Commit 9d1636da authored by Ilya Lavrenov's avatar Ilya Lavrenov

catching OpenCL double not supported exceptions

parent fccd37de
......@@ -264,7 +264,9 @@ enum {
CV_GpuNotSupported= -216,
CV_GpuApiCallError= -217,
CV_OpenGlNotSupported= -218,
CV_OpenGlApiCallError= -219
CV_OpenGlApiCallError= -219,
CV_OpenCLDoubleNotSupported= -220,
CV_OpenCLInitError= -221
};
/****************************************************************************************\
......
......@@ -43,30 +43,33 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
#ifdef HAVE_CLAMDBLAS
using namespace perf;
using namespace std;
using namespace cv::ocl;
using namespace cv;
using std::tr1::tuple;
using std::tr1::get;
///////////// Kalman Filter ////////////////////////
typedef tuple<int> KalmanFilterType;
typedef TestBaseWithParam<KalmanFilterType> KalmanFilterFixture;
typedef TestBaseWithParam<int> KalmanFilterFixture;
PERF_TEST_P(KalmanFilterFixture, KalmanFilter,
::testing::Values(1000, 1500))
{
KalmanFilterType params = GetParam();
const int dim = get<0>(params);
const int dim = GetParam();
cv::Mat sample(dim, 1, CV_32FC1), dresult;
randu(sample, -1, 1);
cv::Mat statePre_;
if(RUN_PLAIN_IMPL)
if (RUN_PLAIN_IMPL)
{
cv::KalmanFilter kalman;
TEST_CYCLE()
......@@ -76,7 +79,8 @@ PERF_TEST_P(KalmanFilterFixture, KalmanFilter,
kalman.predict();
}
statePre_ = kalman.statePre;
}else if(RUN_OCL_IMPL)
}
else if(RUN_OCL_IMPL)
{
cv::ocl::oclMat dsample(sample);
cv::ocl::KalmanFilter kalman_ocl;
......@@ -87,7 +91,11 @@ PERF_TEST_P(KalmanFilterFixture, KalmanFilter,
kalman_ocl.predict();
}
kalman_ocl.statePre.download(statePre_);
}else
}
else
OCL_PERF_ELSE
SANITY_CHECK(statePre_);
}
\ No newline at end of file
}
#endif // HAVE_CLAMDBLAS
This diff is collapsed.
......@@ -517,14 +517,14 @@ Context* Context::getContext()
{
if (initializeOpenCLDevices() == 0)
{
CV_Error(CV_GpuNotSupported, "OpenCL not available");
CV_Error(CV_OpenCLInitError, "OpenCL not available");
}
}
if (!__deviceSelected)
{
if (!selectOpenCLDevice())
{
CV_Error(CV_GpuNotSupported, "Can't select OpenCL device");
CV_Error(CV_OpenCLInitError, "Can't select OpenCL device");
}
}
}
......
......@@ -1417,7 +1417,7 @@ void cv::ocl::Laplacian(const oclMat &src, oclMat &dst, int ddepth, int ksize, d
{
if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.type() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device doesn't support double");
return;
}
......
......@@ -977,7 +977,7 @@ namespace cv
CV_Assert(src.type() == CV_8UC1);
if(!src.clCxt->supportsFeature(ocl::FEATURE_CL_DOUBLE) && src.depth() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "select device don't support double");
CV_Error(CV_OpenCLDoubleNotSupported, "select device don't support double");
return;
}
......@@ -1168,7 +1168,7 @@ namespace cv
{
if(!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "select device don't support double");
CV_Error(CV_OpenCLDoubleNotSupported, "select device don't support double");
}
CV_Assert(src.cols >= blockSize / 2 && src.rows >= blockSize / 2);
CV_Assert(borderType == cv::BORDER_CONSTANT || borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
......@@ -1187,7 +1187,7 @@ namespace cv
{
if(!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "select device don't support double");
CV_Error(CV_OpenCLDoubleNotSupported, "select device don't support double");
}
CV_Assert(src.cols >= blockSize / 2 && src.rows >= blockSize / 2);
CV_Assert(borderType == cv::BORDER_CONSTANT || borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
......@@ -1301,10 +1301,11 @@ namespace cv
if( src.depth() != CV_8U || src.oclchannels() != 4 )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
// if(!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE))
// {
// CV_Error( CV_GpuNotSupported, "Selected device doesn't support double, so a deviation exists.\nIf the accuracy is acceptable, the error can be ignored.\n");
// }
// if(!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE))
// {
// CV_Error( CV_OpenCLDoubleNotSupportedNotSupported, "Selected device doesn't support double, so a deviation exists.\nIf the accuracy is acceptable, the error can be ignored.\n");
// return;
// }
dstr.create( src.size(), CV_8UC4 );
dstsp.create( src.size(), CV_16SC2 );
......
......@@ -164,7 +164,7 @@ void cv::ocl::distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src
{
//if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F)
//{
// CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
// CV_Error(CV_OpenCLDoubleNotSupported, "Selected device doesn't support double");
// return;
//}
......
......@@ -119,6 +119,12 @@ static void convert_C4C3(const oclMat &src, cl_mem &dst)
void cv::ocl::oclMat::upload(const Mat &m)
{
if (!Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE) && m.depth() == CV_64F)
{
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device doesn't support double");
return;
}
CV_DbgAssert(!m.empty());
Size wholeSize;
Point ofs;
......@@ -308,7 +314,7 @@ void cv::ocl::oclMat::convertTo( oclMat &dst, int rtype, double alpha, double be
if (!clCxt->supportsFeature(FEATURE_CL_DOUBLE) &&
(depth() == CV_64F || dst.depth() == CV_64F))
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device doesn't support double");
return;
}
......
......@@ -59,7 +59,7 @@ namespace cv
{
if(!mat_dst.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && mat_dst.type() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device doesn't support double");
return;
}
......@@ -154,7 +154,7 @@ namespace cv
if(!mat_src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && mat_src.type() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device doesn't support double");
return;
}
......
This diff is collapsed.
This diff is collapsed.
......@@ -90,7 +90,7 @@ PARAM_TEST_CASE(mog, UseGray, LearningRate, bool)
}
};
TEST_P(mog, Update)
OCL_TEST_P(mog, Update)
{
std::string inputFile = string(cvtest::TS::ptr()->get_data_path()) + "gpu/video/768x576.avi";
cv::VideoCapture cap(inputFile);
......@@ -151,7 +151,7 @@ PARAM_TEST_CASE(mog2, UseGray, DetectShadow, bool)
}
};
TEST_P(mog2, Update)
OCL_TEST_P(mog2, Update)
{
std::string inputFile = string(cvtest::TS::ptr()->get_data_path()) + "gpu/video/768x576.avi";
cv::VideoCapture cap(inputFile);
......@@ -192,7 +192,7 @@ TEST_P(mog2, Update)
}
}
TEST_P(mog2, getBackgroundImage)
OCL_TEST_P(mog2, getBackgroundImage)
{
if (useGray)
return;
......
......@@ -88,7 +88,7 @@ PARAM_TEST_CASE(Blend, cv::Size, MatType/*, UseRoi*/)
}
};
TEST_P(Blend, Accuracy)
OCL_TEST_P(Blend, Accuracy)
{
int depth = CV_MAT_DEPTH(type);
......
......@@ -106,7 +106,7 @@ namespace
}
};
TEST_P(BruteForceMatcher, Match_Single)
OCL_TEST_P(BruteForceMatcher, Match_Single)
{
cv::ocl::BruteForceMatcher_OCL_base matcher(distType);
......@@ -126,7 +126,7 @@ namespace
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, KnnMatch_2_Single)
OCL_TEST_P(BruteForceMatcher, KnnMatch_2_Single)
{
const int knn = 2;
......@@ -158,7 +158,7 @@ namespace
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, RadiusMatch_Single)
OCL_TEST_P(BruteForceMatcher, RadiusMatch_Single)
{
float radius = 1.f / countFactor;
......
......@@ -62,7 +62,7 @@ PARAM_TEST_CASE(StereoMatchBM, int, int)
}
};
TEST_P(StereoMatchBM, Regression)
OCL_TEST_P(StereoMatchBM, Regression)
{
Mat left_image = readImage("gpu/stereobm/aloe-L.png", IMREAD_GRAYSCALE);
......@@ -110,7 +110,7 @@ PARAM_TEST_CASE(StereoMatchBP, int, int, int, float, float, float, float)
disc_single_jump_ = GET_PARAM(6);
}
};
TEST_P(StereoMatchBP, Regression)
OCL_TEST_P(StereoMatchBP, Regression)
{
Mat left_image = readImage("gpu/stereobp/aloe-L.png");
Mat right_image = readImage("gpu/stereobp/aloe-R.png");
......@@ -163,7 +163,7 @@ PARAM_TEST_CASE(StereoMatchConstSpaceBP, int, int, int, int, float, float, float
msg_type_ = GET_PARAM(9);
}
};
TEST_P(StereoMatchConstSpaceBP, Regression)
OCL_TEST_P(StereoMatchConstSpaceBP, Regression)
{
Mat left_image = readImage("gpu/csstereobp/aloe-L.png");
Mat right_image = readImage("gpu/csstereobp/aloe-R.png");
......
......@@ -64,7 +64,7 @@ PARAM_TEST_CASE(Canny, AppertureSize, L2gradient)
}
};
TEST_P(Canny, Accuracy)
OCL_TEST_P(Canny, Accuracy)
{
cv::Mat img = readImage("cv/shared/fruits.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
......
......@@ -90,7 +90,7 @@ PARAM_TEST_CASE(CvtColor, cv::Size, MatDepth)
};
#define CVTCODE(name) cv::COLOR_ ## name
#define TEST_P_CVTCOLOR(name) TEST_P(CvtColor, name)\
#define OCL_TEST_P_CVTCOLOR(name) OCL_TEST_P(CvtColor, name)\
{\
cv::Mat src = img;\
cv::ocl::oclMat ocl_img, dst;\
......@@ -104,17 +104,17 @@ PARAM_TEST_CASE(CvtColor, cv::Size, MatDepth)
}
//add new ones here using macro
TEST_P_CVTCOLOR(RGB2GRAY)
TEST_P_CVTCOLOR(BGR2GRAY)
TEST_P_CVTCOLOR(RGBA2GRAY)
TEST_P_CVTCOLOR(BGRA2GRAY)
TEST_P_CVTCOLOR(RGB2YUV)
TEST_P_CVTCOLOR(BGR2YUV)
TEST_P_CVTCOLOR(YUV2RGB)
TEST_P_CVTCOLOR(YUV2BGR)
TEST_P_CVTCOLOR(RGB2YCrCb)
TEST_P_CVTCOLOR(BGR2YCrCb)
OCL_TEST_P_CVTCOLOR(RGB2GRAY)
OCL_TEST_P_CVTCOLOR(BGR2GRAY)
OCL_TEST_P_CVTCOLOR(RGBA2GRAY)
OCL_TEST_P_CVTCOLOR(BGRA2GRAY)
OCL_TEST_P_CVTCOLOR(RGB2YUV)
OCL_TEST_P_CVTCOLOR(BGR2YUV)
OCL_TEST_P_CVTCOLOR(YUV2RGB)
OCL_TEST_P_CVTCOLOR(YUV2BGR)
OCL_TEST_P_CVTCOLOR(RGB2YCrCb)
OCL_TEST_P_CVTCOLOR(BGR2YCrCb)
PARAM_TEST_CASE(CvtColor_Gray2RGB, cv::Size, MatDepth, int)
{
......@@ -131,7 +131,7 @@ PARAM_TEST_CASE(CvtColor_Gray2RGB, cv::Size, MatDepth, int)
img = randomMat(size, CV_MAKETYPE(depth, 1), 0.0, depth == CV_32F ? 1.0 : 255.0);
}
};
TEST_P(CvtColor_Gray2RGB, Accuracy)
OCL_TEST_P(CvtColor_Gray2RGB, Accuracy)
{
cv::Mat src = img;
cv::ocl::oclMat ocl_img, dst;
......@@ -160,7 +160,7 @@ PARAM_TEST_CASE(CvtColor_YUV420, cv::Size, int)
}
};
TEST_P(CvtColor_YUV420, Accuracy)
OCL_TEST_P(CvtColor_YUV420, Accuracy)
{
cv::Mat src = img;
cv::ocl::oclMat ocl_img, dst;
......
......@@ -44,10 +44,14 @@
//M*/
#include "test_precomp.hpp"
using namespace std;
#ifdef HAVE_CLAMDFFT
////////////////////////////////////////////////////////////////////////////
// Dft
PARAM_TEST_CASE(Dft, cv::Size, int)
{
cv::Size dft_size;
......@@ -59,7 +63,7 @@ PARAM_TEST_CASE(Dft, cv::Size, int)
}
};
TEST_P(Dft, C2C)
OCL_TEST_P(Dft, C2C)
{
cv::Mat a = randomMat(dft_size, CV_32FC2, 0.0, 100.0);
cv::Mat b_gold;
......@@ -71,7 +75,7 @@ TEST_P(Dft, C2C)
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), a.size().area() * 1e-4);
}
TEST_P(Dft, R2C)
OCL_TEST_P(Dft, R2C)
{
cv::Mat a = randomMat(dft_size, CV_32FC1, 0.0, 100.0);
cv::Mat b_gold, b_gold_roi;
......@@ -88,7 +92,7 @@ TEST_P(Dft, R2C)
EXPECT_MAT_NEAR(b_gold_roi, cv::Mat(d_b), a.size().area() * 1e-4);
}
TEST_P(Dft, R2CthenC2R)
OCL_TEST_P(Dft, R2CthenC2R)
{
cv::Mat a = randomMat(dft_size, CV_32FC1, 0.0, 10.0);
......
......@@ -145,7 +145,7 @@ struct Blur : FilterTestBase
}
};
TEST_P(Blur, Mat)
OCL_TEST_P(Blur, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -172,7 +172,7 @@ struct Laplacian : FilterTestBase
}
};
TEST_P(Laplacian, Accuracy)
OCL_TEST_P(Laplacian, Accuracy)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -205,7 +205,7 @@ struct ErodeDilate : FilterTestBase
};
TEST_P(ErodeDilate, Mat)
OCL_TEST_P(ErodeDilate, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -244,7 +244,7 @@ struct Sobel : FilterTestBase
}
};
TEST_P(Sobel, Mat)
OCL_TEST_P(Sobel, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -274,7 +274,7 @@ struct Scharr : FilterTestBase
}
};
TEST_P(Scharr, Mat)
OCL_TEST_P(Scharr, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -307,7 +307,7 @@ struct GaussianBlur : FilterTestBase
}
};
TEST_P(GaussianBlur, Mat)
OCL_TEST_P(GaussianBlur, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -339,7 +339,7 @@ struct Filter2D : FilterTestBase
}
};
TEST_P(Filter2D, Mat)
OCL_TEST_P(Filter2D, Mat)
{
cv::Mat kernel = randomMat(cv::Size(ksize.width, ksize.height), CV_32FC1, 0.0, 1.0);
for(int j = 0; j < LOOP_TIMES; j++)
......@@ -370,7 +370,7 @@ struct Bilateral : FilterTestBase
}
};
TEST_P(Bilateral, Mat)
OCL_TEST_P(Bilateral, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -400,7 +400,7 @@ struct AdaptiveBilateral : FilterTestBase
}
};
TEST_P(AdaptiveBilateral, Mat)
OCL_TEST_P(AdaptiveBilateral, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......
......@@ -62,7 +62,7 @@ PARAM_TEST_CASE(Gemm, int, cv::Size, int)
}
};
TEST_P(Gemm, Accuracy)
OCL_TEST_P(Gemm, Accuracy)
{
cv::Mat a = randomMat(mat_size, type, 0.0, 10.0);
cv::Mat b = randomMat(mat_size, type, 0.0, 10.0);
......
......@@ -453,7 +453,7 @@ PARAM_TEST_CASE(ImgprocTestBase, MatType, MatType, MatType, MatType, MatType, bo
struct equalizeHist : ImgprocTestBase {};
TEST_P(equalizeHist, Mat)
OCL_TEST_P(equalizeHist, Mat)
{
if (mat1.type() != CV_8UC1 || mat1.type() != dst.type())
{
......@@ -477,7 +477,7 @@ TEST_P(equalizeHist, Mat)
struct CopyMakeBorder : ImgprocTestBase {};
TEST_P(CopyMakeBorder, Mat)
OCL_TEST_P(CopyMakeBorder, Mat)
{
int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, cv::BORDER_REFLECT, cv::BORDER_WRAP, cv::BORDER_REFLECT_101};
int top = rng.uniform(0, 10);
......@@ -532,7 +532,7 @@ TEST_P(CopyMakeBorder, Mat)
struct cornerMinEigenVal : ImgprocTestBase {};
TEST_P(cornerMinEigenVal, Mat)
OCL_TEST_P(cornerMinEigenVal, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -554,7 +554,7 @@ TEST_P(cornerMinEigenVal, Mat)
struct cornerHarris : ImgprocTestBase {};
TEST_P(cornerHarris, Mat)
OCL_TEST_P(cornerHarris, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -576,7 +576,7 @@ TEST_P(cornerHarris, Mat)
struct integral : ImgprocTestBase {};
TEST_P(integral, Mat1)
OCL_TEST_P(integral, Mat1)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -588,7 +588,7 @@ TEST_P(integral, Mat1)
}
}
TEST_P(integral, Mat2)
OCL_TEST_P(integral, Mat2)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -690,7 +690,7 @@ PARAM_TEST_CASE(WarpTestBase, MatType, int)
struct WarpAffine : WarpTestBase {};
TEST_P(WarpAffine, Mat)
OCL_TEST_P(WarpAffine, Mat)
{
static const double coeffs[2][3] =
{
......@@ -718,7 +718,7 @@ TEST_P(WarpAffine, Mat)
struct WarpPerspective : WarpTestBase {};
TEST_P(WarpPerspective, Mat)
OCL_TEST_P(WarpPerspective, Mat)
{
static const double coeffs[3][3] =
{
......@@ -887,7 +887,7 @@ PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int)
}
};
TEST_P(Remap, Mat)
OCL_TEST_P(Remap, Mat)
{
if((interpolation == 1 && map1Type == CV_16SC2) || (map1Type == CV_32FC1 && map2Type == nulltype) || (map1Type == CV_16SC2 && map2Type == CV_32FC1) || (map1Type == CV_32FC2 && map2Type == CV_32FC1))
{
......@@ -1012,7 +1012,7 @@ PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int)
};
TEST_P(Resize, Mat)
OCL_TEST_P(Resize, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -1105,7 +1105,7 @@ PARAM_TEST_CASE(Threshold, MatType, ThreshOp)
};
TEST_P(Threshold, Mat)
OCL_TEST_P(Threshold, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -1206,7 +1206,7 @@ PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, cv::TermCriteria)
/////////////////////////meanShiftFiltering/////////////////////////////
struct meanShiftFiltering : meanShiftTestBase {};
TEST_P(meanShiftFiltering, Mat)
OCL_TEST_P(meanShiftFiltering, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
......@@ -1227,7 +1227,7 @@ TEST_P(meanShiftFiltering, Mat)
///////////////////////////meanShiftProc//////////////////////////////////
struct meanShiftProc : meanShiftTestBase {};
TEST_P(meanShiftProc, Mat)
OCL_TEST_P(meanShiftProc, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
......@@ -1315,7 +1315,7 @@ PARAM_TEST_CASE(histTestBase, MatType, MatType)
///////////////////////////calcHist///////////////////////////////////////
struct calcHist : histTestBase {};
TEST_P(calcHist, Mat)
OCL_TEST_P(calcHist, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -1354,7 +1354,7 @@ PARAM_TEST_CASE(CLAHE, cv::Size, double)
}
};
TEST_P(CLAHE, Accuracy)
OCL_TEST_P(CLAHE, Accuracy)
{
cv::Ptr<cv::CLAHE> clahe = cv::ocl::createCLAHE(clipLimit, gridSize);
clahe->apply(g_src, g_dst);
......@@ -1477,7 +1477,7 @@ void conv2( cv::Mat x, cv::Mat y, cv::Mat z)
dstdata[i * (z.step >> 2) + j] = temp;
}
}
TEST_P(Convolve, Mat)
OCL_TEST_P(Convolve, Mat)
{
if(mat1.type() != CV_32FC1)
{
......@@ -1512,7 +1512,7 @@ PARAM_TEST_CASE(ColumnSum, cv::Size)
}
};
TEST_P(ColumnSum, Accuracy)
OCL_TEST_P(ColumnSum, Accuracy)
{
cv::Mat src = randomMat(size, CV_32FC1, 0, 255);
cv::ocl::oclMat d_dst;
......
......@@ -43,7 +43,11 @@
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_OPENCL
#ifdef HAVE_CLAMDBLAS
using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
......@@ -51,6 +55,7 @@ using namespace testing;
using namespace std;
//////////////////////////////////////////////////////////////////////////
PARAM_TEST_CASE(Kalman, int, int)
{
int size_;
......@@ -62,7 +67,7 @@ PARAM_TEST_CASE(Kalman, int, int)
}
};
TEST_P(Kalman, Accuracy)
OCL_TEST_P(Kalman, Accuracy)
{
const int Dim = size_;
const int Steps = iteration;
......@@ -139,6 +144,9 @@ TEST_P(Kalman, Accuracy)
//test end
EXPECT_MAT_NEAR(kalman_filter_cpu.statePost, kalman_filter_ocl.statePost, 0);
}
INSTANTIATE_TEST_CASE_P(OCL_Video, Kalman, Combine(Values(3, 7), Values(30)));
#endif // HAVE_OPENCL
\ No newline at end of file
#endif // HAVE_CLAMDBLAS
#endif // HAVE_OPENCL
......@@ -98,7 +98,7 @@ PARAM_TEST_CASE(Kmeans, int, int, int)
}
}
};
TEST_P(Kmeans, Mat){
OCL_TEST_P(Kmeans, Mat){
if(flags & KMEANS_USE_INITIAL_LABELS)
{
......
......@@ -70,7 +70,7 @@ PARAM_TEST_CASE(MatchTemplate8U, cv::Size, TemplateSize, Channels, TemplateMetho
}
};
TEST_P(MatchTemplate8U, Accuracy)
OCL_TEST_P(MatchTemplate8U, Accuracy)
{
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn), 0, 255);
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn), 0, 255);
......@@ -103,7 +103,7 @@ PARAM_TEST_CASE(MatchTemplate32F, cv::Size, TemplateSize, Channels, TemplateMeth
}
};
TEST_P(MatchTemplate32F, Accuracy)
OCL_TEST_P(MatchTemplate32F, Accuracy)
{
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn), 0, 255);
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn), 0, 255);
......
......@@ -126,7 +126,7 @@ PARAM_TEST_CASE(ConvertToTestBase, MatType, MatType, int, bool)
typedef ConvertToTestBase ConvertTo;
TEST_P(ConvertTo, Accuracy)
OCL_TEST_P(ConvertTo, Accuracy)
{
if((src_depth == CV_64F || dst_depth == CV_64F) &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
......@@ -219,7 +219,7 @@ PARAM_TEST_CASE(CopyToTestBase, MatType, int, bool)
typedef CopyToTestBase CopyTo;
TEST_P(CopyTo, Without_mask)
OCL_TEST_P(CopyTo, Without_mask)
{
if((src.depth() == CV_64F) &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
......@@ -237,7 +237,7 @@ TEST_P(CopyTo, Without_mask)
}
}
TEST_P(CopyTo, With_mask)
OCL_TEST_P(CopyTo, With_mask)
{
if(src.depth() == CV_64F &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
......@@ -331,7 +331,7 @@ PARAM_TEST_CASE(SetToTestBase, MatType, int, bool)
typedef SetToTestBase SetTo;
TEST_P(SetTo, Without_mask)
OCL_TEST_P(SetTo, Without_mask)
{
if(depth == CV_64F &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
......@@ -349,7 +349,7 @@ TEST_P(SetTo, Without_mask)
}
}
TEST_P(SetTo, With_mask)
OCL_TEST_P(SetTo, With_mask)
{
if(depth == CV_64F &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
......@@ -417,7 +417,7 @@ PARAM_TEST_CASE(convertC3C4, MatType, bool)
}
};
TEST_P(convertC3C4, Accuracy)
OCL_TEST_P(convertC3C4, Accuracy)
{
if(depth == CV_64F &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
......
......@@ -44,12 +44,16 @@
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_OPENCL
using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
using namespace testing;
///////K-NEAREST NEIGHBOR//////////////////////////
static void genTrainData(cv::RNG& rng, Mat& trainData, int trainDataRow, int trainDataCol,
Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0)
{
......@@ -80,7 +84,7 @@ PARAM_TEST_CASE(KNN, int, Size, int, bool)
}
};
TEST_P(KNN, Accuracy)
OCL_TEST_P(KNN, Accuracy)
{
Mat trainData, trainLabels;
const int trainDataRow = 500;
......@@ -118,10 +122,14 @@ TEST_P(KNN, Accuracy)
EXPECT_MAT_NEAR(Mat(best_label_ocl), best_label_cpu, 0.0);
}
}
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)),
Values(4, 3), Values(false, true)));
////////////////////////////////SVM/////////////////////////////////////////////////
#ifdef HAVE_CLAMDBLAS
PARAM_TEST_CASE(SVM_OCL, int, int, int)
{
cv::Size size;
......@@ -193,7 +201,8 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int)
labels_predict.convertTo(labels_predict, CV_32FC1);
}
};
TEST_P(SVM_OCL, Accuracy)
OCL_TEST_P(SVM_OCL, Accuracy)
{
CvSVMParams params;
params.degree = 0.4;
......@@ -289,11 +298,15 @@ TEST_P(SVM_OCL, Accuracy)
}
}
}
// TODO FIXIT: CvSVM::EPS_SVR case is crashed inside CPU implementation
// Anonymous enums are not supported well so cast them to 'int'
INSTANTIATE_TEST_CASE_P(OCL_ML, SVM_OCL, testing::Combine(
Values((int)CvSVM::LINEAR, (int)CvSVM::POLY, (int)CvSVM::RBF, (int)CvSVM::SIGMOID),
Values((int)CvSVM::C_SVC, (int)CvSVM::NU_SVC, (int)CvSVM::ONE_CLASS, (int)CvSVM::NU_SVR),
Values(2, 3, 4)
));
#endif // HAVE_CLAMDBLAS
#endif // HAVE_OPENCL
......@@ -35,7 +35,7 @@ PARAM_TEST_CASE(MomentsTest, MatType, bool)
};
TEST_P(MomentsTest, Mat)
OCL_TEST_P(MomentsTest, Mat)
{
bool binaryImage = 0;
......
......@@ -66,7 +66,7 @@ PARAM_TEST_CASE(HOG, Size, int)
}
};
TEST_P(HOG, GetDescriptors)
OCL_TEST_P(HOG, GetDescriptors)
{
// Convert image
Mat img;
......@@ -112,7 +112,7 @@ TEST_P(HOG, GetDescriptors)
EXPECT_MAT_SIMILAR(down_descriptors, cpu_descriptors, 1e-2);
}
TEST_P(HOG, Detect)
OCL_TEST_P(HOG, Detect)
{
// Convert image
Mat img;
......@@ -216,7 +216,7 @@ PARAM_TEST_CASE(Haar, int, CascadeName)
}
};
TEST_P(Haar, FaceDetect)
OCL_TEST_P(Haar, FaceDetect)
{
MemStorage storage(cvCreateMemStorage(0));
CvSeq *_objects;
......@@ -234,7 +234,7 @@ TEST_P(Haar, FaceDetect)
EXPECT_LT(checkRectSimilarity(img.size(), faces, oclfaces), 1.0);
}
TEST_P(Haar, FaceDetectUseBuf)
OCL_TEST_P(Haar, FaceDetectUseBuf)
{
ocl::OclCascadeClassifierBuf cascadebuf;
ASSERT_TRUE(cascadebuf.load(cascadeName)) << "could not load classifier cascade for FaceDetectUseBuf!";
......
......@@ -70,7 +70,7 @@ PARAM_TEST_CASE(GoodFeaturesToTrack, MinDistance)
}
};
TEST_P(GoodFeaturesToTrack, Accuracy)
OCL_TEST_P(GoodFeaturesToTrack, Accuracy)
{
cv::Mat frame = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame.empty());
......@@ -111,7 +111,7 @@ TEST_P(GoodFeaturesToTrack, Accuracy)
ASSERT_LE(bad_ratio, 0.01);
}
TEST_P(GoodFeaturesToTrack, EmptyCorners)
OCL_TEST_P(GoodFeaturesToTrack, EmptyCorners)
{
int maxCorners = 1000;
double qualityLevel = 0.01;
......@@ -141,7 +141,7 @@ PARAM_TEST_CASE(TVL1, bool)
};
TEST_P(TVL1, Accuracy)
OCL_TEST_P(TVL1, Accuracy)
{
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
......@@ -182,7 +182,7 @@ PARAM_TEST_CASE(Sparse, bool, bool)
}
};
TEST_P(Sparse, Mat)
OCL_TEST_P(Sparse, Mat)
{
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
......@@ -295,7 +295,7 @@ PARAM_TEST_CASE(Farneback, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
}
};
TEST_P(Farneback, Accuracy)
OCL_TEST_P(Farneback, Accuracy)
{
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
......
......@@ -74,7 +74,7 @@ PARAM_TEST_CASE(PyrBase, MatType, int)
typedef PyrBase PyrDown;
TEST_P(PyrDown, Mat)
OCL_TEST_P(PyrDown, Mat)
{
for (int j = 0; j < LOOP_TIMES; j++)
{
......@@ -97,7 +97,7 @@ INSTANTIATE_TEST_CASE_P(OCL_ImgProc, PyrDown, Combine(
typedef PyrBase PyrUp;
TEST_P(PyrUp, Accuracy)
OCL_TEST_P(PyrUp, Accuracy)
{
for (int j = 0; j < LOOP_TIMES; j++)
{
......
......@@ -229,7 +229,7 @@ PARAM_TEST_CASE(SortByKey, InputSize, MatType, MatType, SortMethod, IsGreaterTha
}
};
TEST_P(SortByKey, Accuracy)
OCL_TEST_P(SortByKey, Accuracy)
{
using namespace cv;
ocl::oclMat oclmat_key(mat_key);
......
......@@ -139,7 +139,7 @@ PARAM_TEST_CASE(MergeTestBase, MatType, int, bool)
struct Merge : MergeTestBase {};
TEST_P(Merge, Accuracy)
OCL_TEST_P(Merge, Accuracy)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......@@ -238,7 +238,7 @@ PARAM_TEST_CASE(SplitTestBase, MatType, int, bool)
struct Split : SplitTestBase {};
TEST_P(Split, Accuracy)
OCL_TEST_P(Split, Accuracy)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
......
......@@ -42,7 +42,7 @@
#ifndef __OPENCV_TEST_UTILITY_HPP__
#define __OPENCV_TEST_UTILITY_HPP__
#define LOOP_TIMES 10
#define LOOP_TIMES 1
#define MWIDTH 256
#define MHEIGHT 256
......@@ -254,4 +254,50 @@ CV_FLAGS(GemmFlags, GEMM_1_T, GEMM_2_T, GEMM_3_T);
CV_FLAGS(WarpFlags, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, WARP_INVERSE_MAP)
CV_FLAGS(DftFlags, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT)
# define OCL_TEST_P(test_case_name, test_name) \
class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : \
public test_case_name { \
public: \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() { } \
virtual void TestBody(); \
void OCLTestBody(); \
private: \
static int AddToRegistry() \
{ \
::testing::UnitTest::GetInstance()->parameterized_test_registry(). \
GetTestCasePatternHolder<test_case_name>(\
#test_case_name, __FILE__, __LINE__)->AddTestPattern(\
#test_case_name, \
#test_name, \
new ::testing::internal::TestMetaFactory< \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>()); \
return 0; \
} \
\
static int gtest_registering_dummy_; \
GTEST_DISALLOW_COPY_AND_ASSIGN_(\
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \
}; \
\
int GTEST_TEST_CLASS_NAME_(test_case_name, \
test_name)::gtest_registering_dummy_ = \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \
\
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() \
{ \
try \
{ \
OCLTestBody(); \
} \
catch (const cv::Exception & ex) \
{ \
if (ex.code != CV_OpenCLDoubleNotSupported) \
throw; \
else \
std::cout << "Test skipped (selected device does not support double)" << std::endl; \
} \
} \
\
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::OCLTestBody()
#endif // __OPENCV_TEST_UTILITY_HPP__
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment