Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
9e332dc5
Commit
9e332dc5
authored
Mar 05, 2020
by
Dmitry Kurtaev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Broadcasting from ONNX
parent
a694e507
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
111 additions
and
62 deletions
+111
-62
scale_layer.cpp
modules/dnn/src/layers/scale_layer.cpp
+31
-20
onnx_importer.cpp
modules/dnn/src/onnx/onnx_importer.cpp
+63
-18
test_onnx_importer.cpp
modules/dnn/test/test_onnx_importer.cpp
+17
-24
No files found.
modules/dnn/src/layers/scale_layer.cpp
View file @
9e332dc5
...
...
@@ -46,14 +46,14 @@ public:
{
std
::
vector
<
Mat
>
inputs
;
inputs_arr
.
getMatVector
(
inputs
);
hasWeights
=
blobs
.
size
()
==
2
||
(
blobs
.
size
()
=
=
1
&&
!
hasBias
);
hasWeights
=
blobs
.
size
()
==
2
||
(
blobs
.
size
()
<
=
1
&&
!
hasBias
);
CV_Assert
((
inputs
.
size
()
==
2
&&
blobs
.
empty
())
||
blobs
.
size
()
==
(
int
)
hasWeights
+
(
int
)
hasBias
);
}
virtual
bool
supportBackend
(
int
backendId
)
CV_OVERRIDE
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
||
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
&&
axis
==
1
)
||
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
&&
axis
==
1
&&
!
blobs
.
empty
()
)
||
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE_NGRAPH
&&
axis
>
0
);
}
...
...
@@ -78,10 +78,9 @@ public:
Mat
&
outBlob
=
outputs
[
0
];
// There is a mode when we multiply a first blob by a second one
// instead of trainable weights.
Mat
weights
=
blobs
.
empty
()
?
inputs
[
1
]
:
(
hasWeights
?
blobs
[
0
]
:
Mat
());
Mat
bias
=
hasBias
?
blobs
.
back
().
reshape
(
1
,
1
)
:
Mat
();
if
(
!
weights
.
empty
())
weights
=
weights
.
reshape
(
1
,
1
);
Mat
weights
=
hasWeights
?
(
blobs
.
empty
()
?
inputs
[
1
]
:
blobs
[
0
]).
reshape
(
1
,
1
)
:
Mat
();;
Mat
bias
=
hasBias
?
(
blobs
.
empty
()
?
inputs
[
1
]
:
blobs
.
back
()).
reshape
(
1
,
1
)
:
Mat
();
MatShape
inpShape
=
shape
(
inpBlob
);
const
int
numWeights
=
!
weights
.
empty
()
?
weights
.
total
()
:
bias
.
total
();
CV_Assert
(
numWeights
!=
0
);
...
...
@@ -229,28 +228,40 @@ public:
#ifdef HAVE_DNN_NGRAPH
virtual
Ptr
<
BackendNode
>
initNgraph
(
const
std
::
vector
<
Ptr
<
BackendWrapper
>
>&
inputs
,
const
std
::
vector
<
Ptr
<
BackendNode
>
>&
nodes
)
CV_OVERRIDE
{
CV_Assert
(
!
blobs
.
empty
());
const
size_t
numChannels
=
blobs
[
0
].
total
();
auto
ieInpNode
=
nodes
[
0
].
dynamicCast
<
InfEngineNgraphNode
>
()
->
node
;
auto
ieInpNode0
=
nodes
[
0
].
dynamicCast
<
InfEngineNgraphNode
>
()
->
node
;
auto
ieInpNode1
=
nodes
.
size
()
>
1
?
nodes
[
1
].
dynamicCast
<
InfEngineNgraphNode
>
()
->
node
:
nullptr
;
size_t
numChannels
=
1
;
if
(
blobs
.
empty
())
for
(
const
size_t
&
dim
:
ieInpNode1
->
get_shape
())
numChannels
*=
dim
;
else
numChannels
=
blobs
[
0
].
total
();
std
::
vector
<
size_t
>
shape
(
ieInpNode
->
get_shape
().
size
(),
1
);
std
::
vector
<
size_t
>
shape
(
ieInpNode
0
->
get_shape
().
size
(),
1
);
int
cAxis
=
clamp
(
axis
,
shape
.
size
());
shape
[
cAxis
]
=
numChannels
;
auto
node
=
ieInpNode
;
auto
node
=
ieInpNode
0
;
if
(
hasWeights
)
{
auto
weight
=
std
::
make_shared
<
ngraph
::
op
::
Constant
>
(
ngraph
::
element
::
f32
,
ngraph
::
Shape
(
shape
),
blobs
[
0
].
data
);
auto
weight
=
blobs
.
empty
()
?
ieInpNode1
:
std
::
make_shared
<
ngraph
::
op
::
Constant
>
(
ngraph
::
element
::
f32
,
ngraph
::
Shape
(
shape
),
blobs
[
0
].
data
);
node
=
std
::
make_shared
<
ngraph
::
op
::
v1
::
Multiply
>
(
node
,
weight
,
ngraph
::
op
::
AutoBroadcastType
::
NUMPY
);
}
if
(
hasBias
||
!
hasWeights
)
{
auto
bias
=
hasBias
?
std
::
make_shared
<
ngraph
::
op
::
Constant
>
(
ngraph
::
element
::
f32
,
ngraph
::
Shape
(
shape
),
blobs
.
back
().
data
)
:
std
::
make_shared
<
ngraph
::
op
::
Constant
>
(
ngraph
::
element
::
f32
,
ngraph
::
Shape
(
shape
),
std
::
vector
<
float
>
(
numChannels
,
0
).
data
());
std
::
shared_ptr
<
ngraph
::
Node
>
bias
;
if
(
hasBias
)
{
bias
=
blobs
.
empty
()
?
ieInpNode1
:
std
::
make_shared
<
ngraph
::
op
::
Constant
>
(
ngraph
::
element
::
f32
,
ngraph
::
Shape
(
shape
),
blobs
.
back
().
data
);
}
else
bias
=
std
::
make_shared
<
ngraph
::
op
::
Constant
>
(
ngraph
::
element
::
f32
,
ngraph
::
Shape
(
shape
),
std
::
vector
<
float
>
(
numChannels
,
0
).
data
());
node
=
std
::
make_shared
<
ngraph
::
op
::
v1
::
Add
>
(
node
,
bias
,
ngraph
::
op
::
AutoBroadcastType
::
NUMPY
);
}
return
Ptr
<
BackendNode
>
(
new
InfEngineNgraphNode
(
node
));
...
...
@@ -259,8 +270,8 @@ public:
void
getScaleShift
(
Mat
&
scale
,
Mat
&
shift
)
const
CV_OVERRIDE
{
scale
=
hasWeights
?
blobs
[
0
]
:
Mat
();
shift
=
hasBias
?
blobs
.
back
()
:
Mat
();
scale
=
(
hasWeights
&&
!
blobs
.
empty
())
?
blobs
[
0
]
:
Mat
();
shift
=
(
hasBias
&&
!
blobs
.
empty
())
?
blobs
.
back
()
:
Mat
();
}
virtual
int64
getFLOPS
(
const
std
::
vector
<
MatShape
>
&
inputs
,
...
...
modules/dnn/src/onnx/onnx_importer.cpp
View file @
9e332dc5
...
...
@@ -427,24 +427,57 @@ void ONNXImporter::populateNet(Net dstNet)
}
layerParams
.
type
=
"Slice"
;
}
else
if
(
layer_type
==
"Add"
||
layer_type
==
"Sum"
)
else
if
(
layer_type
==
"Add"
||
layer_type
==
"Sum"
||
layer_type
==
"Sub"
)
{
bool
isSub
=
layer_type
==
"Sub"
;
CV_CheckEQ
(
node_proto
.
input_size
(),
2
,
""
);
if
(
layer_id
.
find
(
node_proto
.
input
(
1
))
==
layer_id
.
end
())
{
Mat
blob
=
getBlob
(
node_proto
,
constBlobs
,
1
);
blob
=
blob
.
reshape
(
1
,
1
);
if
(
blob
.
total
()
==
1
)
{
layerParams
.
type
=
"Power"
;
layerParams
.
set
(
"shift"
,
blob
.
at
<
float
>
(
0
));
layerParams
.
set
(
"shift"
,
(
isSub
?
-
1
:
1
)
*
blob
.
at
<
float
>
(
0
));
}
else
{
layerParams
.
type
=
"Scale"
;
layerParams
.
set
(
"bias_term"
,
true
);
layerParams
.
blobs
.
push_back
(
blob
);
layerParams
.
blobs
.
push_back
(
(
isSub
?
-
1
:
1
)
*
blob
);
}
}
else
{
else
if
(
outShapes
[
node_proto
.
input
(
0
)]
==
outShapes
[
node_proto
.
input
(
1
)])
{
layerParams
.
type
=
"Eltwise"
;
if
(
isSub
)
{
static
float
subCoeffs
[]
=
{
1.
f
,
-
1.
f
};
layerParams
.
set
(
"coeff"
,
DictValue
::
arrayReal
<
float
*>
(
subCoeffs
,
2
));
}
}
else
{
if
(
isSub
)
{
LayerParams
powerParams
;
powerParams
.
name
=
layerParams
.
name
+
"/neg"
;
powerParams
.
type
=
"Power"
;
powerParams
.
set
(
"scale"
,
-
1
);
//Create Power layer
int
id
=
dstNet
.
addLayer
(
powerParams
.
name
,
powerParams
.
type
,
powerParams
);
//Connect to input
layerId
=
layer_id
.
find
(
node_proto
.
input
(
1
));
CV_Assert
(
layerId
!=
layer_id
.
end
());
dstNet
.
connect
(
layerId
->
second
.
layerId
,
layerId
->
second
.
outputId
,
id
,
0
);
//Add shape
layer_id
.
insert
(
std
::
make_pair
(
powerParams
.
name
,
LayerInfo
(
id
,
0
)));
outShapes
[
powerParams
.
name
]
=
outShapes
[
node_proto
.
input
(
1
)];
//Replace input to Power
node_proto
.
set_input
(
1
,
powerParams
.
name
);
}
layerParams
.
type
=
"Scale"
;
layerParams
.
set
(
"bias_term"
,
true
);
}
}
else
if
(
layer_type
==
"Max"
)
...
...
@@ -452,19 +485,6 @@ void ONNXImporter::populateNet(Net dstNet)
layerParams
.
type
=
"Eltwise"
;
layerParams
.
set
(
"operation"
,
"max"
);
}
else
if
(
layer_type
==
"Sub"
)
{
Mat
blob
=
getBlob
(
node_proto
,
constBlobs
,
1
);
if
(
blob
.
total
()
==
1
)
{
layerParams
.
type
=
"Power"
;
layerParams
.
set
(
"shift"
,
-
blob
.
at
<
float
>
(
0
));
}
else
{
layerParams
.
type
=
"Scale"
;
layerParams
.
set
(
"has_bias"
,
true
);
layerParams
.
blobs
.
push_back
(
-
1.0
f
*
blob
.
reshape
(
1
,
1
));
}
}
else
if
(
layer_type
==
"Neg"
)
{
layerParams
.
type
=
"Power"
;
...
...
@@ -643,10 +663,35 @@ void ONNXImporter::populateNet(Net dstNet)
layerParams
.
type
=
"Scale"
;
}
}
else
{
else
if
(
outShapes
[
node_proto
.
input
(
0
)]
==
outShapes
[
node_proto
.
input
(
1
)])
{
layerParams
.
type
=
"Eltwise"
;
layerParams
.
set
(
"operation"
,
isDiv
?
"div"
:
"prod"
);
}
else
{
if
(
isDiv
)
{
LayerParams
powerParams
;
powerParams
.
name
=
layerParams
.
name
+
"/inv"
;
powerParams
.
type
=
"Power"
;
powerParams
.
set
(
"power"
,
-
1
);
//Create Power layer
int
id
=
dstNet
.
addLayer
(
powerParams
.
name
,
powerParams
.
type
,
powerParams
);
//Connect to input
layerId
=
layer_id
.
find
(
node_proto
.
input
(
1
));
CV_Assert
(
layerId
!=
layer_id
.
end
());
dstNet
.
connect
(
layerId
->
second
.
layerId
,
layerId
->
second
.
outputId
,
id
,
0
);
//Add shape
layer_id
.
insert
(
std
::
make_pair
(
powerParams
.
name
,
LayerInfo
(
id
,
0
)));
outShapes
[
powerParams
.
name
]
=
outShapes
[
node_proto
.
input
(
1
)];
//Replace input to Power
node_proto
.
set_input
(
1
,
powerParams
.
name
);
}
layerParams
.
type
=
"Scale"
;
}
if
(
!
haveVariables
)
{
...
...
modules/dnn/test/test_onnx_importer.cpp
View file @
9e332dc5
...
...
@@ -32,29 +32,33 @@ public:
void
testONNXModels
(
const
String
&
basename
,
const
Extension
ext
=
npy
,
const
double
l1
=
0
,
const
float
lInf
=
0
,
const
bool
useSoftmax
=
false
,
bool
checkNoFallbacks
=
true
)
bool
checkNoFallbacks
=
true
,
int
numInps
=
1
)
{
String
onnxmodel
=
_tf
(
"models/"
+
basename
+
".onnx"
,
required
);
Mat
inp
,
ref
;
std
::
vector
<
Mat
>
inps
(
numInps
);
Mat
ref
;
if
(
ext
==
npy
)
{
inp
=
blobFromNPY
(
_tf
(
"data/input_"
+
basename
+
".npy"
));
for
(
int
i
=
0
;
i
<
numInps
;
++
i
)
inps
[
i
]
=
blobFromNPY
(
_tf
(
"data/input_"
+
basename
+
(
numInps
>
1
?
format
(
"_%d"
,
i
)
:
""
)
+
".npy"
));
ref
=
blobFromNPY
(
_tf
(
"data/output_"
+
basename
+
".npy"
));
}
else
if
(
ext
==
pb
)
{
inp
=
readTensorFromONNX
(
_tf
(
"data/input_"
+
basename
+
".pb"
));
for
(
int
i
=
0
;
i
<
numInps
;
++
i
)
inps
[
i
]
=
readTensorFromONNX
(
_tf
(
"data/input_"
+
basename
+
(
numInps
>
1
?
format
(
"_%d"
,
i
)
:
""
)
+
".pb"
));
ref
=
readTensorFromONNX
(
_tf
(
"data/output_"
+
basename
+
".pb"
));
}
else
CV_Error
(
Error
::
StsUnsupportedFormat
,
"Unsupported extension"
);
checkBackend
(
&
inp
,
&
ref
);
checkBackend
(
&
inp
s
[
0
]
,
&
ref
);
Net
net
=
readNetFromONNX
(
onnxmodel
);
ASSERT_FALSE
(
net
.
empty
());
net
.
setPreferableBackend
(
backend
);
net
.
setPreferableTarget
(
target
);
net
.
setInput
(
inp
);
for
(
int
i
=
0
;
i
<
numInps
;
++
i
)
net
.
setInput
(
inps
[
i
],
numInps
>
1
?
format
(
"%d"
,
i
)
:
""
);
Mat
out
=
net
.
forward
(
""
);
if
(
useSoftmax
)
...
...
@@ -328,25 +332,14 @@ TEST_P(Test_ONNX_layers, ResizeUnfused)
TEST_P
(
Test_ONNX_layers
,
MultyInputs
)
{
const
String
model
=
_tf
(
"models/multy_inputs.onnx"
);
Net
net
=
readNetFromONNX
(
model
);
ASSERT_FALSE
(
net
.
empty
());
net
.
setPreferableBackend
(
backend
);
net
.
setPreferableTarget
(
target
);
Mat
inp1
=
blobFromNPY
(
_tf
(
"data/input_multy_inputs_0.npy"
));
Mat
inp2
=
blobFromNPY
(
_tf
(
"data/input_multy_inputs_1.npy"
));
Mat
ref
=
blobFromNPY
(
_tf
(
"data/output_multy_inputs.npy"
));
checkBackend
(
&
inp1
,
&
ref
);
net
.
setInput
(
inp1
,
"0"
);
net
.
setInput
(
inp2
,
"1"
);
Mat
out
=
net
.
forward
();
testONNXModels
(
"multy_inputs"
,
npy
,
0
,
0
,
false
,
true
,
2
);
}
normAssert
(
ref
,
out
,
""
,
default_l1
,
default_lInf
);
expectNoFallbacksFromIE
(
net
);
TEST_P
(
Test_ONNX_layers
,
Broadcast
)
{
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
)
applyTestTag
(
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER
);
testONNXModels
(
"channel_broadcast"
,
npy
,
0
,
0
,
false
,
true
,
2
);
}
TEST_P
(
Test_ONNX_layers
,
Div
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment