Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
9c7e0bfd
Commit
9c7e0bfd
authored
Apr 25, 2014
by
Ilya Krylov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added fisheye camera model
parent
cccdcac0
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1767 additions
and
0 deletions
+1767
-0
calib3d.hpp
modules/calib3d/include/opencv2/calib3d/calib3d.hpp
+127
-0
fisheye.cpp
modules/calib3d/src/fisheye.cpp
+1217
-0
test_fisheye.cpp
modules/calib3d/test/test_fisheye.cpp
+423
-0
No files found.
modules/calib3d/include/opencv2/calib3d/calib3d.hpp
View file @
9c7e0bfd
...
...
@@ -45,6 +45,7 @@
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/core/affine.hpp"
#ifdef __cplusplus
extern
"C"
{
...
...
@@ -744,6 +745,132 @@ CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
OutputArray
out
,
OutputArray
inliers
,
double
ransacThreshold
=
3
,
double
confidence
=
0.99
);
class
Fisheye
{
public
:
//Definitions:
// Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X)
// The coordinate vector of P in the camera reference frame is: Xc = R*X + T
// where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om);
// call x, y and z the 3 coordinates of Xc: x = Xc(1); y = Xc(2); z = Xc(3);
// The pinehole projection coordinates of P is [a;b] where a=x/z and b=y/z.
// call r^2 = a^2 + b^2,
// call theta = atan(r),
//
// Fisheye distortion -> theta_d = theta * (1 + k(1)*theta^2 + k(2)*theta^4 + k(3)*theta^6 + k(4)*theta^8)
//
// The distorted point coordinates are: xd = [xx;yy] where:
//
// xx = (theta_d / r) * x
// yy = (theta_d / r) * y
//
// Finally, convertion into pixel coordinates: The final pixel coordinates vector xp=[xxp;yyp] where:
//
// xxp = f(1)*(xx + alpha*yy) + c(1)
// yyp = f(2)*yy + c(2)
enum
{
CALIB_USE_INTRINSIC_GUESS
=
1
,
CALIB_RECOMPUTE_EXTRINSIC
=
2
,
CALIB_CHECK_COND
=
4
,
CALIB_FIX_SKEW
=
8
,
CALIB_FIX_K1
=
16
,
CALIB_FIX_K2
=
32
,
CALIB_FIX_K3
=
64
,
CALIB_FIX_K4
=
128
};
//! projects 3D points using fisheye model
static
void
projectPoints
(
InputArray
objectPoints
,
OutputArray
imagePoints
,
const
Affine3d
&
affine
,
InputArray
K
,
InputArray
D
,
double
alpha
=
0
,
OutputArray
jacobian
=
noArray
());
//! projects points using fisheye model
static
void
projectPoints
(
InputArray
objectPoints
,
OutputArray
imagePoints
,
InputArray
rvec
,
InputArray
tvec
,
InputArray
K
,
InputArray
D
,
double
alpha
=
0
,
OutputArray
jacobian
=
noArray
());
//! distorts 2D points using fisheye model
static
void
distortPoints
(
InputArray
undistorted
,
OutputArray
distorted
,
InputArray
K
,
InputArray
D
,
double
alpha
=
0
);
//! undistorts 2D points using fisheye model
static
void
undistortPoints
(
InputArray
distorted
,
OutputArray
undistorted
,
InputArray
K
,
InputArray
D
,
InputArray
R
=
noArray
(),
InputArray
P
=
noArray
());
//! computing undistortion and rectification maps for image transform by cv::remap()
//! If D is empty zero distortion is used, if R or P is empty identity matrixes are used
static
void
initUndistortRectifyMap
(
InputArray
K
,
InputArray
D
,
InputArray
R
,
InputArray
P
,
const
cv
::
Size
&
size
,
int
m1type
,
OutputArray
map1
,
OutputArray
map2
);
//! undistorts image, optinally chanes resolution and camera matrix. If Knew zero identity matrix is used
static
void
undistortImage
(
InputArray
distorted
,
OutputArray
undistorted
,
InputArray
K
,
InputArray
D
,
InputArray
Knew
=
cv
::
noArray
(),
const
Size
&
new_size
=
Size
());
//! estimates new camera matrix for undistortion or rectification
static
void
estimateNewCameraMatrixForUndistortRectify
(
InputArray
K
,
InputArray
D
,
const
Size
&
image_size
,
InputArray
R
,
OutputArray
P
,
double
balance
=
0.0
,
const
Size
&
new_size
=
Size
(),
double
fov_scale
=
1.0
);
//! stereo rectification for fisheye camera model
static
void
stereoRectify
(
InputArray
K1
,
InputArray
D1
,
InputArray
K2
,
InputArray
D2
,
const
cv
::
Size
&
imageSize
,
InputArray
rotaion
,
InputArray
tvec
,
OutputArray
R1
,
OutputArray
R2
,
OutputArray
P1
,
OutputArray
P2
,
OutputArray
Q
,
int
flags
=
cv
::
CALIB_ZERO_DISPARITY
,
double
alpha
=
-
1
,
const
Size
&
newImageSize
=
Size
(),
Rect
*
roi1
=
0
,
Rect
*
roi2
=
0
);
//! performs camera calibaration
static
double
calibrate
(
InputArrayOfArrays
objectPoints
,
InputArrayOfArrays
imagePoints
,
const
Size
&
image_size
,
InputOutputArray
K
,
InputOutputArray
D
,
OutputArrayOfArrays
rvecs
,
OutputArrayOfArrays
tvecs
,
int
flags
=
0
,
TermCriteria
criteria
=
TermCriteria
(
TermCriteria
::
COUNT
+
TermCriteria
::
EPS
,
100
,
DBL_EPSILON
));
//! stereo rectification estimation
static
void
stereoRectify
(
InputArray
K1
,
InputArray
D1
,
InputArray
K2
,
InputArray
D2
,
const
Size
&
imageSize
,
InputArray
R
,
InputArray
tvec
,
OutputArray
R1
,
OutputArray
R2
,
OutputArray
P1
,
OutputArray
P2
,
OutputArray
Q
,
int
flags
,
const
Size
&
newImageSize
=
Size
(),
double
balance
=
0.0
,
double
fov_scale
=
1.0
);
};
namespace
internal
{
struct
IntrinsicParams
{
Vec2d
f
;
Vec2d
c
;
Vec4d
k
;
double
alpha
;
std
::
vector
<
int
>
isEstimate
;
IntrinsicParams
();
IntrinsicParams
(
Vec2d
f
,
Vec2d
c
,
Vec4d
k
,
double
alpha
=
0
);
IntrinsicParams
operator
+
(
const
Mat
&
a
);
IntrinsicParams
&
operator
=
(
const
Mat
&
a
);
void
Init
(
const
cv
::
Vec2d
&
f
,
const
cv
::
Vec2d
&
c
,
const
cv
::
Vec4d
&
k
=
Vec4d
(
0
,
0
,
0
,
0
),
const
double
&
alpha
=
0
);
};
void
projectPoints
(
cv
::
InputArray
objectPoints
,
cv
::
OutputArray
imagePoints
,
cv
::
InputArray
_rvec
,
cv
::
InputArray
_tvec
,
const
IntrinsicParams
&
param
,
cv
::
OutputArray
jacobian
);
void
ComputeExtrinsicRefine
(
const
Mat
&
imagePoints
,
const
Mat
&
objectPoints
,
Mat
&
rvec
,
Mat
&
tvec
,
Mat
&
J
,
const
int
MaxIter
,
const
IntrinsicParams
&
param
,
const
double
thresh_cond
);
Mat
ComputeHomography
(
Mat
m
,
Mat
M
);
Mat
NormalizePixels
(
const
Mat
&
imagePoints
,
const
IntrinsicParams
&
param
);
void
InitExtrinsics
(
const
Mat
&
_imagePoints
,
const
Mat
&
_objectPoints
,
const
IntrinsicParams
&
param
,
Mat
&
omckk
,
Mat
&
Tckk
);
void
CalibrateExtrinsics
(
InputArrayOfArrays
objectPoints
,
InputArrayOfArrays
imagePoints
,
const
IntrinsicParams
&
param
,
const
int
check_cond
,
const
double
thresh_cond
,
InputOutputArray
omc
,
InputOutputArray
Tc
);
void
ComputeJacobians
(
InputArrayOfArrays
objectPoints
,
InputArrayOfArrays
imagePoints
,
const
IntrinsicParams
&
param
,
InputArray
omc
,
InputArray
Tc
,
const
int
&
check_cond
,
const
double
&
thresh_cond
,
Mat
&
JJ2_inv
,
Mat
&
ex3
);
void
EstimateUncertainties
(
InputArrayOfArrays
objectPoints
,
InputArrayOfArrays
imagePoints
,
const
IntrinsicParams
&
params
,
InputArray
omc
,
InputArray
Tc
,
IntrinsicParams
&
errors
,
Vec2d
&
std_err
,
double
thresh_cond
,
int
check_cond
,
double
&
rms
);
}
}
#endif
...
...
modules/calib3d/src/fisheye.cpp
0 → 100644
View file @
9c7e0bfd
#include "opencv2/opencv.hpp"
#include "opencv2/core/affine.hpp"
#include "opencv2/core/affine.hpp"
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::Fisheye::projectPoints
namespace
cv
{
namespace
{
struct
JacobianRow
{
Vec2d
df
,
dc
;
Vec4d
dk
;
Vec3d
dom
,
dT
;
double
dalpha
;
};
}}
void
cv
::
Fisheye
::
projectPoints
(
InputArray
objectPoints
,
OutputArray
imagePoints
,
const
Affine3d
&
affine
,
InputArray
K
,
InputArray
D
,
double
alpha
,
OutputArray
jacobian
)
{
projectPoints
(
objectPoints
,
imagePoints
,
affine
.
rvec
(),
affine
.
translation
(),
K
,
D
,
alpha
,
jacobian
);
}
void
cv
::
Fisheye
::
projectPoints
(
InputArray
objectPoints
,
OutputArray
imagePoints
,
InputArray
_rvec
,
InputArray
_tvec
,
InputArray
_K
,
InputArray
_D
,
double
alpha
,
OutputArray
jacobian
)
{
// will support only 3-channel data now for points
CV_Assert
(
objectPoints
.
type
()
==
CV_32FC3
||
objectPoints
.
type
()
==
CV_64FC3
);
imagePoints
.
create
(
objectPoints
.
size
(),
CV_MAKETYPE
(
objectPoints
.
depth
(),
2
));
size_t
n
=
objectPoints
.
total
();
CV_Assert
(
_rvec
.
total
()
*
_rvec
.
channels
()
==
3
&&
(
_rvec
.
depth
()
==
CV_32F
||
_rvec
.
depth
()
==
CV_64F
));
CV_Assert
(
_tvec
.
total
()
*
_tvec
.
channels
()
==
3
&&
(
_tvec
.
depth
()
==
CV_32F
||
_tvec
.
depth
()
==
CV_64F
));
CV_Assert
(
_tvec
.
getMat
().
isContinuous
()
&&
_rvec
.
getMat
().
isContinuous
());
Vec3d
om
=
_rvec
.
depth
()
==
CV_32F
?
(
Vec3d
)
*
_rvec
.
getMat
().
ptr
<
Vec3f
>
()
:
*
_rvec
.
getMat
().
ptr
<
Vec3d
>
();
Vec3d
T
=
_tvec
.
depth
()
==
CV_32F
?
(
Vec3d
)
*
_tvec
.
getMat
().
ptr
<
Vec3f
>
()
:
*
_tvec
.
getMat
().
ptr
<
Vec3d
>
();
CV_Assert
(
_K
.
size
()
==
Size
(
3
,
3
)
&&
(
_K
.
type
()
==
CV_32F
||
_K
.
type
()
==
CV_64F
)
&&
_D
.
type
()
==
_K
.
type
()
&&
_D
.
total
()
==
4
);
cv
::
Vec2d
f
,
c
;
if
(
_K
.
depth
()
==
CV_32F
)
{
Matx33f
K
=
_K
.
getMat
();
f
=
Vec2f
(
K
(
0
,
0
),
K
(
1
,
1
));
c
=
Vec2f
(
K
(
0
,
2
),
K
(
1
,
2
));
}
else
{
Matx33d
K
=
_K
.
getMat
();
f
=
Vec2d
(
K
(
0
,
0
),
K
(
1
,
1
));
c
=
Vec2d
(
K
(
0
,
2
),
K
(
1
,
2
));
}
Vec4d
k
=
_D
.
depth
()
==
CV_32F
?
(
Vec4d
)
*
_D
.
getMat
().
ptr
<
Vec4f
>
()
:
*
_D
.
getMat
().
ptr
<
Vec4d
>
();
JacobianRow
*
Jn
=
0
;
if
(
jacobian
.
needed
())
{
int
nvars
=
2
+
2
+
1
+
4
+
3
+
3
;
// f, c, alpha, k, om, T,
jacobian
.
create
(
2
*
(
int
)
n
,
nvars
,
CV_64F
);
Jn
=
jacobian
.
getMat
().
ptr
<
JacobianRow
>
(
0
);
}
Matx33d
R
;
Matx
<
double
,
3
,
9
>
dRdom
;
Rodrigues
(
om
,
R
,
dRdom
);
Affine3d
aff
(
om
,
T
);
const
Vec3f
*
Xf
=
objectPoints
.
getMat
().
ptr
<
Vec3f
>
();
const
Vec3d
*
Xd
=
objectPoints
.
getMat
().
ptr
<
Vec3d
>
();
Vec2f
*
xpf
=
imagePoints
.
getMat
().
ptr
<
Vec2f
>
();
Vec2d
*
xpd
=
imagePoints
.
getMat
().
ptr
<
Vec2d
>
();
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
Vec3d
Xi
=
objectPoints
.
depth
()
==
CV_32F
?
(
Vec3d
)
Xf
[
i
]
:
Xd
[
i
];
Vec3d
Y
=
aff
*
Xi
;
Vec2d
x
(
Y
[
0
]
/
Y
[
2
],
Y
[
1
]
/
Y
[
2
]);
double
r2
=
x
.
dot
(
x
);
double
r
=
std
::
sqrt
(
r2
);
// Angle of the incoming ray:
double
theta
=
atan
(
r
);
double
theta2
=
theta
*
theta
,
theta3
=
theta2
*
theta
,
theta4
=
theta2
*
theta2
,
theta5
=
theta4
*
theta
,
theta6
=
theta3
*
theta3
,
theta7
=
theta6
*
theta
,
theta8
=
theta4
*
theta4
,
theta9
=
theta8
*
theta
;
double
theta_d
=
theta
+
k
[
0
]
*
theta3
+
k
[
1
]
*
theta5
+
k
[
2
]
*
theta7
+
k
[
3
]
*
theta9
;
double
inv_r
=
r
>
1e-8
?
1.0
/
r
:
1
;
double
cdist
=
r
>
1e-8
?
theta_d
*
inv_r
:
1
;
Vec2d
xd1
=
x
*
cdist
;
Vec2d
xd3
(
xd1
[
0
]
+
alpha
*
xd1
[
1
],
xd1
[
1
]);
Vec2d
final_point
(
xd3
[
0
]
*
f
[
0
]
+
c
[
0
],
xd3
[
1
]
*
f
[
1
]
+
c
[
1
]);
if
(
objectPoints
.
depth
()
==
CV_32F
)
xpf
[
i
]
=
final_point
;
else
xpd
[
i
]
=
final_point
;
if
(
jacobian
.
needed
())
{
//Vec3d Xi = pdepth == CV_32F ? (Vec3d)Xf[i] : Xd[i];
//Vec3d Y = aff*Xi;
double
dYdR
[]
=
{
Xi
[
0
],
Xi
[
1
],
Xi
[
2
],
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
Xi
[
0
],
Xi
[
1
],
Xi
[
2
],
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
Xi
[
0
],
Xi
[
1
],
Xi
[
2
]
};
Matx33d
dYdom_data
=
Matx
<
double
,
3
,
9
>
(
dYdR
)
*
dRdom
.
t
();
const
Vec3d
*
dYdom
=
(
Vec3d
*
)
dYdom_data
.
val
;
Matx33d
dYdT_data
=
Matx33d
::
eye
();
const
Vec3d
*
dYdT
=
(
Vec3d
*
)
dYdT_data
.
val
;
//Vec2d x(Y[0]/Y[2], Y[1]/Y[2]);
Vec3d
dxdom
[
2
];
dxdom
[
0
]
=
(
1.0
/
Y
[
2
])
*
dYdom
[
0
]
-
x
[
0
]
/
Y
[
2
]
*
dYdom
[
2
];
dxdom
[
1
]
=
(
1.0
/
Y
[
2
])
*
dYdom
[
1
]
-
x
[
1
]
/
Y
[
2
]
*
dYdom
[
2
];
Vec3d
dxdT
[
2
];
dxdT
[
0
]
=
(
1.0
/
Y
[
2
])
*
dYdT
[
0
]
-
x
[
0
]
/
Y
[
2
]
*
dYdT
[
2
];
dxdT
[
1
]
=
(
1.0
/
Y
[
2
])
*
dYdT
[
1
]
-
x
[
1
]
/
Y
[
2
]
*
dYdT
[
2
];
//double r2 = x.dot(x);
Vec3d
dr2dom
=
2
*
x
[
0
]
*
dxdom
[
0
]
+
2
*
x
[
1
]
*
dxdom
[
1
];
Vec3d
dr2dT
=
2
*
x
[
0
]
*
dxdT
[
0
]
+
2
*
x
[
1
]
*
dxdT
[
1
];
//double r = std::sqrt(r2);
double
drdr2
=
r
>
1e-8
?
1.0
/
(
2
*
r
)
:
1
;
Vec3d
drdom
=
drdr2
*
dr2dom
;
Vec3d
drdT
=
drdr2
*
dr2dT
;
// Angle of the incoming ray:
//double theta = atan(r);
double
dthetadr
=
1.0
/
(
1
+
r2
);
Vec3d
dthetadom
=
dthetadr
*
drdom
;
Vec3d
dthetadT
=
dthetadr
*
drdT
;
//double theta_d = theta + k[0]*theta3 + k[1]*theta5 + k[2]*theta7 + k[3]*theta9;
double
dtheta_ddtheta
=
1
+
3
*
k
[
0
]
*
theta2
+
5
*
k
[
1
]
*
theta4
+
7
*
k
[
2
]
*
theta6
+
9
*
k
[
3
]
*
theta8
;
Vec3d
dtheta_ddom
=
dtheta_ddtheta
*
dthetadom
;
Vec3d
dtheta_ddT
=
dtheta_ddtheta
*
dthetadT
;
Vec4d
dtheta_ddk
=
Vec4d
(
theta3
,
theta5
,
theta7
,
theta9
);
//double inv_r = r > 1e-8 ? 1.0/r : 1;
//double cdist = r > 1e-8 ? theta_d / r : 1;
Vec3d
dcdistdom
=
inv_r
*
(
dtheta_ddom
-
cdist
*
drdom
);
Vec3d
dcdistdT
=
inv_r
*
(
dtheta_ddT
-
cdist
*
drdT
);
Vec4d
dcdistdk
=
inv_r
*
dtheta_ddk
;
//Vec2d xd1 = x * cdist;
Vec4d
dxd1dk
[
2
];
Vec3d
dxd1dom
[
2
],
dxd1dT
[
2
];
dxd1dom
[
0
]
=
x
[
0
]
*
dcdistdom
+
cdist
*
dxdom
[
0
];
dxd1dom
[
1
]
=
x
[
1
]
*
dcdistdom
+
cdist
*
dxdom
[
1
];
dxd1dT
[
0
]
=
x
[
0
]
*
dcdistdT
+
cdist
*
dxdT
[
0
];
dxd1dT
[
1
]
=
x
[
1
]
*
dcdistdT
+
cdist
*
dxdT
[
1
];
dxd1dk
[
0
]
=
x
[
0
]
*
dcdistdk
;
dxd1dk
[
1
]
=
x
[
1
]
*
dcdistdk
;
//Vec2d xd3(xd1[0] + alpha*xd1[1], xd1[1]);
Vec4d
dxd3dk
[
2
];
Vec3d
dxd3dom
[
2
],
dxd3dT
[
2
];
dxd3dom
[
0
]
=
dxd1dom
[
0
]
+
alpha
*
dxd1dom
[
1
];
dxd3dom
[
1
]
=
dxd1dom
[
1
];
dxd3dT
[
0
]
=
dxd1dT
[
0
]
+
alpha
*
dxd1dT
[
1
];
dxd3dT
[
1
]
=
dxd1dT
[
1
];
dxd3dk
[
0
]
=
dxd1dk
[
0
]
+
alpha
*
dxd1dk
[
1
];
dxd3dk
[
1
]
=
dxd1dk
[
1
];
Vec2d
dxd3dalpha
(
xd1
[
1
],
0
);
//final jacobian
Jn
[
0
].
dom
=
f
[
0
]
*
dxd3dom
[
0
];
Jn
[
1
].
dom
=
f
[
1
]
*
dxd3dom
[
1
];
Jn
[
0
].
dT
=
f
[
0
]
*
dxd3dT
[
0
];
Jn
[
1
].
dT
=
f
[
1
]
*
dxd3dT
[
1
];
Jn
[
0
].
dk
=
f
[
0
]
*
dxd3dk
[
0
];
Jn
[
1
].
dk
=
f
[
1
]
*
dxd3dk
[
1
];
Jn
[
0
].
dalpha
=
f
[
0
]
*
dxd3dalpha
[
0
];
Jn
[
1
].
dalpha
=
0
;
//f[1] * dxd3dalpha[1];
Jn
[
0
].
df
=
Vec2d
(
xd3
[
0
],
0
);
Jn
[
1
].
df
=
Vec2d
(
0
,
xd3
[
1
]);
Jn
[
0
].
dc
=
Vec2d
(
1
,
0
);
Jn
[
1
].
dc
=
Vec2d
(
0
,
1
);
//step to jacobian rows for next point
Jn
+=
2
;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::Fisheye::distortPoints
void
cv
::
Fisheye
::
distortPoints
(
InputArray
undistorted
,
OutputArray
distorted
,
InputArray
K
,
InputArray
D
,
double
alpha
)
{
// will support only 2-channel data now for points
CV_Assert
(
undistorted
.
type
()
==
CV_32FC2
||
undistorted
.
type
()
==
CV_64FC2
);
distorted
.
create
(
undistorted
.
size
(),
undistorted
.
type
());
size_t
n
=
undistorted
.
total
();
CV_Assert
(
K
.
size
()
==
Size
(
3
,
3
)
&&
(
K
.
type
()
==
CV_32F
||
K
.
type
()
==
CV_64F
)
&&
D
.
total
()
==
4
);
cv
::
Vec2d
f
,
c
;
if
(
K
.
depth
()
==
CV_32F
)
{
Matx33f
camMat
=
K
.
getMat
();
f
=
Vec2f
(
camMat
(
0
,
0
),
camMat
(
1
,
1
));
c
=
Vec2f
(
camMat
(
0
,
2
),
camMat
(
1
,
2
));
}
else
{
Matx33d
camMat
=
K
.
getMat
();
f
=
Vec2d
(
camMat
(
0
,
0
),
camMat
(
1
,
1
));
c
=
Vec2d
(
camMat
(
0
,
2
),
camMat
(
1
,
2
));
}
Vec4d
k
=
D
.
depth
()
==
CV_32F
?
(
Vec4d
)
*
D
.
getMat
().
ptr
<
Vec4f
>
()
:
*
D
.
getMat
().
ptr
<
Vec4d
>
();
const
Vec2f
*
Xf
=
undistorted
.
getMat
().
ptr
<
Vec2f
>
();
const
Vec2d
*
Xd
=
undistorted
.
getMat
().
ptr
<
Vec2d
>
();
Vec2f
*
xpf
=
distorted
.
getMat
().
ptr
<
Vec2f
>
();
Vec2d
*
xpd
=
distorted
.
getMat
().
ptr
<
Vec2d
>
();
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
Vec2d
x
=
undistorted
.
depth
()
==
CV_32F
?
(
Vec2d
)
Xf
[
i
]
:
Xd
[
i
];
double
r2
=
x
.
dot
(
x
);
double
r
=
std
::
sqrt
(
r2
);
// Angle of the incoming ray:
double
theta
=
atan
(
r
);
double
theta2
=
theta
*
theta
,
theta3
=
theta2
*
theta
,
theta4
=
theta2
*
theta2
,
theta5
=
theta4
*
theta
,
theta6
=
theta3
*
theta3
,
theta7
=
theta6
*
theta
,
theta8
=
theta4
*
theta4
,
theta9
=
theta8
*
theta
;
double
theta_d
=
theta
+
k
[
0
]
*
theta3
+
k
[
1
]
*
theta5
+
k
[
2
]
*
theta7
+
k
[
3
]
*
theta9
;
double
inv_r
=
r
>
1e-8
?
1.0
/
r
:
1
;
double
cdist
=
r
>
1e-8
?
theta_d
*
inv_r
:
1
;
Vec2d
xd1
=
x
*
cdist
;
Vec2d
xd3
(
xd1
[
0
]
+
alpha
*
xd1
[
1
],
xd1
[
1
]);
Vec2d
final_point
(
xd3
[
0
]
*
f
[
0
]
+
c
[
0
],
xd3
[
1
]
*
f
[
1
]
+
c
[
1
]);
if
(
undistorted
.
depth
()
==
CV_32F
)
xpf
[
i
]
=
final_point
;
else
xpd
[
i
]
=
final_point
;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::Fisheye::undistortPoints
void
cv
::
Fisheye
::
undistortPoints
(
InputArray
distorted
,
OutputArray
undistorted
,
InputArray
_K
,
InputArray
_D
,
InputArray
_R
,
InputArray
_P
)
{
// will support only 2-channel data now for points
CV_Assert
(
distorted
.
type
()
==
CV_32FC2
||
distorted
.
type
()
==
CV_64FC2
);
undistorted
.
create
(
distorted
.
size
(),
distorted
.
type
());
CV_Assert
(
_P
.
empty
()
||
_P
.
size
()
==
Size
(
3
,
3
)
||
_P
.
size
()
==
Size
(
4
,
3
));
CV_Assert
(
_R
.
empty
()
||
_R
.
size
()
==
Size
(
3
,
3
)
||
_R
.
total
()
*
_R
.
channels
()
==
3
);
CV_Assert
(
_D
.
total
()
==
4
&&
_K
.
size
()
==
Size
(
3
,
3
)
&&
(
_K
.
depth
()
==
CV_32F
||
_K
.
depth
()
==
CV_64F
));
cv
::
Vec2d
f
,
c
;
if
(
_K
.
depth
()
==
CV_32F
)
{
Matx33f
camMat
=
_K
.
getMat
();
f
=
Vec2f
(
camMat
(
0
,
0
),
camMat
(
1
,
1
));
c
=
Vec2f
(
camMat
(
0
,
2
),
camMat
(
1
,
2
));
}
else
{
Matx33d
camMat
=
_K
.
getMat
();
f
=
Vec2d
(
camMat
(
0
,
0
),
camMat
(
1
,
1
));
c
=
Vec2d
(
camMat
(
0
,
2
),
camMat
(
1
,
2
));
}
Vec4d
k
=
_D
.
depth
()
==
CV_32F
?
(
Vec4d
)
*
_D
.
getMat
().
ptr
<
Vec4f
>
()
:
*
_D
.
getMat
().
ptr
<
Vec4d
>
();
cv
::
Matx33d
RR
=
cv
::
Matx33d
::
eye
();
if
(
!
_R
.
empty
()
&&
_R
.
total
()
*
_R
.
channels
()
==
3
)
{
cv
::
Vec3d
rvec
;
_R
.
getMat
().
convertTo
(
rvec
,
CV_64F
);
RR
=
cv
::
Affine3d
(
rvec
).
rotation
();
}
else
if
(
!
_R
.
empty
()
&&
_R
.
size
()
==
Size
(
3
,
3
))
_R
.
getMat
().
convertTo
(
RR
,
CV_64F
);
if
(
!
_P
.
empty
())
{
cv
::
Matx33d
P
;
_P
.
getMat
().
colRange
(
0
,
3
).
convertTo
(
P
,
CV_64F
);
RR
=
P
*
RR
;
}
// start undistorting
const
cv
::
Vec2f
*
srcf
=
distorted
.
getMat
().
ptr
<
cv
::
Vec2f
>
();
const
cv
::
Vec2d
*
srcd
=
distorted
.
getMat
().
ptr
<
cv
::
Vec2d
>
();
cv
::
Vec2f
*
dstf
=
undistorted
.
getMat
().
ptr
<
cv
::
Vec2f
>
();
cv
::
Vec2d
*
dstd
=
undistorted
.
getMat
().
ptr
<
cv
::
Vec2d
>
();
size_t
n
=
distorted
.
total
();
int
sdepth
=
distorted
.
depth
();
for
(
size_t
i
=
0
;
i
<
n
;
i
++
)
{
Vec2d
pi
=
sdepth
==
CV_32F
?
(
Vec2d
)
srcf
[
i
]
:
srcd
[
i
];
// image point
Vec2d
pw
((
pi
[
0
]
-
c
[
0
])
/
f
[
0
],
(
pi
[
1
]
-
c
[
1
])
/
f
[
1
]);
// world point
double
scale
=
1.0
;
double
theta_d
=
sqrt
(
pw
[
0
]
*
pw
[
0
]
+
pw
[
1
]
*
pw
[
1
]);
if
(
theta_d
>
1e-8
)
{
// compensate distortion iteratively
double
theta
=
theta_d
;
for
(
int
j
=
0
;
j
<
10
;
j
++
)
{
double
theta2
=
theta
*
theta
,
theta4
=
theta2
*
theta2
,
theta6
=
theta4
*
theta2
,
theta8
=
theta6
*
theta2
;
theta
=
theta_d
/
(
1
+
k
[
0
]
*
theta2
+
k
[
1
]
*
theta4
+
k
[
2
]
*
theta6
+
k
[
3
]
*
theta8
);
}
scale
=
std
::
tan
(
theta
)
/
theta_d
;
}
Vec2d
pu
=
pw
*
scale
;
//undistorted point
// reproject
Vec3d
pr
=
RR
*
Vec3d
(
pu
[
0
],
pu
[
1
],
1.0
);
// rotated point optionally multiplied by new camera matrix
Vec2d
fi
(
pr
[
0
]
/
pr
[
2
],
pr
[
1
]
/
pr
[
2
]);
// final
if
(
sdepth
==
CV_32F
)
dstf
[
i
]
=
fi
;
else
dstd
[
i
]
=
fi
;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::Fisheye::undistortPoints
void
cv
::
Fisheye
::
initUndistortRectifyMap
(
InputArray
_K
,
InputArray
_D
,
InputArray
_R
,
InputArray
_P
,
const
cv
::
Size
&
size
,
int
m1type
,
OutputArray
map1
,
OutputArray
map2
)
{
CV_Assert
(
m1type
==
CV_16SC2
||
m1type
==
CV_32F
||
m1type
<=
0
);
map1
.
create
(
size
,
m1type
<=
0
?
CV_16SC2
:
m1type
);
map2
.
create
(
size
,
map1
.
type
()
==
CV_16SC2
?
CV_16UC1
:
CV_32F
);
CV_Assert
((
_K
.
depth
()
==
CV_32F
||
_K
.
depth
()
==
CV_64F
)
&&
(
_D
.
depth
()
==
CV_32F
||
_D
.
depth
()
==
CV_64F
));
CV_Assert
((
_P
.
depth
()
==
CV_32F
||
_P
.
depth
()
==
CV_64F
)
&&
(
_R
.
depth
()
==
CV_32F
||
_R
.
depth
()
==
CV_64F
));
CV_Assert
(
_K
.
size
()
==
Size
(
3
,
3
)
&&
(
_D
.
empty
()
||
_D
.
total
()
==
4
));
CV_Assert
(
_R
.
empty
()
||
_R
.
size
()
==
Size
(
3
,
3
)
||
_R
.
total
()
*
_R
.
channels
()
==
3
);
CV_Assert
(
_P
.
empty
()
||
_P
.
size
()
==
Size
(
3
,
3
)
||
_P
.
size
()
==
Size
(
4
,
3
));
cv
::
Vec2d
f
,
c
;
if
(
_K
.
depth
()
==
CV_32F
)
{
Matx33f
camMat
=
_K
.
getMat
();
f
=
Vec2f
(
camMat
(
0
,
0
),
camMat
(
1
,
1
));
c
=
Vec2f
(
camMat
(
0
,
2
),
camMat
(
1
,
2
));
}
else
{
Matx33d
camMat
=
_K
.
getMat
();
f
=
Vec2d
(
camMat
(
0
,
0
),
camMat
(
1
,
1
));
c
=
Vec2d
(
camMat
(
0
,
2
),
camMat
(
1
,
2
));
}
Vec4d
k
=
Vec4d
::
all
(
0
);
if
(
!
_D
.
empty
())
k
=
_D
.
depth
()
==
CV_32F
?
(
Vec4d
)
*
_D
.
getMat
().
ptr
<
Vec4f
>
()
:
*
_D
.
getMat
().
ptr
<
Vec4d
>
();
cv
::
Matx33d
R
=
cv
::
Matx33d
::
eye
();
if
(
!
_R
.
empty
()
&&
_R
.
total
()
*
_R
.
channels
()
==
3
)
{
cv
::
Vec3d
rvec
;
_R
.
getMat
().
convertTo
(
rvec
,
CV_64F
);
R
=
Affine3d
(
rvec
).
rotation
();
}
else
if
(
!
_R
.
empty
()
&&
_R
.
size
()
==
Size
(
3
,
3
))
_R
.
getMat
().
convertTo
(
R
,
CV_64F
);
cv
::
Matx33d
P
=
cv
::
Matx33d
::
eye
();
if
(
!
_P
.
empty
())
_P
.
getMat
().
colRange
(
0
,
3
).
convertTo
(
P
,
CV_64F
);
cv
::
Matx33d
iR
=
(
P
*
R
).
inv
(
cv
::
DECOMP_SVD
);
for
(
int
i
=
0
;
i
<
size
.
height
;
++
i
)
{
float
*
m1f
=
map1
.
getMat
().
ptr
<
float
>
(
i
);
float
*
m2f
=
map2
.
getMat
().
ptr
<
float
>
(
i
);
short
*
m1
=
(
short
*
)
m1f
;
ushort
*
m2
=
(
ushort
*
)
m2f
;
double
_x
=
i
*
iR
(
0
,
1
)
+
iR
(
0
,
2
),
_y
=
i
*
iR
(
1
,
1
)
+
iR
(
1
,
2
),
_w
=
i
*
iR
(
2
,
1
)
+
iR
(
2
,
2
);
for
(
int
j
=
0
;
j
<
size
.
width
;
++
j
)
{
double
x
=
_x
/
_w
,
y
=
_y
/
_w
;
double
r
=
sqrt
(
x
*
x
+
y
*
y
);
double
theta
=
atan
(
r
);
double
theta2
=
theta
*
theta
,
theta4
=
theta2
*
theta2
,
theta6
=
theta4
*
theta2
,
theta8
=
theta4
*
theta4
;
double
theta_d
=
theta
*
(
1
+
k
[
0
]
*
theta2
+
k
[
1
]
*
theta4
+
k
[
2
]
*
theta6
+
k
[
3
]
*
theta8
);
double
scale
=
(
r
==
0
)
?
1.0
:
theta_d
/
r
;
double
u
=
f
[
0
]
*
x
*
scale
+
c
[
0
];
double
v
=
f
[
1
]
*
y
*
scale
+
c
[
1
];
if
(
m1type
==
CV_16SC2
)
{
int
iu
=
cv
::
saturate_cast
<
int
>
(
u
*
cv
::
INTER_TAB_SIZE
);
int
iv
=
cv
::
saturate_cast
<
int
>
(
v
*
cv
::
INTER_TAB_SIZE
);
m1
[
j
*
2
+
0
]
=
(
short
)(
iu
>>
cv
::
INTER_BITS
);
m1
[
j
*
2
+
1
]
=
(
short
)(
iv
>>
cv
::
INTER_BITS
);
m2
[
j
]
=
(
ushort
)((
iv
&
(
cv
::
INTER_TAB_SIZE
-
1
))
*
cv
::
INTER_TAB_SIZE
+
(
iu
&
(
cv
::
INTER_TAB_SIZE
-
1
)));
}
else
if
(
m1type
==
CV_32FC1
)
{
m1f
[
j
]
=
(
float
)
u
;
m2f
[
j
]
=
(
float
)
v
;
}
_x
+=
iR
(
0
,
0
);
_y
+=
iR
(
1
,
0
);
_w
+=
iR
(
2
,
0
);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::Fisheye::undistortImage
void
cv
::
Fisheye
::
undistortImage
(
InputArray
distorted
,
OutputArray
undistorted
,
InputArray
K
,
InputArray
D
,
InputArray
Knew
,
const
Size
&
new_size
)
{
Size
size
=
new_size
.
area
()
!=
0
?
new_size
:
distorted
.
size
();
cv
::
Mat
map1
,
map2
;
initUndistortRectifyMap
(
K
,
D
,
cv
::
Matx33d
::
eye
(),
Knew
,
size
,
CV_16SC2
,
map1
,
map2
);
cv
::
remap
(
distorted
,
undistorted
,
map1
,
map2
,
INTER_LINEAR
,
BORDER_CONSTANT
);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::Fisheye::estimateNewCameraMatrixForUndistortRectify
void
cv
::
Fisheye
::
estimateNewCameraMatrixForUndistortRectify
(
InputArray
K
,
InputArray
D
,
const
Size
&
image_size
,
InputArray
R
,
OutputArray
P
,
double
balance
,
const
Size
&
new_size
,
double
fov_scale
)
{
CV_Assert
(
K
.
size
()
==
Size
(
3
,
3
)
&&
(
K
.
depth
()
==
CV_32F
||
K
.
depth
()
==
CV_64F
));
CV_Assert
((
D
.
empty
()
||
D
.
total
()
==
4
)
&&
(
D
.
depth
()
==
CV_32F
||
D
.
depth
()
==
CV_64F
||
D
.
empty
()));
int
w
=
image_size
.
width
,
h
=
image_size
.
height
;
balance
=
std
::
min
(
std
::
max
(
balance
,
0.0
),
1.0
);
cv
::
Mat
points
(
1
,
4
,
CV_64FC2
);
Vec2d
*
pptr
=
points
.
ptr
<
Vec2d
>
();
pptr
[
0
]
=
Vec2d
(
w
/
2
,
0
);
pptr
[
1
]
=
Vec2d
(
w
,
h
/
2
);
pptr
[
2
]
=
Vec2d
(
w
/
2
,
h
);
pptr
[
3
]
=
Vec2d
(
0
,
h
/
2
);
#if 0
const int N = 10;
cv::Mat points(1, N * 4, CV_64FC2);
Vec2d* pptr = points.ptr<Vec2d>();
for(int i = 0, k = 0; i < 10; ++i)
{
pptr[k++] = Vec2d(w/2, 0) - Vec2d(w/8, 0) + Vec2d(w/4/N*i, 0);
pptr[k++] = Vec2d(w/2, h-1) - Vec2d(w/8, h-1) + Vec2d(w/4/N*i, h-1);
pptr[k++] = Vec2d(0, h/2) - Vec2d(0, h/8) + Vec2d(0, h/4/N*i);
pptr[k++] = Vec2d(w-1, h/2) - Vec2d(w-1, h/8) + Vec2d(w-1, h/4/N*i);
}
#endif
undistortPoints
(
points
,
points
,
K
,
D
,
R
);
cv
::
Scalar
center_mass
=
mean
(
points
);
cv
::
Vec2d
cn
(
center_mass
.
val
);
double
aspect_ratio
=
(
K
.
depth
()
==
CV_32F
)
?
K
.
getMat
().
at
<
float
>
(
0
,
0
)
/
K
.
getMat
().
at
<
float
>
(
1
,
1
)
:
K
.
getMat
().
at
<
double
>
(
0
,
0
)
/
K
.
getMat
().
at
<
double
>
(
1
,
1
);
// convert to identity ratio
cn
[
0
]
*=
aspect_ratio
;
for
(
size_t
i
=
0
;
i
<
points
.
total
();
++
i
)
pptr
[
i
][
1
]
*=
aspect_ratio
;
double
minx
=
DBL_MAX
,
miny
=
DBL_MAX
,
maxx
=
-
DBL_MAX
,
maxy
=
-
DBL_MAX
;
for
(
size_t
i
=
0
;
i
<
points
.
total
();
++
i
)
{
miny
=
std
::
min
(
miny
,
pptr
[
i
][
1
]);
maxy
=
std
::
max
(
maxy
,
pptr
[
i
][
1
]);
minx
=
std
::
min
(
minx
,
pptr
[
i
][
0
]);
maxx
=
std
::
max
(
maxx
,
pptr
[
i
][
0
]);
}
#if 0
double minx = -DBL_MAX, miny = -DBL_MAX, maxx = DBL_MAX, maxy = DBL_MAX;
for(size_t i = 0; i < points.total(); ++i)
{
if (i % 4 == 0) miny = std::max(miny, pptr[i][1]);
if (i % 4 == 1) maxy = std::min(maxy, pptr[i][1]);
if (i % 4 == 2) minx = std::max(minx, pptr[i][0]);
if (i % 4 == 3) maxx = std::min(maxx, pptr[i][0]);
}
#endif
double
f1
=
w
*
0.5
/
(
cn
[
0
]
-
minx
);
double
f2
=
w
*
0.5
/
(
maxx
-
cn
[
0
]);
double
f3
=
h
*
0.5
*
aspect_ratio
/
(
cn
[
1
]
-
miny
);
double
f4
=
h
*
0.5
*
aspect_ratio
/
(
maxy
-
cn
[
1
]);
double
fmin
=
std
::
min
(
f1
,
std
::
min
(
f2
,
std
::
min
(
f3
,
f4
)));
double
fmax
=
std
::
max
(
f1
,
std
::
max
(
f2
,
std
::
max
(
f3
,
f4
)));
double
f
=
balance
*
fmin
+
(
1.0
-
balance
)
*
fmax
;
f
*=
fov_scale
>
0
?
1.0
/
fov_scale
:
1.0
;
cv
::
Vec2d
new_f
(
f
,
f
),
new_c
=
-
cn
*
f
+
Vec2d
(
w
,
h
*
aspect_ratio
)
*
0.5
;
// restore aspect ratio
new_f
[
1
]
/=
aspect_ratio
;
new_c
[
1
]
/=
aspect_ratio
;
if
(
new_size
.
area
()
>
0
)
{
double
rx
=
new_size
.
width
/
(
double
)
image_size
.
width
;
double
ry
=
new_size
.
height
/
(
double
)
image_size
.
height
;
new_f
[
0
]
*=
rx
;
new_f
[
1
]
*=
ry
;
new_c
[
0
]
*=
rx
;
new_c
[
1
]
*=
ry
;
}
Mat
(
Matx33d
(
new_f
[
0
],
0
,
new_c
[
0
],
0
,
new_f
[
1
],
new_c
[
1
],
0
,
0
,
1
)).
convertTo
(
P
,
P
.
empty
()
?
K
.
type
()
:
P
.
type
());
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::Fisheye::stereoRectify
void
cv
::
Fisheye
::
stereoRectify
(
InputArray
K1
,
InputArray
D1
,
InputArray
K2
,
InputArray
D2
,
const
Size
&
imageSize
,
InputArray
_R
,
InputArray
_tvec
,
OutputArray
R1
,
OutputArray
R2
,
OutputArray
P1
,
OutputArray
P2
,
OutputArray
Q
,
int
flags
,
const
Size
&
newImageSize
,
double
balance
,
double
fov_scale
)
{
CV_Assert
((
_R
.
size
()
==
Size
(
3
,
3
)
||
_R
.
total
()
*
_R
.
channels
()
==
3
)
&&
(
_R
.
depth
()
==
CV_32F
||
_R
.
depth
()
==
CV_64F
));
CV_Assert
(
_tvec
.
total
()
*
_tvec
.
channels
()
==
3
&&
(
_tvec
.
depth
()
==
CV_32F
||
_tvec
.
depth
()
==
CV_64F
));
cv
::
Mat
aaa
=
_tvec
.
getMat
().
reshape
(
3
,
1
);
Vec3d
rvec
;
// Rodrigues vector
if
(
_R
.
size
()
==
Size
(
3
,
3
))
{
cv
::
Matx33d
rmat
;
_R
.
getMat
().
convertTo
(
rmat
,
CV_64F
);
rvec
=
Affine3d
(
rmat
).
rvec
();
}
else
if
(
_R
.
total
()
*
_R
.
channels
()
==
3
)
_R
.
getMat
().
convertTo
(
rvec
,
CV_64F
);
Vec3d
tvec
;
_tvec
.
getMat
().
convertTo
(
tvec
,
CV_64F
);
// rectification algorithm
rvec
*=
-
0.5
;
// get average rotation
Matx33d
r_r
;
Rodrigues
(
rvec
,
r_r
);
// rotate cameras to same orientation by averaging
Vec3d
t
=
r_r
*
tvec
;
Vec3d
uu
(
t
[
0
]
>
0
?
1
:
-
1
,
0
,
0
);
// calculate global Z rotation
Vec3d
ww
=
t
.
cross
(
uu
);
double
nw
=
norm
(
ww
);
if
(
nw
>
0.0
)
ww
*=
acos
(
fabs
(
t
[
0
])
/
cv
::
norm
(
t
))
/
nw
;
Matx33d
wr
;
Rodrigues
(
ww
,
wr
);
// apply to both views
Matx33d
ri1
=
wr
*
r_r
.
t
();
Mat
(
ri1
,
false
).
convertTo
(
R1
,
R1
.
empty
()
?
CV_64F
:
R1
.
type
());
Matx33d
ri2
=
wr
*
r_r
;
Mat
(
ri2
,
false
).
convertTo
(
R2
,
R2
.
empty
()
?
CV_64F
:
R2
.
type
());
Vec3d
tnew
=
ri2
*
tvec
;
// calculate projection/camera matrices. these contain the relevant rectified image internal params (fx, fy=fx, cx, cy)
Matx33d
newK1
,
newK2
;
estimateNewCameraMatrixForUndistortRectify
(
K1
,
D1
,
imageSize
,
R1
,
newK1
,
balance
,
newImageSize
,
fov_scale
);
estimateNewCameraMatrixForUndistortRectify
(
K2
,
D2
,
imageSize
,
R2
,
newK2
,
balance
,
newImageSize
,
fov_scale
);
double
fc_new
=
std
::
min
(
newK1
(
1
,
1
),
newK2
(
1
,
1
));
Point2d
cc_new
[
2
]
=
{
Vec2d
(
newK1
(
0
,
2
),
newK1
(
1
,
2
)),
Vec2d
(
newK2
(
0
,
2
),
newK2
(
1
,
2
))
};
// Vertical focal length must be the same for both images to keep the epipolar constraint use fy for fx also.
// For simplicity, set the principal points for both cameras to be the average
// of the two principal points (either one of or both x- and y- coordinates)
if
(
flags
&
cv
::
CALIB_ZERO_DISPARITY
)
cc_new
[
0
]
=
cc_new
[
1
]
=
(
cc_new
[
0
]
+
cc_new
[
1
])
*
0.5
;
else
cc_new
[
0
].
y
=
cc_new
[
1
].
y
=
(
cc_new
[
0
].
y
+
cc_new
[
1
].
y
)
*
0.5
;
Mat
(
Matx34d
(
fc_new
,
0
,
cc_new
[
0
].
x
,
0
,
0
,
fc_new
,
cc_new
[
0
].
y
,
0
,
0
,
0
,
1
,
0
),
false
).
convertTo
(
P1
,
P1
.
empty
()
?
CV_64F
:
P1
.
type
());
Mat
(
Matx34d
(
fc_new
,
0
,
cc_new
[
1
].
x
,
tnew
[
0
]
*
fc_new
,
// baseline * focal length;,
0
,
fc_new
,
cc_new
[
1
].
y
,
0
,
0
,
0
,
1
,
0
),
false
).
convertTo
(
P2
,
P2
.
empty
()
?
CV_64F
:
P2
.
type
());
if
(
Q
.
needed
())
Mat
(
Matx44d
(
1
,
0
,
0
,
-
cc_new
[
0
].
x
,
0
,
1
,
0
,
-
cc_new
[
0
].
y
,
0
,
0
,
0
,
fc_new
,
0
,
0
,
-
1.
/
tnew
[
0
],
(
cc_new
[
0
].
x
-
cc_new
[
1
].
x
)
/
tnew
[
0
]),
false
).
convertTo
(
Q
,
Q
.
empty
()
?
CV_64F
:
Q
.
depth
());
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::Fisheye::calibrate
double
cv
::
Fisheye
::
calibrate
(
InputArrayOfArrays
objectPoints
,
InputArrayOfArrays
imagePoints
,
const
Size
&
image_size
,
InputOutputArray
K
,
InputOutputArray
D
,
OutputArrayOfArrays
rvecs
,
OutputArrayOfArrays
tvecs
,
int
flags
,
cv
::
TermCriteria
criteria
)
{
CV_Assert
(
!
objectPoints
.
empty
()
&&
!
imagePoints
.
empty
()
&&
objectPoints
.
total
()
==
imagePoints
.
total
());
CV_Assert
(
objectPoints
.
type
()
==
CV_32FC3
||
objectPoints
.
type
()
==
CV_64FC3
);
CV_Assert
(
imagePoints
.
type
()
==
CV_32FC2
||
imagePoints
.
type
()
==
CV_64FC2
);
CV_Assert
((
!
K
.
empty
()
&&
K
.
size
()
==
Size
(
3
,
3
))
||
K
.
empty
());
CV_Assert
((
!
D
.
empty
()
&&
D
.
total
()
==
4
)
||
D
.
empty
());
CV_Assert
((
!
rvecs
.
empty
()
&&
rvecs
.
channels
()
==
3
)
||
rvecs
.
empty
());
CV_Assert
((
!
tvecs
.
empty
()
&&
tvecs
.
channels
()
==
3
)
||
tvecs
.
empty
());
CV_Assert
(((
flags
&
CALIB_USE_INTRINSIC_GUESS
)
&&
!
K
.
empty
()
&&
!
D
.
empty
())
||
!
(
flags
&
CALIB_USE_INTRINSIC_GUESS
));
using
namespace
cv
::
internal
;
//-------------------------------Initialization
IntrinsicParams
finalParam
;
IntrinsicParams
currentParam
;
IntrinsicParams
errors
;
finalParam
.
isEstimate
[
0
]
=
1
;
finalParam
.
isEstimate
[
1
]
=
1
;
finalParam
.
isEstimate
[
2
]
=
1
;
finalParam
.
isEstimate
[
3
]
=
1
;
finalParam
.
isEstimate
[
4
]
=
flags
&
CALIB_FIX_SKEW
?
0
:
1
;
finalParam
.
isEstimate
[
5
]
=
flags
&
CALIB_FIX_K1
?
0
:
1
;
finalParam
.
isEstimate
[
6
]
=
flags
&
CALIB_FIX_K2
?
0
:
1
;
finalParam
.
isEstimate
[
7
]
=
flags
&
CALIB_FIX_K3
?
0
:
1
;
finalParam
.
isEstimate
[
8
]
=
flags
&
CALIB_FIX_K4
?
0
:
1
;
const
int
recompute_extrinsic
=
flags
&
CALIB_RECOMPUTE_EXTRINSIC
?
1
:
0
;
const
int
check_cond
=
flags
&
CALIB_CHECK_COND
?
1
:
0
;
const
double
alpha_smooth
=
0.4
;
const
double
thresh_cond
=
1e6
;
double
change
=
1
;
Vec2d
err_std
;
Matx33d
_K
;
Vec4d
_D
;
if
(
flags
&
CALIB_USE_INTRINSIC_GUESS
)
{
K
.
getMat
().
convertTo
(
_K
,
CV_64FC1
);
D
.
getMat
().
convertTo
(
_D
,
CV_64FC1
);
finalParam
.
Init
(
Vec2d
(
_K
(
0
,
0
),
_K
(
1
,
1
)),
Vec2d
(
_K
(
0
,
2
),
_K
(
1
,
2
)),
Vec4d
(
flags
&
CALIB_FIX_K1
?
0
:
_D
[
0
],
flags
&
CALIB_FIX_K2
?
0
:
_D
[
1
],
flags
&
CALIB_FIX_K3
?
0
:
_D
[
2
],
flags
&
CALIB_FIX_K4
?
0
:
_D
[
3
]),
_K
(
0
,
1
)
/
_K
(
0
,
0
));
}
else
{
finalParam
.
Init
(
Vec2d
(
max
(
image_size
.
width
,
image_size
.
height
)
/
CV_PI
,
max
(
image_size
.
width
,
image_size
.
height
)
/
CV_PI
),
Vec2d
(
image_size
.
width
/
2.0
-
0.5
,
image_size
.
height
/
2.0
-
0.5
));
}
errors
.
isEstimate
=
finalParam
.
isEstimate
;
std
::
vector
<
Vec3d
>
omc
(
objectPoints
.
total
()),
Tc
(
objectPoints
.
total
());
CalibrateExtrinsics
(
objectPoints
,
imagePoints
,
finalParam
,
check_cond
,
thresh_cond
,
omc
,
Tc
);
//-------------------------------Optimization
for
(
int
iter
=
0
;
;
++
iter
)
{
if
((
criteria
.
type
==
1
&&
iter
>=
criteria
.
maxCount
)
||
(
criteria
.
type
==
2
&&
change
<=
criteria
.
epsilon
)
||
(
criteria
.
type
==
3
&&
(
change
<=
criteria
.
epsilon
||
iter
>=
criteria
.
maxCount
)))
break
;
double
alpha_smooth2
=
1
-
std
::
pow
(
1
-
alpha_smooth
,
iter
+
1.0
);
Mat
JJ2_inv
,
ex3
;
ComputeJacobians
(
objectPoints
,
imagePoints
,
finalParam
,
omc
,
Tc
,
check_cond
,
thresh_cond
,
JJ2_inv
,
ex3
);
Mat
G
=
alpha_smooth2
*
JJ2_inv
*
ex3
;
currentParam
=
finalParam
+
G
;
change
=
norm
(
Vec4d
(
currentParam
.
f
[
0
],
currentParam
.
f
[
1
],
currentParam
.
c
[
0
],
currentParam
.
c
[
1
])
-
Vec4d
(
finalParam
.
f
[
0
],
finalParam
.
f
[
1
],
finalParam
.
c
[
0
],
finalParam
.
c
[
1
]))
/
norm
(
Vec4d
(
currentParam
.
f
[
0
],
currentParam
.
f
[
1
],
currentParam
.
c
[
0
],
currentParam
.
c
[
1
]));
finalParam
=
currentParam
;
if
(
recompute_extrinsic
)
{
CalibrateExtrinsics
(
objectPoints
,
imagePoints
,
finalParam
,
check_cond
,
thresh_cond
,
omc
,
Tc
);
}
}
//-------------------------------Validation
double
rms
;
EstimateUncertainties
(
objectPoints
,
imagePoints
,
finalParam
,
omc
,
Tc
,
errors
,
err_std
,
thresh_cond
,
check_cond
,
rms
);
//-------------------------------
_K
=
Matx33d
(
finalParam
.
f
[
0
],
finalParam
.
f
[
0
]
*
finalParam
.
alpha
,
finalParam
.
c
[
0
],
0
,
finalParam
.
f
[
1
],
finalParam
.
c
[
1
],
0
,
0
,
1
);
if
(
K
.
needed
())
cv
::
Mat
(
_K
).
convertTo
(
K
,
K
.
empty
()
?
CV_64FC1
:
K
.
type
());
if
(
D
.
needed
())
cv
::
Mat
(
finalParam
.
k
).
convertTo
(
D
,
D
.
empty
()
?
CV_64FC1
:
D
.
type
());
if
(
rvecs
.
needed
())
cv
::
Mat
(
omc
).
convertTo
(
rvecs
,
rvecs
.
empty
()
?
CV_64FC3
:
rvecs
.
type
());
if
(
tvecs
.
needed
())
cv
::
Mat
(
Tc
).
convertTo
(
tvecs
,
tvecs
.
empty
()
?
CV_64FC3
:
tvecs
.
type
());
return
rms
;
}
namespace
cv
{
namespace
{
void
subMatrix
(
const
Mat
&
src
,
Mat
&
dst
,
const
vector
<
int
>&
cols
,
const
vector
<
int
>&
rows
)
{
CV_Assert
(
src
.
type
()
==
CV_64FC1
);
int
nonzeros_cols
=
cv
::
countNonZero
(
cols
);
Mat
tmp
(
src
.
rows
,
nonzeros_cols
,
CV_64FC1
);
for
(
size_t
i
=
0
,
j
=
0
;
i
<
cols
.
size
();
i
++
)
{
if
(
cols
[
i
])
{
src
.
col
(
i
).
copyTo
(
tmp
.
col
(
j
++
));
}
}
int
nonzeros_rows
=
cv
::
countNonZero
(
rows
);
Mat
tmp1
(
nonzeros_rows
,
nonzeros_cols
,
CV_64FC1
);
for
(
size_t
i
=
0
,
j
=
0
;
i
<
rows
.
size
();
i
++
)
{
if
(
rows
[
i
])
{
tmp
.
row
(
i
).
copyTo
(
tmp1
.
row
(
j
++
));
}
}
dst
=
tmp1
.
clone
();
}
}}
cv
::
internal
::
IntrinsicParams
::
IntrinsicParams
()
:
f
(
Vec2d
::
all
(
0
)),
c
(
Vec2d
::
all
(
0
)),
k
(
Vec4d
::
all
(
0
)),
alpha
(
0
),
isEstimate
(
9
,
0
)
{
}
cv
::
internal
::
IntrinsicParams
::
IntrinsicParams
(
Vec2d
_f
,
Vec2d
_c
,
Vec4d
_k
,
double
_alpha
)
:
f
(
_f
),
c
(
_c
),
k
(
_k
),
alpha
(
_alpha
),
isEstimate
(
9
,
0
)
{
}
cv
::
internal
::
IntrinsicParams
cv
::
internal
::
IntrinsicParams
::
operator
+
(
const
Mat
&
a
)
{
CV_Assert
(
a
.
type
()
==
CV_64FC1
);
IntrinsicParams
tmp
;
const
double
*
ptr
=
a
.
ptr
<
double
>
();
int
j
=
0
;
tmp
.
f
[
0
]
=
this
->
f
[
0
]
+
(
isEstimate
[
0
]
?
ptr
[
j
++
]
:
0
);
tmp
.
f
[
1
]
=
this
->
f
[
1
]
+
(
isEstimate
[
1
]
?
ptr
[
j
++
]
:
0
);
tmp
.
c
[
0
]
=
this
->
c
[
0
]
+
(
isEstimate
[
2
]
?
ptr
[
j
++
]
:
0
);
tmp
.
alpha
=
this
->
alpha
+
(
isEstimate
[
4
]
?
ptr
[
j
++
]
:
0
);
tmp
.
c
[
1
]
=
this
->
c
[
1
]
+
(
isEstimate
[
3
]
?
ptr
[
j
++
]
:
0
);
tmp
.
k
[
0
]
=
this
->
k
[
0
]
+
(
isEstimate
[
5
]
?
ptr
[
j
++
]
:
0
);
tmp
.
k
[
1
]
=
this
->
k
[
1
]
+
(
isEstimate
[
6
]
?
ptr
[
j
++
]
:
0
);
tmp
.
k
[
2
]
=
this
->
k
[
2
]
+
(
isEstimate
[
7
]
?
ptr
[
j
++
]
:
0
);
tmp
.
k
[
3
]
=
this
->
k
[
3
]
+
(
isEstimate
[
8
]
?
ptr
[
j
++
]
:
0
);
tmp
.
isEstimate
=
isEstimate
;
return
tmp
;
}
cv
::
internal
::
IntrinsicParams
&
cv
::
internal
::
IntrinsicParams
::
operator
=
(
const
Mat
&
a
)
{
CV_Assert
(
a
.
type
()
==
CV_64FC1
);
const
double
*
ptr
=
a
.
ptr
<
double
>
();
int
j
=
0
;
this
->
f
[
0
]
=
isEstimate
[
0
]
?
ptr
[
j
++
]
:
0
;
this
->
f
[
1
]
=
isEstimate
[
1
]
?
ptr
[
j
++
]
:
0
;
this
->
c
[
0
]
=
isEstimate
[
2
]
?
ptr
[
j
++
]
:
0
;
this
->
c
[
1
]
=
isEstimate
[
3
]
?
ptr
[
j
++
]
:
0
;
this
->
alpha
=
isEstimate
[
4
]
?
ptr
[
j
++
]
:
0
;
this
->
k
[
0
]
=
isEstimate
[
5
]
?
ptr
[
j
++
]
:
0
;
this
->
k
[
1
]
=
isEstimate
[
6
]
?
ptr
[
j
++
]
:
0
;
this
->
k
[
2
]
=
isEstimate
[
7
]
?
ptr
[
j
++
]
:
0
;
this
->
k
[
3
]
=
isEstimate
[
8
]
?
ptr
[
j
++
]
:
0
;
return
*
this
;
}
void
cv
::
internal
::
IntrinsicParams
::
Init
(
const
cv
::
Vec2d
&
_f
,
const
cv
::
Vec2d
&
_c
,
const
cv
::
Vec4d
&
_k
,
const
double
&
_alpha
)
{
this
->
c
=
_c
;
this
->
f
=
_f
;
this
->
k
=
_k
;
this
->
alpha
=
_alpha
;
}
void
cv
::
internal
::
projectPoints
(
cv
::
InputArray
objectPoints
,
cv
::
OutputArray
imagePoints
,
cv
::
InputArray
_rvec
,
cv
::
InputArray
_tvec
,
const
IntrinsicParams
&
param
,
cv
::
OutputArray
jacobian
)
{
CV_Assert
(
!
objectPoints
.
empty
()
&&
objectPoints
.
type
()
==
CV_64FC3
);
Matx33d
K
(
param
.
f
[
0
],
param
.
f
[
0
]
*
param
.
alpha
,
param
.
c
[
0
],
0
,
param
.
f
[
1
],
param
.
c
[
1
],
0
,
0
,
1
);
Fisheye
::
projectPoints
(
objectPoints
,
imagePoints
,
_rvec
,
_tvec
,
K
,
param
.
k
,
param
.
alpha
,
jacobian
);
}
void
cv
::
internal
::
ComputeExtrinsicRefine
(
const
Mat
&
imagePoints
,
const
Mat
&
objectPoints
,
Mat
&
rvec
,
Mat
&
tvec
,
Mat
&
J
,
const
int
MaxIter
,
const
IntrinsicParams
&
param
,
const
double
thresh_cond
)
{
CV_Assert
(
!
objectPoints
.
empty
()
&&
objectPoints
.
type
()
==
CV_64FC3
);
CV_Assert
(
!
imagePoints
.
empty
()
&&
imagePoints
.
type
()
==
CV_64FC2
);
Vec6d
extrinsics
(
rvec
.
at
<
double
>
(
0
),
rvec
.
at
<
double
>
(
1
),
rvec
.
at
<
double
>
(
2
),
tvec
.
at
<
double
>
(
0
),
tvec
.
at
<
double
>
(
1
),
tvec
.
at
<
double
>
(
2
));
double
change
=
1
;
int
iter
=
0
;
while
(
change
>
1e-10
&&
iter
<
MaxIter
)
{
std
::
vector
<
Point2d
>
x
;
Mat
jacobians
;
projectPoints
(
objectPoints
,
x
,
rvec
,
tvec
,
param
,
jacobians
);
Mat
ex
=
imagePoints
-
Mat
(
x
).
t
();
ex
=
ex
.
reshape
(
1
,
2
);
J
=
jacobians
.
colRange
(
8
,
14
).
clone
();
SVD
svd
(
J
,
SVD
::
NO_UV
);
double
condJJ
=
svd
.
w
.
at
<
double
>
(
0
)
/
svd
.
w
.
at
<
double
>
(
5
);
if
(
condJJ
>
thresh_cond
)
change
=
0
;
else
{
Vec6d
param_innov
;
solve
(
J
,
ex
.
reshape
(
1
,
(
int
)
ex
.
total
()),
param_innov
,
DECOMP_SVD
+
DECOMP_NORMAL
);
Vec6d
param_up
=
extrinsics
+
param_innov
;
change
=
norm
(
param_innov
)
/
norm
(
param_up
);
extrinsics
=
param_up
;
iter
=
iter
+
1
;
rvec
=
Mat
(
Vec3d
(
extrinsics
.
val
));
tvec
=
Mat
(
Vec3d
(
extrinsics
.
val
+
3
));
}
}
}
cv
::
Mat
cv
::
internal
::
ComputeHomography
(
Mat
m
,
Mat
M
)
{
int
Np
=
m
.
cols
;
if
(
m
.
rows
<
3
)
{
vconcat
(
m
,
Mat
::
ones
(
1
,
Np
,
CV_64FC1
),
m
);
}
if
(
M
.
rows
<
3
)
{
vconcat
(
M
,
Mat
::
ones
(
1
,
Np
,
CV_64FC1
),
M
);
}
divide
(
m
,
Mat
::
ones
(
3
,
1
,
CV_64FC1
)
*
m
.
row
(
2
),
m
);
divide
(
M
,
Mat
::
ones
(
3
,
1
,
CV_64FC1
)
*
M
.
row
(
2
),
M
);
Mat
ax
=
m
.
row
(
0
).
clone
();
Mat
ay
=
m
.
row
(
1
).
clone
();
double
mxx
=
mean
(
ax
)[
0
];
double
myy
=
mean
(
ay
)[
0
];
ax
=
ax
-
mxx
;
ay
=
ay
-
myy
;
double
scxx
=
mean
(
abs
(
ax
))[
0
];
double
scyy
=
mean
(
abs
(
ay
))[
0
];
Mat
Hnorm
(
Matx33d
(
1
/
scxx
,
0.0
,
-
mxx
/
scxx
,
0.0
,
1
/
scyy
,
-
myy
/
scyy
,
0.0
,
0.0
,
1.0
));
Mat
inv_Hnorm
(
Matx33d
(
scxx
,
0
,
mxx
,
0
,
scyy
,
myy
,
0
,
0
,
1
));
Mat
mn
=
Hnorm
*
m
;
Mat
L
=
Mat
::
zeros
(
2
*
Np
,
9
,
CV_64FC1
);
for
(
int
i
=
0
;
i
<
Np
;
++
i
)
{
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
L
.
at
<
double
>
(
2
*
i
,
j
)
=
M
.
at
<
double
>
(
j
,
i
);
L
.
at
<
double
>
(
2
*
i
+
1
,
j
+
3
)
=
M
.
at
<
double
>
(
j
,
i
);
L
.
at
<
double
>
(
2
*
i
,
j
+
6
)
=
-
mn
.
at
<
double
>
(
0
,
i
)
*
M
.
at
<
double
>
(
j
,
i
);
L
.
at
<
double
>
(
2
*
i
+
1
,
j
+
6
)
=
-
mn
.
at
<
double
>
(
1
,
i
)
*
M
.
at
<
double
>
(
j
,
i
);
}
}
if
(
Np
>
4
)
L
=
L
.
t
()
*
L
;
SVD
svd
(
L
);
Mat
hh
=
svd
.
vt
.
row
(
8
)
/
svd
.
vt
.
row
(
8
).
at
<
double
>
(
8
);
Mat
Hrem
=
hh
.
reshape
(
1
,
3
);
Mat
H
=
inv_Hnorm
*
Hrem
;
if
(
Np
>
4
)
{
Mat
hhv
=
H
.
reshape
(
1
,
9
)(
Rect
(
0
,
0
,
1
,
8
)).
clone
();
for
(
int
iter
=
0
;
iter
<
10
;
iter
++
)
{
Mat
mrep
=
H
*
M
;
Mat
J
=
Mat
::
zeros
(
2
*
Np
,
8
,
CV_64FC1
);
Mat
MMM
;
divide
(
M
,
Mat
::
ones
(
3
,
1
,
CV_64FC1
)
*
mrep
(
Rect
(
0
,
2
,
mrep
.
cols
,
1
)),
MMM
);
divide
(
mrep
,
Mat
::
ones
(
3
,
1
,
CV_64FC1
)
*
mrep
(
Rect
(
0
,
2
,
mrep
.
cols
,
1
)),
mrep
);
Mat
m_err
=
m
(
Rect
(
0
,
0
,
m
.
cols
,
2
))
-
mrep
(
Rect
(
0
,
0
,
mrep
.
cols
,
2
));
m_err
=
Mat
(
m_err
.
t
()).
reshape
(
1
,
m_err
.
cols
*
m_err
.
rows
);
Mat
MMM2
,
MMM3
;
multiply
(
Mat
::
ones
(
3
,
1
,
CV_64FC1
)
*
mrep
(
Rect
(
0
,
0
,
mrep
.
cols
,
1
)),
MMM
,
MMM2
);
multiply
(
Mat
::
ones
(
3
,
1
,
CV_64FC1
)
*
mrep
(
Rect
(
0
,
1
,
mrep
.
cols
,
1
)),
MMM
,
MMM3
);
for
(
int
i
=
0
;
i
<
Np
;
++
i
)
{
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
J
.
at
<
double
>
(
2
*
i
,
j
)
=
-
MMM
.
at
<
double
>
(
j
,
i
);
J
.
at
<
double
>
(
2
*
i
+
1
,
j
+
3
)
=
-
MMM
.
at
<
double
>
(
j
,
i
);
}
for
(
int
j
=
0
;
j
<
2
;
++
j
)
{
J
.
at
<
double
>
(
2
*
i
,
j
+
6
)
=
MMM2
.
at
<
double
>
(
j
,
i
);
J
.
at
<
double
>
(
2
*
i
+
1
,
j
+
6
)
=
MMM3
.
at
<
double
>
(
j
,
i
);
}
}
divide
(
M
,
Mat
::
ones
(
3
,
1
,
CV_64FC1
)
*
mrep
(
Rect
(
0
,
2
,
mrep
.
cols
,
1
)),
MMM
);
Mat
hh_innov
=
(
J
.
t
()
*
J
).
inv
()
*
(
J
.
t
())
*
m_err
;
Mat
hhv_up
=
hhv
-
hh_innov
;
Mat
tmp
;
vconcat
(
hhv_up
,
Mat
::
ones
(
1
,
1
,
CV_64FC1
),
tmp
);
Mat
H_up
=
tmp
.
reshape
(
1
,
3
);
hhv
=
hhv_up
;
H
=
H_up
;
}
}
return
H
;
}
cv
::
Mat
cv
::
internal
::
NormalizePixels
(
const
Mat
&
imagePoints
,
const
IntrinsicParams
&
param
)
{
CV_Assert
(
!
imagePoints
.
empty
()
&&
imagePoints
.
type
()
==
CV_64FC2
);
Mat
distorted
((
int
)
imagePoints
.
total
(),
1
,
CV_64FC2
),
undistorted
;
const
Vec2d
*
ptr
=
imagePoints
.
ptr
<
Vec2d
>
(
0
);
Vec2d
*
ptr_d
=
distorted
.
ptr
<
Vec2d
>
(
0
);
for
(
size_t
i
=
0
;
i
<
imagePoints
.
total
();
++
i
)
{
ptr_d
[
i
]
=
(
ptr
[
i
]
-
param
.
c
).
mul
(
Vec2d
(
1.0
/
param
.
f
[
0
],
1.0
/
param
.
f
[
1
]));
ptr_d
[
i
][
0
]
=
ptr_d
[
i
][
0
]
-
param
.
alpha
*
ptr_d
[
i
][
1
];
}
cv
::
Fisheye
::
undistortPoints
(
distorted
,
undistorted
,
Matx33d
::
eye
(),
param
.
k
);
return
undistorted
;
}
void
cv
::
internal
::
InitExtrinsics
(
const
Mat
&
_imagePoints
,
const
Mat
&
_objectPoints
,
const
IntrinsicParams
&
param
,
Mat
&
omckk
,
Mat
&
Tckk
)
{
CV_Assert
(
!
_objectPoints
.
empty
()
&&
_objectPoints
.
type
()
==
CV_64FC3
);
CV_Assert
(
!
_imagePoints
.
empty
()
&&
_imagePoints
.
type
()
==
CV_64FC2
);
Mat
imagePointsNormalized
=
NormalizePixels
(
_imagePoints
.
t
(),
param
).
reshape
(
1
).
t
();
Mat
objectPoints
=
Mat
(
_objectPoints
.
t
()).
reshape
(
1
).
t
();
Mat
objectPointsMean
,
covObjectPoints
;
Mat
Rckk
;
int
Np
=
imagePointsNormalized
.
cols
;
calcCovarMatrix
(
objectPoints
,
covObjectPoints
,
objectPointsMean
,
CV_COVAR_NORMAL
|
CV_COVAR_COLS
);
SVD
svd
(
covObjectPoints
);
Mat
R
(
svd
.
vt
);
if
(
norm
(
R
(
Rect
(
2
,
0
,
1
,
2
)))
<
1e-6
)
R
=
Mat
::
eye
(
3
,
3
,
CV_64FC1
);
if
(
determinant
(
R
)
<
0
)
R
=
-
R
;
Mat
T
=
-
R
*
objectPointsMean
;
Mat
X_new
=
R
*
objectPoints
+
T
*
Mat
::
ones
(
1
,
Np
,
CV_64FC1
);
Mat
H
=
ComputeHomography
(
imagePointsNormalized
,
X_new
(
Rect
(
0
,
0
,
X_new
.
cols
,
2
)));
double
sc
=
.5
*
(
norm
(
H
.
col
(
0
))
+
norm
(
H
.
col
(
1
)));
H
=
H
/
sc
;
Mat
u1
=
H
.
col
(
0
).
clone
();
u1
=
u1
/
norm
(
u1
);
Mat
u2
=
H
.
col
(
1
).
clone
()
-
u1
.
dot
(
H
.
col
(
1
).
clone
())
*
u1
;
u2
=
u2
/
norm
(
u2
);
Mat
u3
=
u1
.
cross
(
u2
);
Mat
RRR
;
hconcat
(
u1
,
u2
,
RRR
);
hconcat
(
RRR
,
u3
,
RRR
);
Rodrigues
(
RRR
,
omckk
);
Rodrigues
(
omckk
,
Rckk
);
Tckk
=
H
.
col
(
2
).
clone
();
Tckk
=
Tckk
+
Rckk
*
T
;
Rckk
=
Rckk
*
R
;
Rodrigues
(
Rckk
,
omckk
);
}
void
cv
::
internal
::
CalibrateExtrinsics
(
InputArrayOfArrays
objectPoints
,
InputArrayOfArrays
imagePoints
,
const
IntrinsicParams
&
param
,
const
int
check_cond
,
const
double
thresh_cond
,
InputOutputArray
omc
,
InputOutputArray
Tc
)
{
CV_Assert
(
!
objectPoints
.
empty
()
&&
(
objectPoints
.
type
()
==
CV_32FC3
||
objectPoints
.
type
()
==
CV_64FC3
));
CV_Assert
(
!
imagePoints
.
empty
()
&&
(
imagePoints
.
type
()
==
CV_32FC2
||
imagePoints
.
type
()
==
CV_64FC2
));
CV_Assert
(
omc
.
type
()
==
CV_64FC3
||
Tc
.
type
()
==
CV_64FC3
);
if
(
omc
.
empty
())
omc
.
create
(
1
,
(
int
)
objectPoints
.
total
(),
CV_64FC3
);
if
(
Tc
.
empty
())
Tc
.
create
(
1
,
(
int
)
objectPoints
.
total
(),
CV_64FC3
);
const
int
maxIter
=
20
;
for
(
int
image_idx
=
0
;
image_idx
<
(
int
)
imagePoints
.
total
();
++
image_idx
)
{
Mat
omckk
,
Tckk
,
JJ_kk
;
Mat
image
,
object
;
objectPoints
.
getMat
(
image_idx
).
convertTo
(
object
,
CV_64FC3
);
imagePoints
.
getMat
(
image_idx
).
convertTo
(
image
,
CV_64FC2
);
InitExtrinsics
(
image
,
object
,
param
,
omckk
,
Tckk
);
ComputeExtrinsicRefine
(
image
,
object
,
omckk
,
Tckk
,
JJ_kk
,
maxIter
,
param
,
thresh_cond
);
if
(
check_cond
)
{
SVD
svd
(
JJ_kk
,
SVD
::
NO_UV
);
if
(
svd
.
w
.
at
<
double
>
(
0
)
/
svd
.
w
.
at
<
double
>
((
int
)
svd
.
w
.
total
()
-
1
)
>
thresh_cond
)
{
CV_Assert
(
!
"cond > thresh_cond"
);
}
}
omckk
.
reshape
(
3
,
1
).
copyTo
(
omc
.
getMat
().
col
(
image_idx
));
Tckk
.
reshape
(
3
,
1
).
copyTo
(
Tc
.
getMat
().
col
(
image_idx
));
}
}
void
cv
::
internal
::
ComputeJacobians
(
InputArrayOfArrays
objectPoints
,
InputArrayOfArrays
imagePoints
,
const
IntrinsicParams
&
param
,
InputArray
omc
,
InputArray
Tc
,
const
int
&
check_cond
,
const
double
&
thresh_cond
,
Mat
&
JJ2_inv
,
Mat
&
ex3
)
{
CV_Assert
(
!
objectPoints
.
empty
()
&&
(
objectPoints
.
type
()
==
CV_32FC3
||
objectPoints
.
type
()
==
CV_64FC3
));
CV_Assert
(
!
imagePoints
.
empty
()
&&
(
imagePoints
.
type
()
==
CV_32FC2
||
imagePoints
.
type
()
==
CV_64FC2
));
CV_Assert
(
!
omc
.
empty
()
&&
omc
.
type
()
==
CV_64FC3
);
CV_Assert
(
!
Tc
.
empty
()
&&
Tc
.
type
()
==
CV_64FC3
);
int
n
=
(
int
)
objectPoints
.
total
();
Mat
JJ3
=
Mat
::
zeros
(
9
+
6
*
n
,
9
+
6
*
n
,
CV_64FC1
);
ex3
=
Mat
::
zeros
(
9
+
6
*
n
,
1
,
CV_64FC1
);
for
(
int
image_idx
=
0
;
image_idx
<
n
;
++
image_idx
)
{
Mat
image
,
object
;
objectPoints
.
getMat
(
image_idx
).
convertTo
(
object
,
CV_64FC3
);
imagePoints
.
getMat
(
image_idx
).
convertTo
(
image
,
CV_64FC2
);
Mat
om
(
omc
.
getMat
().
col
(
image_idx
)),
T
(
Tc
.
getMat
().
col
(
image_idx
));
std
::
vector
<
Point2d
>
x
;
Mat
jacobians
;
projectPoints
(
object
,
x
,
om
,
T
,
param
,
jacobians
);
Mat
exkk
=
image
.
t
()
-
Mat
(
x
);
Mat
A
(
jacobians
.
rows
,
9
,
CV_64FC1
);
jacobians
.
colRange
(
0
,
4
).
copyTo
(
A
.
colRange
(
0
,
4
));
jacobians
.
col
(
14
).
copyTo
(
A
.
col
(
4
));
jacobians
.
colRange
(
4
,
8
).
copyTo
(
A
.
colRange
(
5
,
9
));
A
=
A
.
t
();
Mat
B
=
jacobians
.
colRange
(
8
,
14
).
clone
();
B
=
B
.
t
();
JJ3
(
Rect
(
0
,
0
,
9
,
9
))
=
JJ3
(
Rect
(
0
,
0
,
9
,
9
))
+
A
*
A
.
t
();
JJ3
(
Rect
(
9
+
6
*
image_idx
,
9
+
6
*
image_idx
,
6
,
6
))
=
B
*
B
.
t
();
Mat
AB
=
A
*
B
.
t
();
AB
.
copyTo
(
JJ3
(
Rect
(
9
+
6
*
image_idx
,
0
,
6
,
9
)));
JJ3
(
Rect
(
0
,
9
+
6
*
image_idx
,
9
,
6
))
=
AB
.
t
();
ex3
(
Rect
(
0
,
0
,
1
,
9
))
=
ex3
(
Rect
(
0
,
0
,
1
,
9
))
+
A
*
exkk
.
reshape
(
1
,
2
*
exkk
.
rows
);
ex3
(
Rect
(
0
,
9
+
6
*
image_idx
,
1
,
6
))
=
B
*
exkk
.
reshape
(
1
,
2
*
exkk
.
rows
);
if
(
check_cond
)
{
Mat
JJ_kk
=
B
.
t
();
SVD
svd
(
JJ_kk
,
SVD
::
NO_UV
);
double
cond
=
svd
.
w
.
at
<
double
>
(
0
)
/
svd
.
w
.
at
<
double
>
(
svd
.
w
.
rows
-
1
);
if
(
cond
>
thresh_cond
)
{
CV_Assert
(
!
"cond > thresh_cond"
);
}
}
}
vector
<
int
>
idxs
(
param
.
isEstimate
);
idxs
.
insert
(
idxs
.
end
(),
6
*
n
,
1
);
subMatrix
(
JJ3
,
JJ3
,
idxs
,
idxs
);
subMatrix
(
ex3
,
ex3
,
std
::
vector
<
int
>
(
1
,
1
),
idxs
);
JJ2_inv
=
JJ3
.
inv
();
}
void
cv
::
internal
::
EstimateUncertainties
(
InputArrayOfArrays
objectPoints
,
InputArrayOfArrays
imagePoints
,
const
IntrinsicParams
&
params
,
InputArray
omc
,
InputArray
Tc
,
IntrinsicParams
&
errors
,
Vec2d
&
std_err
,
double
thresh_cond
,
int
check_cond
,
double
&
rms
)
{
CV_Assert
(
!
objectPoints
.
empty
()
&&
(
objectPoints
.
type
()
==
CV_32FC3
||
objectPoints
.
type
()
==
CV_64FC3
));
CV_Assert
(
!
imagePoints
.
empty
()
&&
(
imagePoints
.
type
()
==
CV_32FC2
||
imagePoints
.
type
()
==
CV_64FC2
));
CV_Assert
(
!
omc
.
empty
()
&&
omc
.
type
()
==
CV_64FC3
);
CV_Assert
(
!
Tc
.
empty
()
&&
Tc
.
type
()
==
CV_64FC3
);
Mat
ex
((
int
)(
objectPoints
.
getMat
(
0
).
total
()
*
objectPoints
.
total
()),
1
,
CV_64FC2
);
for
(
size_t
image_idx
=
0
;
image_idx
<
objectPoints
.
total
();
++
image_idx
)
{
Mat
image
,
object
;
objectPoints
.
getMat
(
image_idx
).
convertTo
(
object
,
CV_64FC3
);
imagePoints
.
getMat
(
image_idx
).
convertTo
(
image
,
CV_64FC2
);
Mat
om
(
omc
.
getMat
().
col
(
image_idx
)),
T
(
Tc
.
getMat
().
col
(
image_idx
));
std
::
vector
<
Point2d
>
x
;
projectPoints
(
object
,
x
,
om
,
T
,
params
,
noArray
());
Mat
ex_
=
image
.
t
()
-
Mat
(
x
);
ex_
.
copyTo
(
ex
.
rowRange
(
ex_
.
rows
*
image_idx
,
ex_
.
rows
*
(
image_idx
+
1
)));
}
meanStdDev
(
ex
,
noArray
(),
std_err
);
std_err
*=
sqrt
(
ex
.
total
()
/
(
ex
.
total
()
-
1.0
));
Mat
sigma_x
;
meanStdDev
(
ex
.
reshape
(
1
,
1
),
noArray
(),
sigma_x
);
sigma_x
*=
sqrt
(
2
*
ex
.
total
()
/
(
2
*
ex
.
total
()
-
1.0
));
Mat
_JJ2_inv
,
ex3
;
ComputeJacobians
(
objectPoints
,
imagePoints
,
params
,
omc
,
Tc
,
check_cond
,
thresh_cond
,
_JJ2_inv
,
ex3
);
Mat_
<
double
>&
JJ2_inv
=
(
Mat_
<
double
>&
)
_JJ2_inv
;
sqrt
(
JJ2_inv
,
JJ2_inv
);
double
s
=
sigma_x
.
at
<
double
>
(
0
);
Mat
r
=
3
*
s
*
JJ2_inv
.
diag
();
errors
=
r
;
rms
=
0
;
const
Vec2d
*
ptr_ex
=
ex
.
ptr
<
Vec2d
>
();
for
(
size_t
i
=
0
;
i
<
ex
.
total
();
i
++
)
{
rms
+=
ptr_ex
[
i
][
0
]
*
ptr_ex
[
i
][
0
]
+
ptr_ex
[
i
][
1
]
*
ptr_ex
[
i
][
1
];
}
rms
/=
ex
.
total
();
rms
=
sqrt
(
rms
);
}
modules/calib3d/test/test_fisheye.cpp
0 → 100644
View file @
9c7e0bfd
#include "test_precomp.hpp"
#include <iostream>
#include <fstream>
#include <string>
#include <climits>
#include <algorithm>
#include <opencv2/ts/gpu_test.hpp>
#include <opencv2/ts/ts_perf.hpp>
#include <opencv2/ts/ts.hpp>
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
namespace
FishEye
{
const
static
cv
::
Size
imageSize
(
1280
,
800
);
const
static
cv
::
Matx33d
K
(
558.478087865323
,
0
,
620.458515360843
,
0
,
560.506767351568
,
381.939424848348
,
0
,
0
,
1
);
const
static
cv
::
Vec4d
D
(
-
0.0014613319981768
,
-
0.00329861110580401
,
0.00605760088590183
,
-
0.00374209380722371
);
const
static
cv
::
Matx33d
R
(
9.9756700084424932e-01
,
6.9698277640183867e-02
,
1.4929569991321144e-03
,
-
6.9711825162322980e-02
,
9.9748249845531767e-01
,
1.2997180766418455e-02
,
-
5.8331736398316541e-04
,
-
1.3069635393884985e-02
,
9.9991441852366736e-01
);
const
static
cv
::
Vec3d
T
(
-
9.9217369356044638e-02
,
3.1741831972356663e-03
,
1.8551007952921010e-04
);
}
namespace
{
std
::
string
combine
(
const
std
::
string
&
_item1
,
const
std
::
string
&
_item2
)
{
std
::
string
item1
=
_item1
,
item2
=
_item2
;
std
::
replace
(
item1
.
begin
(),
item1
.
end
(),
'\\'
,
'/'
);
std
::
replace
(
item2
.
begin
(),
item2
.
end
(),
'\\'
,
'/'
);
if
(
item1
.
empty
())
return
item2
;
if
(
item2
.
empty
())
return
item1
;
char
last
=
item1
[
item1
.
size
()
-
1
];
return
item1
+
(
last
!=
'/'
?
"/"
:
""
)
+
item2
;
}
std
::
string
combine_format
(
const
std
::
string
&
item1
,
const
std
::
string
&
item2
,
...)
{
std
::
string
fmt
=
combine
(
item1
,
item2
);
char
buffer
[
1
<<
16
];
va_list
args
;
va_start
(
args
,
item2
);
vsprintf
(
buffer
,
fmt
.
c_str
(),
args
);
va_end
(
args
);
return
std
::
string
(
buffer
);
}
void
readPoins
(
std
::
vector
<
std
::
vector
<
cv
::
Point3d
>
>&
objectPoints
,
std
::
vector
<
std
::
vector
<
cv
::
Point2d
>
>&
imagePoints
,
const
std
::
string
&
path
,
const
int
n_images
,
const
int
n_points
)
{
objectPoints
.
resize
(
n_images
);
imagePoints
.
resize
(
n_images
);
std
::
vector
<
cv
::
Point2d
>
image
(
n_points
);
std
::
vector
<
cv
::
Point3d
>
object
(
n_points
);
std
::
ifstream
ipStream
;
std
::
ifstream
opStream
;
for
(
int
image_idx
=
0
;
image_idx
<
n_images
;
image_idx
++
)
{
std
::
stringstream
ss
;
ss
<<
image_idx
;
std
::
string
idxStr
=
ss
.
str
();
ipStream
.
open
(
combine
(
path
,
std
::
string
(
std
::
string
(
"x_"
)
+
idxStr
+
std
::
string
(
".csv"
))).
c_str
(),
std
::
ifstream
::
in
);
opStream
.
open
(
combine
(
path
,
std
::
string
(
std
::
string
(
"X_"
)
+
idxStr
+
std
::
string
(
".csv"
))).
c_str
(),
std
::
ifstream
::
in
);
CV_Assert
(
ipStream
.
is_open
()
&&
opStream
.
is_open
());
for
(
int
point_idx
=
0
;
point_idx
<
n_points
;
point_idx
++
)
{
double
x
,
y
,
z
;
char
delim
;
ipStream
>>
x
>>
delim
>>
y
;
image
[
point_idx
]
=
cv
::
Point2d
(
x
,
y
);
opStream
>>
x
>>
delim
>>
y
>>
delim
>>
z
;
object
[
point_idx
]
=
cv
::
Point3d
(
x
,
y
,
z
);
}
ipStream
.
close
();
opStream
.
close
();
imagePoints
[
image_idx
]
=
image
;
objectPoints
[
image_idx
]
=
object
;
}
}
void
readExtrinsics
(
const
std
::
string
&
file
,
cv
::
OutputArray
_R
,
cv
::
OutputArray
_T
,
cv
::
OutputArray
_R1
,
cv
::
OutputArray
_R2
,
cv
::
OutputArray
_P1
,
cv
::
OutputArray
_P2
,
cv
::
OutputArray
_Q
)
{
cv
::
FileStorage
fs
(
file
,
cv
::
FileStorage
::
READ
);
CV_Assert
(
fs
.
isOpened
());
cv
::
Mat
R
,
T
,
R1
,
R2
,
P1
,
P2
,
Q
;
fs
[
"R"
]
>>
R
;
fs
[
"T"
]
>>
T
;
fs
[
"R1"
]
>>
R1
;
fs
[
"R2"
]
>>
R2
;
fs
[
"P1"
]
>>
P1
;
fs
[
"P2"
]
>>
P2
;
fs
[
"Q"
]
>>
Q
;
if
(
_R
.
needed
())
R
.
copyTo
(
_R
);
if
(
_T
.
needed
())
T
.
copyTo
(
_T
);
if
(
_R1
.
needed
())
R1
.
copyTo
(
_R1
);
if
(
_R2
.
needed
())
R2
.
copyTo
(
_R2
);
if
(
_P1
.
needed
())
P1
.
copyTo
(
_P1
);
if
(
_P2
.
needed
())
P2
.
copyTo
(
_P2
);
if
(
_Q
.
needed
())
Q
.
copyTo
(
_Q
);
}
cv
::
Mat
mergeRectification
(
const
cv
::
Mat
&
l
,
const
cv
::
Mat
&
r
,
double
scale
)
{
CV_Assert
(
l
.
type
()
==
r
.
type
()
&&
l
.
size
()
==
r
.
size
());
cv
::
Mat
merged
(
l
.
rows
,
l
.
cols
*
2
,
l
.
type
());
cv
::
Mat
lpart
=
merged
.
colRange
(
0
,
l
.
cols
);
cv
::
Mat
rpart
=
merged
.
colRange
(
l
.
cols
,
merged
.
cols
);
l
.
copyTo
(
lpart
);
r
.
copyTo
(
rpart
);
for
(
int
i
=
0
;
i
<
l
.
rows
;
i
+=
20
)
cv
::
line
(
merged
,
cv
::
Point
(
0
,
i
),
cv
::
Point
(
merged
.
cols
,
i
),
CV_RGB
(
0
,
255
,
0
));
return
merged
;
}
}
/// Change this parameter via CMake: cmake -DDATASETS_REPOSITORY_FOLDER=<path>
//const static std::string datasets_repository_path = "DATASETS_REPOSITORY_FOLDER";
const
static
std
::
string
datasets_repository_path
=
"/home/krylov/data"
;
TEST
(
FisheyeTest
,
projectPoints
)
{
double
cols
=
FishEye
::
imageSize
.
width
,
rows
=
FishEye
::
imageSize
.
height
;
const
int
N
=
20
;
cv
::
Mat
distorted0
(
1
,
N
*
N
,
CV_64FC2
),
undist1
,
undist2
,
distorted1
,
distorted2
;
undist2
.
create
(
distorted0
.
size
(),
CV_MAKETYPE
(
distorted0
.
depth
(),
3
));
cv
::
Vec2d
*
pts
=
distorted0
.
ptr
<
cv
::
Vec2d
>
();
cv
::
Vec2d
c
(
FishEye
::
K
(
0
,
2
),
FishEye
::
K
(
1
,
2
));
for
(
int
y
=
0
,
k
=
0
;
y
<
N
;
++
y
)
for
(
int
x
=
0
;
x
<
N
;
++
x
)
{
cv
::
Vec2d
point
(
x
*
cols
/
(
N
-
1.
f
),
y
*
rows
/
(
N
-
1.
f
));
pts
[
k
++
]
=
(
point
-
c
)
*
0.85
+
c
;
}
cv
::
Fisheye
::
undistortPoints
(
distorted0
,
undist1
,
FishEye
::
K
,
FishEye
::
D
);
cv
::
Vec2d
*
u1
=
undist1
.
ptr
<
cv
::
Vec2d
>
();
cv
::
Vec3d
*
u2
=
undist2
.
ptr
<
cv
::
Vec3d
>
();
for
(
int
i
=
0
;
i
<
(
int
)
distorted0
.
total
();
++
i
)
u2
[
i
]
=
cv
::
Vec3d
(
u1
[
i
][
0
],
u1
[
i
][
1
],
1.0
);
cv
::
Fisheye
::
distortPoints
(
undist1
,
distorted1
,
FishEye
::
K
,
FishEye
::
D
);
cv
::
Fisheye
::
projectPoints
(
undist2
,
distorted2
,
cv
::
Vec3d
::
all
(
0
),
cv
::
Vec3d
::
all
(
0
),
FishEye
::
K
,
FishEye
::
D
);
EXPECT_MAT_NEAR
(
distorted0
,
distorted1
,
1e-5
);
EXPECT_MAT_NEAR
(
distorted0
,
distorted2
,
1e-5
);
}
TEST
(
FisheyeTest
,
undistortImage
)
{
cv
::
Matx33d
K
=
FishEye
::
K
;
cv
::
Mat
D
=
cv
::
Mat
(
FishEye
::
D
);
std
::
string
file
=
combine
(
datasets_repository_path
,
"image000001.png"
);
cv
::
Matx33d
newK
=
K
;
cv
::
Mat
distorted
=
cv
::
imread
(
file
),
undistorted
;
{
newK
(
0
,
0
)
=
100
;
newK
(
1
,
1
)
=
100
;
cv
::
Fisheye
::
undistortImage
(
distorted
,
undistorted
,
K
,
D
,
newK
);
cv
::
Mat
correct
=
cv
::
imread
(
combine
(
datasets_repository_path
,
"test_undistortImage/new_f_100.png"
));
if
(
correct
.
empty
())
CV_Assert
(
cv
::
imwrite
(
combine
(
datasets_repository_path
,
"test_undistortImage/new_f_100.png"
),
undistorted
));
else
EXPECT_MAT_NEAR
(
correct
,
undistorted
,
1e-15
);
}
{
double
balance
=
1.0
;
cv
::
Fisheye
::
estimateNewCameraMatrixForUndistortRectify
(
K
,
D
,
distorted
.
size
(),
cv
::
noArray
(),
newK
,
balance
);
cv
::
Fisheye
::
undistortImage
(
distorted
,
undistorted
,
K
,
D
,
newK
);
cv
::
Mat
correct
=
cv
::
imread
(
combine
(
datasets_repository_path
,
"test_undistortImage/balance_1.0.png"
));
if
(
correct
.
empty
())
CV_Assert
(
cv
::
imwrite
(
combine
(
datasets_repository_path
,
"test_undistortImage/balance_1.0.png"
),
undistorted
));
else
EXPECT_MAT_NEAR
(
correct
,
undistorted
,
1e-15
);
}
{
double
balance
=
0.0
;
cv
::
Fisheye
::
estimateNewCameraMatrixForUndistortRectify
(
K
,
D
,
distorted
.
size
(),
cv
::
noArray
(),
newK
,
balance
);
cv
::
Fisheye
::
undistortImage
(
distorted
,
undistorted
,
K
,
D
,
newK
);
cv
::
Mat
correct
=
cv
::
imread
(
combine
(
datasets_repository_path
,
"test_undistortImage/balance_0.0.png"
));
if
(
correct
.
empty
())
CV_Assert
(
cv
::
imwrite
(
combine
(
datasets_repository_path
,
"test_undistortImage/balance_0.0.png"
),
undistorted
));
else
EXPECT_MAT_NEAR
(
correct
,
undistorted
,
1e-15
);
}
cv
::
waitKey
();
}
TEST
(
FisheyeTest
,
jacobians
)
{
int
n
=
10
;
cv
::
Mat
X
(
1
,
n
,
CV_32FC4
);
cv
::
Mat
om
(
3
,
1
,
CV_64F
),
T
(
3
,
1
,
CV_64F
);
cv
::
Mat
f
(
2
,
1
,
CV_64F
),
c
(
2
,
1
,
CV_64F
);
cv
::
Mat
k
(
4
,
1
,
CV_64F
);
double
alpha
;
cv
::
RNG
&
r
=
cv
::
theRNG
();
r
.
fill
(
X
,
cv
::
RNG
::
NORMAL
,
0
,
1
);
X
=
cv
::
abs
(
X
)
*
10
;
r
.
fill
(
om
,
cv
::
RNG
::
NORMAL
,
0
,
1
);
om
=
cv
::
abs
(
om
);
r
.
fill
(
T
,
cv
::
RNG
::
NORMAL
,
0
,
1
);
T
=
cv
::
abs
(
T
);
T
.
at
<
double
>
(
2
)
=
4
;
T
*=
10
;
r
.
fill
(
f
,
cv
::
RNG
::
NORMAL
,
0
,
1
);
f
=
cv
::
abs
(
f
)
*
1000
;
r
.
fill
(
c
,
cv
::
RNG
::
NORMAL
,
0
,
1
);
c
=
cv
::
abs
(
c
)
*
1000
;
r
.
fill
(
k
,
cv
::
RNG
::
NORMAL
,
0
,
1
);
k
*=
0.5
;
alpha
=
0.01
*
r
.
gaussian
(
1
);
CV_Assert
(
!
"/////////"
);
}
TEST
(
FisheyeTest
,
Calibration
)
{
const
int
n_images
=
34
;
const
int
n_points
=
48
;
cv
::
Size
imageSize
=
cv
::
Size
(
1280
,
800
);
std
::
vector
<
std
::
vector
<
cv
::
Point2d
>
>
imagePoints
;
std
::
vector
<
std
::
vector
<
cv
::
Point3d
>
>
objectPoints
;
readPoins
(
objectPoints
,
imagePoints
,
combine
(
datasets_repository_path
,
"calib-3_stereo_from_JY/left"
),
n_images
,
n_points
);
int
flag
=
0
;
flag
|=
cv
::
Fisheye
::
CALIB_RECOMPUTE_EXTRINSIC
;
flag
|=
cv
::
Fisheye
::
CALIB_CHECK_COND
;
flag
|=
cv
::
Fisheye
::
CALIB_FIX_SKEW
;
cv
::
Matx33d
K
;
cv
::
Vec4d
D
;
cv
::
Fisheye
::
calibrate
(
objectPoints
,
imagePoints
,
imageSize
,
K
,
D
,
cv
::
noArray
(),
cv
::
noArray
(),
flag
,
cv
::
TermCriteria
(
3
,
20
,
1e-6
));
EXPECT_MAT_NEAR
(
K
,
FishEye
::
K
,
1e-11
);
EXPECT_MAT_NEAR
(
D
,
FishEye
::
D
,
1e-12
);
}
TEST
(
FisheyeTest
,
Homography
)
{
const
int
n_images
=
1
;
const
int
n_points
=
48
;
cv
::
Size
imageSize
=
cv
::
Size
(
1280
,
800
);
std
::
vector
<
std
::
vector
<
cv
::
Point2d
>
>
imagePoints
;
std
::
vector
<
std
::
vector
<
cv
::
Point3d
>
>
objectPoints
;
readPoins
(
objectPoints
,
imagePoints
,
combine
(
datasets_repository_path
,
"calib-3_stereo_from_JY/left"
),
n_images
,
n_points
);
cv
::
internal
::
IntrinsicParams
param
;
param
.
Init
(
cv
::
Vec2d
(
cv
::
max
(
imageSize
.
width
,
imageSize
.
height
)
/
CV_PI
,
cv
::
max
(
imageSize
.
width
,
imageSize
.
height
)
/
CV_PI
),
cv
::
Vec2d
(
imageSize
.
width
/
2.0
-
0.5
,
imageSize
.
height
/
2.0
-
0.5
));
cv
::
Mat
_imagePoints
(
imagePoints
[
0
]);
cv
::
Mat
_objectPoints
(
objectPoints
[
0
]);
cv
::
Mat
imagePointsNormalized
=
NormalizePixels
(
_imagePoints
,
param
).
reshape
(
1
).
t
();
_objectPoints
=
_objectPoints
.
reshape
(
1
).
t
();
cv
::
Mat
objectPointsMean
,
covObjectPoints
;
int
Np
=
imagePointsNormalized
.
cols
;
cv
::
calcCovarMatrix
(
_objectPoints
,
covObjectPoints
,
objectPointsMean
,
CV_COVAR_NORMAL
|
CV_COVAR_COLS
);
cv
::
SVD
svd
(
covObjectPoints
);
cv
::
Mat
R
(
svd
.
vt
);
if
(
cv
::
norm
(
R
(
cv
::
Rect
(
2
,
0
,
1
,
2
)))
<
1e-6
)
R
=
cv
::
Mat
::
eye
(
3
,
3
,
CV_64FC1
);
if
(
cv
::
determinant
(
R
)
<
0
)
R
=
-
R
;
cv
::
Mat
T
=
-
R
*
objectPointsMean
;
cv
::
Mat
X_new
=
R
*
_objectPoints
+
T
*
cv
::
Mat
::
ones
(
1
,
Np
,
CV_64FC1
);
cv
::
Mat
H
=
cv
::
internal
::
ComputeHomography
(
imagePointsNormalized
,
X_new
.
rowRange
(
0
,
2
));
cv
::
Mat
M
=
cv
::
Mat
::
ones
(
3
,
X_new
.
cols
,
CV_64FC1
);
X_new
.
rowRange
(
0
,
2
).
copyTo
(
M
.
rowRange
(
0
,
2
));
cv
::
Mat
mrep
=
H
*
M
;
cv
::
divide
(
mrep
,
cv
::
Mat
::
ones
(
3
,
1
,
CV_64FC1
)
*
mrep
.
row
(
2
).
clone
(),
mrep
);
cv
::
Mat
merr
=
(
mrep
.
rowRange
(
0
,
2
)
-
imagePointsNormalized
).
t
();
cv
::
Vec2d
std_err
;
cv
::
meanStdDev
(
merr
.
reshape
(
2
),
cv
::
noArray
(),
std_err
);
std_err
*=
sqrt
((
double
)
merr
.
reshape
(
2
).
total
()
/
(
merr
.
reshape
(
2
).
total
()
-
1
));
cv
::
Vec2d
correct_std_err
(
0.00516740156010384
,
0.00644205331553901
);
EXPECT_MAT_NEAR
(
std_err
,
correct_std_err
,
1e-16
);
}
TEST
(
TestFisheye
,
EtimateUncertainties
)
{
const
int
n_images
=
34
;
const
int
n_points
=
48
;
cv
::
Size
imageSize
=
cv
::
Size
(
1280
,
800
);
std
::
vector
<
std
::
vector
<
cv
::
Point2d
>
>
imagePoints
;
std
::
vector
<
std
::
vector
<
cv
::
Point3d
>
>
objectPoints
;
readPoins
(
objectPoints
,
imagePoints
,
combine
(
datasets_repository_path
,
"calib-3_stereo_from_JY/left"
),
n_images
,
n_points
);
int
flag
=
0
;
flag
|=
cv
::
Fisheye
::
CALIB_RECOMPUTE_EXTRINSIC
;
flag
|=
cv
::
Fisheye
::
CALIB_CHECK_COND
;
flag
|=
cv
::
Fisheye
::
CALIB_FIX_SKEW
;
cv
::
Matx33d
K
;
cv
::
Vec4d
D
;
std
::
vector
<
cv
::
Vec3d
>
rvec
;
std
::
vector
<
cv
::
Vec3d
>
tvec
;
cv
::
Fisheye
::
calibrate
(
objectPoints
,
imagePoints
,
imageSize
,
K
,
D
,
cv
::
noArray
(),
cv
::
noArray
(),
flag
,
cv
::
TermCriteria
(
3
,
20
,
1e-6
));
cv
::
internal
::
IntrinsicParams
param
,
errors
;
cv
::
Vec2d
err_std
;
double
thresh_cond
=
1e6
;
int
check_cond
=
1
;
param
.
Init
(
cv
::
Vec2d
(
K
(
0
,
0
),
K
(
1
,
1
)),
cv
::
Vec2d
(
K
(
0
,
2
),
K
(
1
,
2
)),
D
);
param
.
isEstimate
=
std
::
vector
<
int
>
(
9
,
1
);
param
.
isEstimate
[
4
]
=
0
;
errors
.
isEstimate
=
param
.
isEstimate
;
double
rms
;
cv
::
internal
::
EstimateUncertainties
(
objectPoints
,
imagePoints
,
param
,
rvec
,
tvec
,
errors
,
err_std
,
thresh_cond
,
check_cond
,
rms
);
EXPECT_MAT_NEAR
(
errors
.
f
,
cv
::
Vec2d
(
1.29837104202046
,
1.31565641071524
),
1e-14
);
EXPECT_MAT_NEAR
(
errors
.
c
,
cv
::
Vec2d
(
0.890439368129246
,
0.816096854937896
),
1e-15
);
EXPECT_MAT_NEAR
(
errors
.
k
,
cv
::
Vec4d
(
0.00516248605191506
,
0.0168181467500934
,
0.0213118690274604
,
0.00916010877545648
),
1e-15
);
EXPECT_MAT_NEAR
(
err_std
,
cv
::
Vec2d
(
0.187475975266883
,
0.185678953263995
),
1e-15
);
CV_Assert
(
abs
(
rms
-
0.263782587133546
)
<
1e-15
);
CV_Assert
(
errors
.
alpha
==
0
);
}
TEST
(
FisheyeTest
,
rectify
)
{
const
std
::
string
folder
=
combine
(
datasets_repository_path
,
"calib-3_stereo_from_JY"
);
cv
::
Size
calibration_size
=
FishEye
::
imageSize
,
requested_size
=
calibration_size
;
cv
::
Matx33d
K1
=
FishEye
::
K
,
K2
=
K1
;
cv
::
Mat
D1
=
cv
::
Mat
(
FishEye
::
D
),
D2
=
D1
;
cv
::
Vec3d
T
=
FishEye
::
T
;
cv
::
Matx33d
R
=
FishEye
::
R
;
double
balance
=
0.0
,
fov_scale
=
1.1
;
cv
::
Mat
R1
,
R2
,
P1
,
P2
,
Q
;
cv
::
Fisheye
::
stereoRectify
(
K1
,
D1
,
K2
,
D2
,
calibration_size
,
R
,
T
,
R1
,
R2
,
P1
,
P2
,
Q
,
cv
::
CALIB_ZERO_DISPARITY
,
requested_size
,
balance
,
fov_scale
);
cv
::
Mat
lmapx
,
lmapy
,
rmapx
,
rmapy
;
//rewrite for fisheye
cv
::
Fisheye
::
initUndistortRectifyMap
(
K1
,
D1
,
R1
,
P1
,
requested_size
,
CV_32F
,
lmapx
,
lmapy
);
cv
::
Fisheye
::
initUndistortRectifyMap
(
K2
,
D2
,
R2
,
P2
,
requested_size
,
CV_32F
,
rmapx
,
rmapy
);
cv
::
Mat
l
,
r
,
lundist
,
rundist
;
cv
::
VideoCapture
lcap
(
combine
(
folder
,
"left/stereo_pair_%03d.jpg"
)),
rcap
(
combine
(
folder
,
"right/stereo_pair_%03d.jpg"
));
for
(
int
i
=
0
;;
++
i
)
{
lcap
>>
l
;
rcap
>>
r
;
if
(
l
.
empty
()
||
r
.
empty
())
break
;
int
ndisp
=
128
;
cv
::
rectangle
(
l
,
cv
::
Rect
(
255
,
0
,
829
,
l
.
rows
-
1
),
CV_RGB
(
255
,
0
,
0
));
cv
::
rectangle
(
r
,
cv
::
Rect
(
255
,
0
,
829
,
l
.
rows
-
1
),
CV_RGB
(
255
,
0
,
0
));
cv
::
rectangle
(
r
,
cv
::
Rect
(
255
-
ndisp
,
0
,
829
+
ndisp
,
l
.
rows
-
1
),
CV_RGB
(
255
,
0
,
0
));
cv
::
remap
(
l
,
lundist
,
lmapx
,
lmapy
,
cv
::
INTER_LINEAR
);
cv
::
remap
(
r
,
rundist
,
rmapx
,
rmapy
,
cv
::
INTER_LINEAR
);
cv
::
Mat
rectification
=
mergeRectification
(
lundist
,
rundist
,
0.75
);
cv
::
Mat
correct
=
cv
::
imread
(
combine_format
(
folder
,
"test_rectify/rectification_AB_%03d.png"
,
i
));
if
(
correct
.
empty
())
cv
::
imwrite
(
combine_format
(
folder
,
"test_rectify/rectification_AB_%03d.png"
,
i
),
rectification
);
else
EXPECT_MAT_NEAR
(
correct
,
rectification
,
1e-15
);
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment