Commit 9d3e7e02 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

almost finished opencl-ization of cascade classifier

parent d8513d62
......@@ -403,6 +403,61 @@ public:
i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); set(i, a11); return *this;
}
template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3,
typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7,
typename _Tp8, typename _Tp9, typename _Tp10, typename _Tp11, typename _Tp12>
Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3,
const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7,
const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11,
const _Tp12& a12)
{
int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5);
i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11);
set(i, a12); return *this;
}
template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3,
typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7,
typename _Tp8, typename _Tp9, typename _Tp10, typename _Tp11, typename _Tp12,
typename _Tp13>
Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3,
const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7,
const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11,
const _Tp12& a12, const _Tp13& a13)
{
int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5);
i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11);
i = set(i, a12); set(i, a13); return *this;
}
template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3,
typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7,
typename _Tp8, typename _Tp9, typename _Tp10, typename _Tp11, typename _Tp12,
typename _Tp13, typename _Tp14>
Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3,
const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7,
const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11,
const _Tp12& a12, const _Tp13& a13, const _Tp14& a14)
{
int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5);
i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11);
i = set(i, a12); i = set(i, a13); set(i, a14); return *this;
}
template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3,
typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7,
typename _Tp8, typename _Tp9, typename _Tp10, typename _Tp11, typename _Tp12,
typename _Tp13, typename _Tp14, typename _Tp15>
Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3,
const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7,
const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11,
const _Tp12& a12, const _Tp13& a13, const _Tp14& a14, const _Tp15& a15)
{
int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5);
i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11);
i = set(i, a12); i = set(i, a13); i = set(i, a14); set(i, a15); return *this;
}
bool run(int dims, size_t globalsize[],
size_t localsize[], bool sync, const Queue& q=Queue());
bool runTask(bool sync, const Queue& q=Queue());
......
......@@ -1076,6 +1076,11 @@ CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
bool normalize = true,
int borderType = BORDER_DEFAULT );
CV_EXPORTS_W void sqrBoxFilter( InputArray _src, OutputArray _dst, int ddepth,
Size ksize, Point anchor = Point(-1, -1),
bool normalize = true,
int borderType = BORDER_DEFAULT );
//! a synonym for normalized box filter
CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
Size ksize, Point anchor = Point(-1,-1),
......
......@@ -741,6 +741,114 @@ void cv::blur( InputArray src, OutputArray dst,
boxFilter( src, dst, -1, ksize, anchor, true, borderType );
}
/****************************************************************************************\
Squared Box Filter
\****************************************************************************************/
namespace cv
{
template<typename T, typename ST> struct SqrRowSum : public BaseRowFilter
{
SqrRowSum( int _ksize, int _anchor )
{
ksize = _ksize;
anchor = _anchor;
}
void operator()(const uchar* src, uchar* dst, int width, int cn)
{
const T* S = (const T*)src;
ST* D = (ST*)dst;
int i = 0, k, ksz_cn = ksize*cn;
width = (width - 1)*cn;
for( k = 0; k < cn; k++, S++, D++ )
{
ST s = 0;
for( i = 0; i < ksz_cn; i += cn )
{
ST val = (ST)S[i];
s += val*val;
}
D[0] = s;
for( i = 0; i < width; i += cn )
{
ST val0 = (ST)S[i], val1 = (ST)S[i + ksz_cn];
s += val1*val1 - val0*val0;
D[i+cn] = s;
}
}
}
};
static Ptr<BaseRowFilter> getSqrRowSumFilter(int srcType, int sumType, int ksize, int anchor)
{
int sdepth = CV_MAT_DEPTH(srcType), ddepth = CV_MAT_DEPTH(sumType);
CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(srcType) );
if( anchor < 0 )
anchor = ksize/2;
if( sdepth == CV_8U && ddepth == CV_32S )
return makePtr<SqrRowSum<uchar, int> >(ksize, anchor);
if( sdepth == CV_8U && ddepth == CV_64F )
return makePtr<SqrRowSum<uchar, double> >(ksize, anchor);
if( sdepth == CV_16U && ddepth == CV_64F )
return makePtr<SqrRowSum<ushort, double> >(ksize, anchor);
if( sdepth == CV_16S && ddepth == CV_64F )
return makePtr<SqrRowSum<short, double> >(ksize, anchor);
if( sdepth == CV_32F && ddepth == CV_64F )
return makePtr<SqrRowSum<float, double> >(ksize, anchor);
if( sdepth == CV_64F && ddepth == CV_64F )
return makePtr<SqrRowSum<double, double> >(ksize, anchor);
CV_Error_( CV_StsNotImplemented,
("Unsupported combination of source format (=%d), and buffer format (=%d)",
srcType, sumType));
return Ptr<BaseRowFilter>();
}
}
void cv::sqrBoxFilter( InputArray _src, OutputArray _dst, int ddepth,
Size ksize, Point anchor,
bool normalize, int borderType )
{
Mat src = _src.getMat();
int sdepth = src.depth(), cn = src.channels();
if( ddepth < 0 )
ddepth = sdepth < CV_32F ? CV_32F : CV_64F;
_dst.create( src.size(), CV_MAKETYPE(ddepth, cn) );
Mat dst = _dst.getMat();
if( borderType != BORDER_CONSTANT && normalize )
{
if( src.rows == 1 )
ksize.height = 1;
if( src.cols == 1 )
ksize.width = 1;
}
int sumType = CV_64F;
if( sdepth == CV_8U )
sumType = CV_32S;
sumType = CV_MAKETYPE( sumType, cn );
int srcType = CV_MAKETYPE(sdepth, cn);
int dstType = CV_MAKETYPE(ddepth, cn);
Ptr<BaseRowFilter> rowFilter = getSqrRowSumFilter(srcType, sumType, ksize.width, anchor.x );
Ptr<BaseColumnFilter> columnFilter = getColumnSumFilter(sumType,
dstType, ksize.height, anchor.y,
normalize ? 1./(ksize.width*ksize.height) : 1);
Ptr<FilterEngine> f = makePtr<FilterEngine>(Ptr<BaseFilter>(), rowFilter, columnFilter,
srcType, dstType, sumType, borderType );
f->apply( src, dst );
}
/****************************************************************************************\
Gaussian Blur
\****************************************************************************************/
......
......@@ -135,7 +135,7 @@ public:
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const;
virtual bool setImage(InputArray img, Size origWinSize);
virtual bool setImage(InputArray img, Size origWinSize, Size sumSize);
virtual bool setWindow(Point p);
virtual double calcOrd(int featureIdx) const;
......
......@@ -113,6 +113,13 @@ struct Logger
namespace cv
{
template<typename _Tp> void copyVectorToUMat(const std::vector<_Tp>& v, UMat& um)
{
if(v.empty())
um.release();
Mat(1, (int)(v.size()*sizeof(v[0])), CV_8U, (void*)&v[0]).copyTo(um);
}
void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps, std::vector<int>* weights, std::vector<double>* levelWeights)
{
if( groupThreshold <= 0 || rectList.empty() )
......@@ -434,7 +441,7 @@ FeatureEvaluator::~FeatureEvaluator() {}
bool FeatureEvaluator::read(const FileNode&) {return true;}
Ptr<FeatureEvaluator> FeatureEvaluator::clone() const { return Ptr<FeatureEvaluator>(); }
int FeatureEvaluator::getFeatureType() const {return -1;}
bool FeatureEvaluator::setImage(InputArray, Size) {return true;}
bool FeatureEvaluator::setImage(InputArray, Size, Size) {return true;}
bool FeatureEvaluator::setWindow(Point) { return true; }
double FeatureEvaluator::calcOrd(int) const { return 0.; }
int FeatureEvaluator::calcCat(int) const { return 0; }
......@@ -468,7 +475,6 @@ HaarEvaluator::HaarEvaluator()
{
optfeaturesPtr = 0;
pwin = 0;
pqwin = 0;
}
HaarEvaluator::~HaarEvaluator()
{
......@@ -478,10 +484,16 @@ bool HaarEvaluator::read(const FileNode& node)
{
size_t i, n = node.size();
CV_Assert(n > 0);
if(features.empty())
features = makePtr<std::vector<Feature> >();
if(optfeatures.empty())
optfeatures = makePtr<std::vector<OptFeature> >();
features->resize(n);
FileNodeIterator it = node.begin();
hasTiltedFeatures = false;
std::vector<Feature> ff = *features;
sumSize0 = Size();
ufbuf.release();
for(i = 0; i < n; i++, ++it)
{
......@@ -502,59 +514,91 @@ Ptr<FeatureEvaluator> HaarEvaluator::clone() const
ret->optfeaturesPtr = optfeatures->empty() ? 0 : &(*(ret->optfeatures))[0];
ret->hasTiltedFeatures = hasTiltedFeatures;
ret->sum0 = sum0; ret->sqsum0 = sqsum0;
ret->sum = sum; ret->sqsum = sqsum; ret->tilted = tilted;
ret->sum = sum; ret->sqsum = sqsum;
ret->usum0 = usum0; ret->usqsum0 = usqsum0; ret->ufbuf = ufbuf;
ret->normrect = normrect;
memcpy( ret->nofs, nofs, 4*sizeof(nofs[0]) );
memcpy( ret->nqofs, nqofs, 4*sizeof(nqofs[0]) );
ret->pwin = pwin; ret->pqwin = pqwin;
ret->pwin = pwin;
ret->varianceNormFactor = varianceNormFactor;
return ret;
}
bool HaarEvaluator::setImage( InputArray _image, Size _origWinSize )
bool HaarEvaluator::setImage( InputArray _image, Size _origWinSize, Size _sumSize )
{
Size imgsz = _image.size();
int rn = imgsz.height+1, cn = imgsz.width+1, rnt = rn;
origWinSize = _origWinSize;
normrect = Rect(1, 1, origWinSize.width-2, origWinSize.height-2);
int cols = imgsz.width, rows = imgsz.height;
if (imgsz.width < origWinSize.width || imgsz.height < origWinSize.height)
return false;
if( hasTiltedFeatures )
rnt = rn*2;
origWinSize = _origWinSize;
normrect = Rect(1, 1, origWinSize.width-2, origWinSize.height-2);
int rn = _sumSize.height, cn = _sumSize.width, rn_scale = hasTiltedFeatures ? 2 : 1;
int sumStep, tofs = 0;
CV_Assert(rn >= rows+1 && cn >= cols+1);
if( _image.isUMat() )
{
usum0.create(rn*rn_scale, cn, CV_32S);
usqsum0.create(rn, cn, CV_32S);
usum = UMat(usum0, Rect(0, 0, cols+1, rows+1));
usqsum = UMat(usqsum0, Rect(0, 0, cols, rows));
if( sum0.rows < rnt || sum0.cols < cn )
if( hasTiltedFeatures )
{
sum0.create(rnt, cn, CV_32S);
sqsum0.create(rn, cn, CV_64F);
UMat utilted(usum0, Rect(0, _sumSize.height, cols+1, rows+1));
integral(_image, usum, noArray(), utilted, CV_32S);
tofs = (int)((utilted.offset - usum.offset)/sizeof(int));
}
sum = Mat(rn, cn, CV_32S, sum0.data);
sqsum = Mat(rn, cn, CV_64F, sqsum0.data);
else
integral(_image, usum, noArray(), noArray(), CV_32S);
sqrBoxFilter(_image, usqsum, CV_32S,
Size(normrect.width, normrect.height),
Point(0, 0), false);
sumStep = (int)(usum.step/usum.elemSize());
}
else
{
sum0.create(rn*rn_scale, cn, CV_32S);
sqsum0.create(rn, cn, CV_32S);
sum = sum0(Rect(0, 0, cols+1, rows+1));
sqsum = sqsum0(Rect(0, 0, cols, rows));
if( hasTiltedFeatures )
{
tilted = Mat(rn, cn, CV_32S, sum0.data + rn*sum.step);
integral(_image, sum, sqsum, tilted);
Mat tilted = sum0(Rect(0, _sumSize.height, cols+1, rows+1));
integral(_image, sum, noArray(), tilted, CV_32S);
tofs = (int)((tilted.data - sum.data)/sizeof(int));
}
else
integral(_image, sum, sqsum);
int sumStep = (int)(sum.step/sum.elemSize());
int sqsumStep = (int)(sqsum.step/sqsum.elemSize());
int tofs = hasTiltedFeatures ? sumStep*rn : 0;
integral(_image, sum, noArray(), noArray(), CV_32S);
sqrBoxFilter(_image, sqsum, CV_32S,
Size(normrect.width, normrect.height),
Point(0, 0), false);
sumStep = (int)(sum.step/sum.elemSize());
}
CV_SUM_OFS( nofs[0], nofs[1], nofs[2], nofs[3], 0, normrect, sumStep );
CV_SUM_OFS( nqofs[0], nqofs[1], nqofs[2], nqofs[3], 0, normrect, sqsumStep );
size_t fi, nfeatures = features->size();
const std::vector<Feature>& ff = *features;
if( sumSize0 != _sumSize )
{
optfeatures->resize(nfeatures);
optfeaturesPtr = &(*optfeatures)[0];
const std::vector<Feature>& ff = *features;
for( fi = 0; fi < nfeatures; fi++ )
optfeaturesPtr[fi].setOffsets( ff[fi], sumStep, tofs );
}
if( _image.isUMat() && (sumSize0 != _sumSize || ufbuf.empty()) )
copyVectorToUMat(ff, ufbuf);
sumSize0 = _sumSize;
return true;
}
bool HaarEvaluator::setWindow( Point pt )
{
if( pt.x < 0 || pt.y < 0 ||
......@@ -563,9 +607,8 @@ bool HaarEvaluator::setWindow( Point pt )
return false;
const int* p = &sum.at<int>(pt);
const double* pq = &sqsum.at<double>(pt);
int valsum = CALC_SUM_OFS(nofs, p);
double valsqsum = CALC_SUM_OFS(nqofs, pq);
double valsqsum = sqsum.at<int>(pt.y + normrect.y, pt.x + normrect.x);
double nf = (double)normrect.area() * valsqsum - (double)valsum * valsum;
if( nf > 0. )
......@@ -578,6 +621,19 @@ bool HaarEvaluator::setWindow( Point pt )
return true;
}
Rect HaarEvaluator::getNormRect() const
{
return normrect;
}
void HaarEvaluator::getUMats(std::vector<UMat>& bufs)
{
bufs.clear();
bufs.push_back(usum);
bufs.push_back(usqsum);
bufs.push_back(ufbuf);
}
//---------------------------------------------- LBPEvaluator -------------------------------------
bool LBPEvaluator::Feature :: read(const FileNode& node )
{
......@@ -620,7 +676,7 @@ Ptr<FeatureEvaluator> LBPEvaluator::clone() const
return ret;
}
bool LBPEvaluator::setImage( InputArray _image, Size _origWinSize )
bool LBPEvaluator::setImage( InputArray _image, Size _origWinSize, Size )
{
Mat image = _image.getMat();
int rn = image.rows+1, cn = image.cols+1;
......@@ -702,7 +758,7 @@ Ptr<FeatureEvaluator> HOGEvaluator::clone() const
return ret;
}
bool HOGEvaluator::setImage( InputArray _image, Size winSize )
bool HOGEvaluator::setImage( InputArray _image, Size winSize, Size )
{
Mat image = _image.getMat();
int rows = image.rows + 1;
......@@ -914,11 +970,6 @@ int CascadeClassifierImpl::runAt( Ptr<FeatureEvaluator>& evaluator, Point pt, do
}
}
bool CascadeClassifierImpl::setImage( Ptr<FeatureEvaluator>& evaluator, const Mat& image )
{
return empty() ? false : evaluator->setImage(image, data.origWinSize);
}
void CascadeClassifierImpl::setMaskGenerator(const Ptr<MaskGenerator>& _maskGenerator)
{
maskGenerator=_maskGenerator;
......@@ -1022,9 +1073,10 @@ struct getNeighbors { int operator ()(const CvAvgComp& e) const { return e.neigh
bool CascadeClassifierImpl::detectSingleScale( InputArray _image, Size processingRectSize,
int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>& levels, std::vector<double>& weights, bool outputRejectLevels )
std::vector<int>& levels, std::vector<double>& weights,
Size sumSize0, bool outputRejectLevels )
{
if( !featureEvaluator->setImage( _image, data.origWinSize ) )
if( !featureEvaluator->setImage(_image, data.origWinSize, sumSize0) )
return false;
#if defined (LOG_CASCADE_STATISTIC)
......@@ -1071,13 +1123,16 @@ bool CascadeClassifierImpl::detectSingleScale( InputArray _image, Size processin
bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size processingRectSize,
int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>&, std::vector<double>&, bool )
int yStep, double factor, Size sumSize0 )
{
const int MAX_FACES = 10000;
Ptr<HaarEvaluator> haar = featureEvaluator.dynamicCast<HaarEvaluator>();
if( haar.empty() )
return false;
haar->setImage(_image, data.origWinSize, sumSize0);
if( cascadeKernel.empty() )
{
//cascadeKernel.create(")
......@@ -1087,25 +1142,21 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
if( ustages.empty() )
{
#define UPLOAD_CASCADE_PART(NAME) \
Mat(1, (int)(data.NAME.size()*sizeof(data.NAME[0])), CV_8U, &data.NAME[0]).copyTo(u##NAME)
UPLOAD_CASCADE_PART(stages);
UPLOAD_CASCADE_PART(classifiers);
UPLOAD_CASCADE_PART(nodes);
UPLOAD_CASCADE_PART(leaves);
ufacepos.create();
copyVectorToUMat(data.stages, ustages);
copyVectorToUMat(data.classifiers, uclassifiers);
copyVectorToUMat(data.nodes, unodes);
copyVectorToUMat(data.leaves, uleaves);
ufacepos.create(1, MAX_FACES*4 + 1, CV_32S);
}
haar->setUMat(_image, data.origWinSize, ugrayImage.size());
std::vector<UMat> bufs;
haar->getUMats(bufs);
CV_Assert(bufs.size() == 5);
CV_Assert(bufs.size() == 3);
size_t globalsize[] = { processingRectSize.width, processingRectSize.height };
size_t globalsize[] = { processingRectSize.width/yStep, processingRectSize.height/yStep };
if(!cascadeKernel.args(ocl::KernelArg::PtrReadOnly(bufs[0]), // sum
ocl::KernelArg::PtrReadOnly(bufs[1]), // sqsum
return cascadeKernel.args(ocl::KernelArg::ReadOnly(bufs[0]), // sum
ocl::KernelArg::ReadOnly(bufs[1]), // sqsum
ocl::KernelArg::PtrReadOnly(bufs[2]), // optfeatures
// cascade classifier
......@@ -1115,30 +1166,17 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
ocl::KernelArg::PtrReadOnly(uleaves),
ocl::KernelArg::WriteOnly(ufacepos), // positions
ocl::KernelArg::ReadWrite(umisc),
ocl::KernelArg::PtrReadOnly(uparams),
processingRectSize.width,
processingRectSize.height).run(2, globalsize, 0, false))
return false;
Mat facepos = ufacepos.getMat(ACCESS_READ);
const int* fptr = facepos.ptr<int>();
int nfaces = fptr[0];
for( i = 0; i < nfaces; i++ )
{
int pos = fptr[i+1];
int x =
candidates.push_back(Rect()
return false;
processingRectSize.height,
yStep, (float)factor, MAX_FACES).run(2, globalsize, 0, false);
}
bool CascadeClassifierImpl::isOldFormatCascade() const
{
return !oldCascade.empty();
}
int CascadeClassifierImpl::getFeatureType() const
{
return featureEvaluator->getFeatureType();
......@@ -1149,12 +1187,6 @@ Size CascadeClassifierImpl::getOriginalWindowSize() const
return data.origWinSize;
}
bool CascadeClassifierImpl::setImage(InputArray _image)
{
Mat image = _image.getMat();
return featureEvaluator->setImage(image, data.origWinSize);
}
void* CascadeClassifierImpl::getOldCascade()
{
return oldCascade;
......@@ -1196,12 +1228,12 @@ void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::
if( maxObjectSize.height == 0 || maxObjectSize.width == 0 )
maxObjectSize = imgsz;
bool use_ocl = ocl::useOpenCL() &&
bool use_ocl = false;/*ocl::useOpenCL() &&
getFeatureType() == FeatureEvaluator::HAAR &&
!isOldFormatCascade() &&
maskGenerator.empty() &&
!outputRejectLevels &&
tryOpenCL;
tryOpenCL;*/
if( !use_ocl )
{
......@@ -1229,6 +1261,8 @@ void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::
uimageBuffer.create(imgsz.height + 1, imgsz.width + 1, CV_8U);
}
Size sumSize0((imgsz.width + SUM_ALIGN) & -SUM_ALIGN, imgsz.height+1);
for( double factor = 1; ; factor *= scaleFactor )
{
Size originalWindowSize = getOriginalWindowSize();
......@@ -1260,8 +1294,7 @@ void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::
UMat uscaledImage(uimageBuffer, Rect(0, 0, scaledImageSize.width, scaledImageSize.height));
resize( ugrayImage, uscaledImage, scaledImageSize, 0, 0, INTER_LINEAR );
if( ocl_detectSingleScale( uscaledImage, processingRectSize, yStep, factor, candidates,
rejectLevels, levelWeights, outputRejectLevels ) )
if( ocl_detectSingleScale( uscaledImage, processingRectSize, yStep, factor, sumSize0 ) )
continue;
/////// if the OpenCL branch has been executed but failed, fall back to CPU: /////
......@@ -1282,10 +1315,21 @@ void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::
resize( grayImage, scaledImage, scaledImageSize, 0, 0, INTER_LINEAR );
if( !detectSingleScale( scaledImage, processingRectSize, yStep, factor, candidates,
rejectLevels, levelWeights, outputRejectLevels ) )
rejectLevels, levelWeights, sumSize0, outputRejectLevels ) )
break;
}
}
if( use_ocl && tryOpenCL )
{
Mat facepos = ufacepos.getMat(ACCESS_READ);
const int* fptr = facepos.ptr<int>();
int i, nfaces = fptr[0];
for( i = 0; i < nfaces; i++ )
{
candidates.push_back(Rect(fptr[i*4+1], fptr[i*4+2], fptr[i*4+3], fptr[i*4+4]));
}
}
}
void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects,
......
......@@ -42,21 +42,20 @@ public:
bool isOldFormatCascade() const;
Size getOriginalWindowSize() const;
int getFeatureType() const;
bool setImage( InputArray );
void* getOldCascade();
void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator);
Ptr<MaskGenerator> getMaskGenerator();
protected:
enum { SUM_ALIGN = 16 };
bool detectSingleScale( InputArray image, Size processingRectSize,
int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
bool outputRejectLevels = false );
Size sumSize0, bool outputRejectLevels = false );
bool ocl_detectSingleScale( InputArray image, Size processingRectSize,
int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
bool outputRejectLevels = false );
int yStep, double factor, Size sumSize0 );
void detectMultiScaleNoGrouping( InputArray image, std::vector<Rect>& candidates,
......@@ -86,7 +85,6 @@ protected:
template<class FEval>
friend int predictCategoricalStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
bool setImage( Ptr<FeatureEvaluator>& feval, const Mat& image);
int runAt( Ptr<FeatureEvaluator>& feval, Point pt, double& weight );
class Data
......@@ -134,7 +132,7 @@ protected:
Ptr<MaskGenerator> maskGenerator;
UMat ugrayImage, uimageBuffer;
UMat ufacepos, ustages, uclassifiers, unodes, uleaves, usubsets;
UMat ufacepos, ustages, uclassifiers, unodes, uleaves, usubsets, uparams;
ocl::Kernel cascadeKernel;
bool tryOpenCL;
......@@ -270,10 +268,9 @@ public:
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const { return FeatureEvaluator::HAAR; }
virtual bool setImage(InputArray, Size origWinSize);
virtual bool setImage(InputArray, Size origWinSize, Size sumSize);
virtual bool setWindow(Point pt);
virtual bool setUMat(InputArray, Size origWinSize, Size origImgSize);
virtual Rect getNormRect() const;
virtual void getUMats(std::vector<UMat>& bufs);
double operator()(int featureIdx) const
......@@ -282,22 +279,19 @@ public:
{ return (*this)(featureIdx); }
protected:
Size origWinSize, origImgSize;
Size origWinSize, sumSize0;
Ptr<std::vector<Feature> > features;
Ptr<std::vector<OptFeature> > optfeatures;
OptFeature* optfeaturesPtr; // optimization
bool hasTiltedFeatures;
Mat sum0, sqsum0;
Mat sum, sqsum, tilted;
UMat usum, usqsum, fbuf;
Mat sum0, sum, sqsum0, sqsum;
UMat usum0, usum, usqsum0, usqsum, ufbuf;
Rect normrect;
int nofs[4];
int nqofs[4];
const int* pwin;
const double* pqwin;
double varianceNormFactor;
};
......@@ -376,7 +370,7 @@ public:
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const { return FeatureEvaluator::LBP; }
virtual bool setImage(InputArray image, Size _origWinSize);
virtual bool setImage(InputArray image, Size _origWinSize, Size);
virtual bool setWindow(Point pt);
int operator()(int featureIdx) const
......@@ -453,7 +447,7 @@ public:
virtual bool read( const FileNode& node );
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const { return FeatureEvaluator::HOG; }
virtual bool setImage( InputArray image, Size winSize );
virtual bool setImage( InputArray image, Size winSize, Size );
virtual bool setWindow( Point pt );
double operator()(int featureIdx) const
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment