelta + x1 + 12))), AB_BITS));
_mm_interleave_epi16(v_x0, v_x1, v_y0, v_y1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2), v_x0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 8), v_x1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 16), v_y0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 24), v_y1);
}
for (; x1 < bw; x1++)
{
int X = (X0 + adelta[x1]) >> AB_BITS;
int Y = (Y0 + bdelta[x1]) >> AB_BITS;
xy[x1 * 2] = saturate_cast<short>(X);
xy[x1 * 2 + 1] = saturate_cast<short>(Y);
}
}
class WarpPerspectiveLine_SSE4_Impl: public WarpPerspectiveLine_SSE4
{
public:
WarpPerspectiveLine_SSE4_Impl(const double *M)
{
v_M0 = _mm_set1_pd(M[0]);
v_M3 = _mm_set1_pd(M[3]);
v_M6 = _mm_set1_pd(M[6]);
v_intmax = _mm_set1_pd((double)INT_MAX);
v_intmin = _mm_set1_pd((double)INT_MIN);
v_2 = _mm_set1_pd(2);
v_zero = _mm_setzero_pd();
v_1 = _mm_set1_pd(1);
v_its = _mm_set1_pd(INTER_TAB_SIZE);
v_itsi1 = _mm_set1_epi32(INTER_TAB_SIZE - 1);
}
virtual void processNN(const double *M, short* xy, double X0, double Y0, double W0, int bw)
{
int x1 = 0;
__m128d v_X0d = _mm_set1_pd(X0);
__m128d v_Y0d = _mm_set1_pd(Y0);
__m128d v_W0 = _mm_set1_pd(W0);
__m128d v_x1 = _mm_set_pd(1, 0);
for (; x1 <= bw - 16; x1 += 16)
{
// 0-3
__m128i v_X0, v_Y0;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X0 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y0 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 4-8
__m128i v_X1, v_Y1;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X1 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y1 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 8-11
__m128i v_X2, v_Y2;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X2 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y2 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 12-15
__m128i v_X3, v_Y3;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_1, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X3 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y3 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// convert to 16s
v_X0 = _mm_packs_epi32(v_X0, v_X1);
v_X1 = _mm_packs_epi32(v_X2, v_X3);
v_Y0 = _mm_packs_epi32(v_Y0, v_Y1);
v_Y1 = _mm_packs_epi32(v_Y2, v_Y3);
_mm_interleave_epi16(v_X0, v_X1, v_Y0, v_Y1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2), v_X0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 8), v_X1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 16), v_Y0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 24), v_Y1);
}
for (; x1 < bw; x1++)
{
double W = W0 + M[6] * x1;
W = W ? 1. / W : 0;
double fX = std::max((double)INT_MIN, std::min((double)INT_MAX, (X0 + M[0] * x1)*W));
double fY = std::max((double)INT_MIN, std::min((double)INT_MAX, (Y0 + M[3] * x1)*W));
int X = saturate_cast<int>(fX);
int Y = saturate_cast<int>(fY);
xy[x1 * 2] = saturate_cast<short>(X);
xy[x1 * 2 + 1] = saturate_cast<short>(Y);
}
}
virtual void process(const double *M, short* xy, short* alpha, double X0, double Y0, double W0, int bw)
{
int x1 = 0;
__m128d v_X0d = _mm_set1_pd(X0);
__m128d v_Y0d = _mm_set1_pd(Y0);
__m128d v_W0 = _mm_set1_pd(W0);
__m128d v_x1 = _mm_set_pd(1, 0);
for (; x1 <= bw - 16; x1 += 16)
{
// 0-3
__m128i v_X0, v_Y0;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X0 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y0 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 4-8
__m128i v_X1, v_Y1;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X1 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y1 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 8-11
__m128i v_X2, v_Y2;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X2 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y2 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// 12-15
__m128i v_X3, v_Y3;
{
__m128d v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY0 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_W = _mm_add_pd(_mm_mul_pd(v_M6, v_x1), v_W0);
v_W = _mm_andnot_pd(_mm_cmpeq_pd(v_W, v_zero), _mm_div_pd(v_its, v_W));
__m128d v_fX1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_X0d, _mm_mul_pd(v_M0, v_x1)), v_W)));
__m128d v_fY1 = _mm_max_pd(v_intmin, _mm_min_pd(v_intmax, _mm_mul_pd(_mm_add_pd(v_Y0d, _mm_mul_pd(v_M3, v_x1)), v_W)));
v_x1 = _mm_add_pd(v_x1, v_2);
v_X3 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fX1))));
v_Y3 = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY0)),
_mm_castsi128_ps(_mm_cvtpd_epi32(v_fY1))));
}
// store alpha
__m128i v_alpha0 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_Y0, v_itsi1), INTER_BITS),
_mm_and_si128(v_X0, v_itsi1));
__m128i v_alpha1 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_Y1, v_itsi1), INTER_BITS),
_mm_and_si128(v_X1, v_itsi1));
_mm_storeu_si128((__m128i *)(alpha + x1), _mm_packs_epi32(v_alpha0, v_alpha1));
v_alpha0 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_Y2, v_itsi1), INTER_BITS),
_mm_and_si128(v_X2, v_itsi1));
v_alpha1 = _mm_add_epi32(_mm_slli_epi32(_mm_and_si128(v_Y3, v_itsi1), INTER_BITS),
_mm_and_si128(v_X3, v_itsi1));
_mm_storeu_si128((__m128i *)(alpha + x1 + 8), _mm_packs_epi32(v_alpha0, v_alpha1));
// convert to 16s
v_X0 = _mm_packs_epi32(_mm_srai_epi32(v_X0, INTER_BITS), _mm_srai_epi32(v_X1, INTER_BITS));
v_X1 = _mm_packs_epi32(_mm_srai_epi32(v_X2, INTER_BITS), _mm_srai_epi32(v_X3, INTER_BITS));
v_Y0 = _mm_packs_epi32(_mm_srai_epi32(v_Y0, INTER_BITS), _mm_srai_epi32(v_Y1, INTER_BITS));
v_Y1 = _mm_packs_epi32(_mm_srai_epi32(v_Y2, INTER_BITS), _mm_srai_epi32(v_Y3, INTER_BITS));
_mm_interleave_epi16(v_X0, v_X1, v_Y0, v_Y1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2), v_X0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 8), v_X1);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 16), v_Y0);
_mm_storeu_si128((__m128i *)(xy + x1 * 2 + 24), v_Y1);
}
for (; x1 < bw; x1++)
{
double W = W0 + M[6] * x1;
W = W ? INTER_TAB_SIZE / W : 0;
double fX = std::max((double)INT_MIN, std::min((double)INT_MAX, (X0 + M[0] * x1)*W));
double fY = std::max((double)INT_MIN, std::min((double)INT_MAX, (Y0 + M[3] * x1)*W));
int X = saturate_cast<int>(fX);
int Y = saturate_cast<int>(fY);
xy[x1 * 2] = saturate_cast<short>(X >> INTER_BITS);
xy[x1 * 2 + 1] = saturate_cast<short>(Y >> INTER_BITS);
alpha[x1] = (short)((Y & (INTER_TAB_SIZE - 1))*INTER_TAB_SIZE +
(X & (INTER_TAB_SIZE - 1)));
}
}
virtual ~WarpPerspectiveLine_SSE4_Impl() {};
private:
__m128d v_M0;
__m128d v_M3;
__m128d v_M6;
__m128d v_intmax;
__m128d v_intmin;
__m128d v_2,
v_zero,
v_1,
v_its;
__m128i v_itsi1;
};
Ptr<WarpPerspectiveLine_SSE4> WarpPerspectiveLine_SSE4::getImpl(const double *M)
{
return Ptr<WarpPerspectiveLine_SSE4>(new WarpPerspectiveLine_SSE4_Impl(M));
}
}
}
/* End of file. */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment