Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
9b71f5fd
Commit
9b71f5fd
authored
Feb 18, 2019
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #13835 from catree:real_time_pose_tutorial_keypoints_matching
parents
428720f4
3c92d40f
Show whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
503 additions
and
347 deletions
+503
-347
CsvReader.cpp
..._code/calib3d/real_time_pose_estimation/src/CsvReader.cpp
+1
-1
CsvReader.h
...al_code/calib3d/real_time_pose_estimation/src/CsvReader.h
+1
-1
CsvWriter.cpp
..._code/calib3d/real_time_pose_estimation/src/CsvWriter.cpp
+11
-14
CsvWriter.h
...al_code/calib3d/real_time_pose_estimation/src/CsvWriter.h
+0
-0
Mesh.cpp
...orial_code/calib3d/real_time_pose_estimation/src/Mesh.cpp
+9
-13
Mesh.h
...utorial_code/calib3d/real_time_pose_estimation/src/Mesh.h
+5
-9
Model.cpp
...rial_code/calib3d/real_time_pose_estimation/src/Model.cpp
+17
-7
Model.h
...torial_code/calib3d/real_time_pose_estimation/src/Model.h
+6
-5
ModelRegistration.cpp
...lib3d/real_time_pose_estimation/src/ModelRegistration.cpp
+4
-5
ModelRegistration.h
...calib3d/real_time_pose_estimation/src/ModelRegistration.h
+8
-9
PnPProblem.cpp
...code/calib3d/real_time_pose_estimation/src/PnPProblem.cpp
+39
-51
PnPProblem.h
...l_code/calib3d/real_time_pose_estimation/src/PnPProblem.h
+8
-14
RobustMatcher.cpp
...e/calib3d/real_time_pose_estimation/src/RobustMatcher.cpp
+16
-14
RobustMatcher.h
...ode/calib3d/real_time_pose_estimation/src/RobustMatcher.h
+14
-3
Utils.cpp
...rial_code/calib3d/real_time_pose_estimation/src/Utils.cpp
+115
-12
Utils.h
...torial_code/calib3d/real_time_pose_estimation/src/Utils.h
+5
-0
main_detection.cpp
.../calib3d/real_time_pose_estimation/src/main_detection.cpp
+173
-143
main_registration.cpp
...lib3d/real_time_pose_estimation/src/main_registration.cpp
+71
-46
No files found.
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/CsvReader.cpp
View file @
9b71f5fd
#include "CsvReader.h"
/** The default constructor of the CSV reader Class */
CsvReader
::
CsvReader
(
const
string
&
path
,
c
onst
char
&
separator
){
CsvReader
::
CsvReader
(
const
string
&
path
,
c
har
separator
){
_file
.
open
(
path
.
c_str
(),
ifstream
::
in
);
_separator
=
separator
;
}
...
...
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/CsvReader.h
View file @
9b71f5fd
...
...
@@ -19,7 +19,7 @@ public:
* @param separator - The separator character between words per line
* @return
*/
CsvReader
(
const
string
&
path
,
const
char
&
separator
=
' '
);
CsvReader
(
const
string
&
path
,
char
separator
=
' '
);
/**
* Read a plane text file with .ply format
...
...
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/CsvWriter.cpp
View file @
9b71f5fd
...
...
@@ -13,34 +13,31 @@ CsvWriter::~CsvWriter() {
void
CsvWriter
::
writeXYZ
(
const
vector
<
Point3f
>
&
list_points3d
)
{
string
x
,
y
,
z
;
for
(
unsigned
int
i
=
0
;
i
<
list_points3d
.
size
();
++
i
)
for
(
size_t
i
=
0
;
i
<
list_points3d
.
size
();
++
i
)
{
x
=
FloatToString
(
list_points3d
[
i
].
x
);
y
=
FloatToString
(
list_points3d
[
i
].
y
);
z
=
FloatToString
(
list_points3d
[
i
].
z
);
string
x
=
FloatToString
(
list_points3d
[
i
].
x
);
string
y
=
FloatToString
(
list_points3d
[
i
].
y
);
string
z
=
FloatToString
(
list_points3d
[
i
].
z
);
_file
<<
x
<<
_separator
<<
y
<<
_separator
<<
z
<<
std
::
endl
;
}
}
void
CsvWriter
::
writeUVXYZ
(
const
vector
<
Point3f
>
&
list_points3d
,
const
vector
<
Point2f
>
&
list_points2d
,
const
Mat
&
descriptors
)
{
string
u
,
v
,
x
,
y
,
z
,
descriptor_str
;
for
(
unsigned
int
i
=
0
;
i
<
list_points3d
.
size
();
++
i
)
for
(
size_t
i
=
0
;
i
<
list_points3d
.
size
();
++
i
)
{
u
=
FloatToString
(
list_points2d
[
i
].
x
);
v
=
FloatToString
(
list_points2d
[
i
].
y
);
x
=
FloatToString
(
list_points3d
[
i
].
x
);
y
=
FloatToString
(
list_points3d
[
i
].
y
);
z
=
FloatToString
(
list_points3d
[
i
].
z
);
string
u
=
FloatToString
(
list_points2d
[
i
].
x
);
string
v
=
FloatToString
(
list_points2d
[
i
].
y
);
string
x
=
FloatToString
(
list_points3d
[
i
].
x
);
string
y
=
FloatToString
(
list_points3d
[
i
].
y
);
string
z
=
FloatToString
(
list_points3d
[
i
].
z
);
_file
<<
u
<<
_separator
<<
v
<<
_separator
<<
x
<<
_separator
<<
y
<<
_separator
<<
z
;
for
(
int
j
=
0
;
j
<
32
;
++
j
)
{
descriptor_str
=
FloatToString
(
descriptors
.
at
<
float
>
(
i
,
j
));
string
descriptor_str
=
FloatToString
(
descriptors
.
at
<
float
>
((
int
)
i
,
j
));
_file
<<
_separator
<<
descriptor_str
;
}
_file
<<
std
::
endl
;
...
...
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/CsvWriter.h
View file @
9b71f5fd
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/Mesh.cpp
View file @
9b71f5fd
...
...
@@ -14,9 +14,9 @@
// --------------------------------------------------- //
/** The custom constructor of the Triangle Class */
Triangle
::
Triangle
(
int
id
,
cv
::
Point3f
V0
,
cv
::
Point3f
V1
,
cv
::
Point3f
V2
)
Triangle
::
Triangle
(
const
cv
::
Point3f
&
V0
,
const
cv
::
Point3f
&
V1
,
const
cv
::
Point3f
&
V2
)
:
v0_
(
V0
),
v1_
(
V1
),
v2_
(
V2
)
{
id_
=
id
;
v0_
=
V0
;
v1_
=
V1
;
v2_
=
V2
;
}
/** The default destructor of the Class */
...
...
@@ -31,8 +31,9 @@ Triangle::~Triangle()
// --------------------------------------------------- //
/** The custom constructor of the Ray Class */
Ray
::
Ray
(
cv
::
Point3f
P0
,
cv
::
Point3f
P1
)
{
p0_
=
P0
;
p1_
=
P1
;
Ray
::
Ray
(
const
cv
::
Point3f
&
P0
,
const
cv
::
Point3f
&
P1
)
:
p0_
(
P0
),
p1_
(
P1
)
{
}
/** The default destructor of the Class */
...
...
@@ -47,11 +48,9 @@ Ray::~Ray()
// --------------------------------------------------- //
/** The default constructor of the ObjectMesh Class */
Mesh
::
Mesh
()
:
list_vertex_
(
0
)
,
list_triangles_
(
0
)
Mesh
::
Mesh
()
:
num_vertices_
(
0
),
num_triangles_
(
0
),
list_vertex_
(
0
)
,
list_triangles_
(
0
)
{
id_
=
0
;
num_vertexs_
=
0
;
num_triangles_
=
0
;
}
/** The default destructor of the ObjectMesh Class */
...
...
@@ -60,11 +59,9 @@ Mesh::~Mesh()
// TODO Auto-generated destructor stub
}
/** Load a CSV with *.ply format **/
void
Mesh
::
load
(
const
std
::
string
path
)
void
Mesh
::
load
(
const
std
::
string
&
path
)
{
// Create the reader
CsvReader
csvReader
(
path
);
...
...
@@ -76,7 +73,6 @@ void Mesh::load(const std::string path)
csvReader
.
readPLY
(
list_vertex_
,
list_triangles_
);
// Update mesh attributes
num_vertex
s_
=
(
int
)
list_vertex_
.
size
();
num_vertice
s_
=
(
int
)
list_vertex_
.
size
();
num_triangles_
=
(
int
)
list_triangles_
.
size
();
}
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/Mesh.h
View file @
9b71f5fd
...
...
@@ -19,7 +19,7 @@
class
Triangle
{
public
:
explicit
Triangle
(
int
id
,
cv
::
Point3f
V0
,
cv
::
Point3f
V1
,
cv
::
Point3f
V2
);
explicit
Triangle
(
const
cv
::
Point3f
&
V0
,
const
cv
::
Point3f
&
V1
,
const
cv
::
Point3f
&
V2
);
virtual
~
Triangle
();
cv
::
Point3f
getV0
()
const
{
return
v0_
;
}
...
...
@@ -27,8 +27,6 @@ public:
cv
::
Point3f
getV2
()
const
{
return
v2_
;
}
private
:
/** The identifier number of the triangle */
int
id_
;
/** The three vertices that defines the triangle */
cv
::
Point3f
v0_
,
v1_
,
v2_
;
};
...
...
@@ -41,7 +39,7 @@ private:
class
Ray
{
public
:
explicit
Ray
(
cv
::
Point3f
P0
,
cv
::
Point3f
P1
);
explicit
Ray
(
const
cv
::
Point3f
&
P0
,
const
cv
::
Point3f
&
P1
);
virtual
~
Ray
();
cv
::
Point3f
getP0
()
{
return
p0_
;
}
...
...
@@ -66,15 +64,13 @@ public:
std
::
vector
<
std
::
vector
<
int
>
>
getTrianglesList
()
const
{
return
list_triangles_
;
}
cv
::
Point3f
getVertex
(
int
pos
)
const
{
return
list_vertex_
[
pos
];
}
int
getNumVertices
()
const
{
return
num_vertex
s_
;
}
int
getNumVertices
()
const
{
return
num_vertice
s_
;
}
void
load
(
const
std
::
string
path_file
);
void
load
(
const
std
::
string
&
path_file
);
private
:
/** The identification number of the mesh */
int
id_
;
/** The current number of vertices in the mesh */
int
num_vertex
s_
;
int
num_vertice
s_
;
/** The current number of triangles in the mesh */
int
num_triangles_
;
/* The list of triangles of the mesh */
...
...
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/Model.cpp
View file @
9b71f5fd
...
...
@@ -8,9 +8,8 @@
#include "Model.h"
#include "CsvWriter.h"
Model
::
Model
()
:
list_points2d_in_
(
0
),
list_points2d_out_
(
0
),
list_points3d_in_
(
0
)
Model
::
Model
()
:
n_correspondences_
(
0
),
list_points2d_in_
(
0
),
list_points2d_out_
(
0
),
list_points3d_in_
(
0
),
training_img_path_
(
)
{
n_correspondences_
=
0
;
}
Model
::~
Model
()
...
...
@@ -40,34 +39,45 @@ void Model::add_keypoint(const cv::KeyPoint &kp)
list_keypoints_
.
push_back
(
kp
);
}
void
Model
::
set_trainingImagePath
(
const
std
::
string
&
path
)
{
training_img_path_
=
path
;
}
/** Save a
CSV
file and fill the object mesh */
void
Model
::
save
(
const
std
::
string
path
)
/** Save a
YAML
file and fill the object mesh */
void
Model
::
save
(
const
std
::
string
&
path
)
{
cv
::
Mat
points3dmatrix
=
cv
::
Mat
(
list_points3d_in_
);
cv
::
Mat
points2dmatrix
=
cv
::
Mat
(
list_points2d_in_
);
//cv::Mat keyPointmatrix = cv::Mat(list_keypoints_);
cv
::
FileStorage
storage
(
path
,
cv
::
FileStorage
::
WRITE
);
storage
<<
"points_3d"
<<
points3dmatrix
;
storage
<<
"points_2d"
<<
points2dmatrix
;
storage
<<
"keypoints"
<<
list_keypoints_
;
storage
<<
"descriptors"
<<
descriptors_
;
storage
<<
"training_image_path"
<<
training_img_path_
;
storage
.
release
();
}
/** Load a YAML file using OpenCv functions **/
void
Model
::
load
(
const
std
::
string
path
)
void
Model
::
load
(
const
std
::
string
&
path
)
{
cv
::
Mat
points3d_mat
;
cv
::
FileStorage
storage
(
path
,
cv
::
FileStorage
::
READ
);
storage
[
"points_3d"
]
>>
points3d_mat
;
storage
[
"descriptors"
]
>>
descriptors_
;
if
(
!
storage
[
"keypoints"
].
empty
())
{
storage
[
"keypoints"
]
>>
list_keypoints_
;
}
if
(
!
storage
[
"training_image_path"
].
empty
())
{
storage
[
"training_image_path"
]
>>
training_img_path_
;
}
points3d_mat
.
copyTo
(
list_points3d_in_
);
storage
.
release
();
}
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/Model.h
View file @
9b71f5fd
...
...
@@ -24,17 +24,16 @@ public:
std
::
vector
<
cv
::
KeyPoint
>
get_keypoints
()
const
{
return
list_keypoints_
;
}
cv
::
Mat
get_descriptors
()
const
{
return
descriptors_
;
}
int
get_numDescriptors
()
const
{
return
descriptors_
.
rows
;
}
std
::
string
get_trainingImagePath
()
const
{
return
training_img_path_
;
}
void
add_correspondence
(
const
cv
::
Point2f
&
point2d
,
const
cv
::
Point3f
&
point3d
);
void
add_outlier
(
const
cv
::
Point2f
&
point2d
);
void
add_descriptor
(
const
cv
::
Mat
&
descriptor
);
void
add_keypoint
(
const
cv
::
KeyPoint
&
kp
);
void
set_trainingImagePath
(
const
std
::
string
&
path
);
void
save
(
const
std
::
string
path
);
void
load
(
const
std
::
string
path
);
void
save
(
const
std
::
string
&
path
);
void
load
(
const
std
::
string
&
path
);
private
:
/** The current number of correspondecnes */
...
...
@@ -49,6 +48,8 @@ private:
std
::
vector
<
cv
::
Point3f
>
list_points3d_in_
;
/** The list of 2D points descriptors */
cv
::
Mat
descriptors_
;
/** Path to the training image */
std
::
string
training_img_path_
;
};
#endif
/* OBJECTMODEL_H_ */
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/ModelRegistration.cpp
View file @
9b71f5fd
...
...
@@ -7,10 +7,9 @@
#include "ModelRegistration.h"
ModelRegistration
::
ModelRegistration
()
ModelRegistration
::
ModelRegistration
()
:
n_registrations_
(
0
),
max_registrations_
(
0
),
list_points2d_
(),
list_points3d_
()
{
n_registrations_
=
0
;
max_registrations_
=
0
;
}
ModelRegistration
::~
ModelRegistration
()
...
...
@@ -19,12 +18,12 @@ ModelRegistration::~ModelRegistration()
}
void
ModelRegistration
::
registerPoint
(
const
cv
::
Point2f
&
point2d
,
const
cv
::
Point3f
&
point3d
)
{
{
// add correspondence at the end of the vector
list_points2d_
.
push_back
(
point2d
);
list_points3d_
.
push_back
(
point3d
);
n_registrations_
++
;
}
}
void
ModelRegistration
::
reset
()
{
...
...
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/ModelRegistration.h
View file @
9b71f5fd
...
...
@@ -14,7 +14,6 @@
class
ModelRegistration
{
public
:
ModelRegistration
();
virtual
~
ModelRegistration
();
...
...
@@ -30,14 +29,14 @@ public:
void
reset
();
private
:
/** The current number of registered points */
int
n_registrations_
;
/** The total number of points to register */
int
max_registrations_
;
/** The list of 2D points to register the model */
std
::
vector
<
cv
::
Point2f
>
list_points2d_
;
/** The list of 3D points to register the model */
std
::
vector
<
cv
::
Point3f
>
list_points3d_
;
/** The current number of registered points */
int
n_registrations_
;
/** The total number of points to register */
int
max_registrations_
;
/** The list of 2D points to register the model */
std
::
vector
<
cv
::
Point2f
>
list_points2d_
;
/** The list of 3D points to register the model */
std
::
vector
<
cv
::
Point3f
>
list_points3d_
;
};
#endif
/* MODELREGISTRATION_H_ */
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/PnPProblem.cpp
View file @
9b71f5fd
...
...
@@ -13,16 +13,8 @@
#include <opencv2/calib3d/calib3d.hpp>
/* Functions headers */
cv
::
Point3f
CROSS
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
);
double
DOT
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
);
cv
::
Point3f
SUB
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
);
cv
::
Point3f
get_nearest_3D_point
(
std
::
vector
<
cv
::
Point3f
>
&
points_list
,
cv
::
Point3f
origin
);
/* Functions for Möller-Trumbore intersection algorithm */
cv
::
Point3f
CROSS
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
)
static
cv
::
Point3f
CROSS
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
)
{
cv
::
Point3f
tmp_p
;
tmp_p
.
x
=
v1
.
y
*
v2
.
z
-
v1
.
z
*
v2
.
y
;
...
...
@@ -31,12 +23,12 @@ cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2)
return
tmp_p
;
}
double
DOT
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
)
static
double
DOT
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
)
{
return
v1
.
x
*
v2
.
x
+
v1
.
y
*
v2
.
y
+
v1
.
z
*
v2
.
z
;
}
cv
::
Point3f
SUB
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
)
static
cv
::
Point3f
SUB
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
)
{
cv
::
Point3f
tmp_p
;
tmp_p
.
x
=
v1
.
x
-
v2
.
x
;
...
...
@@ -45,11 +37,10 @@ cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2)
return
tmp_p
;
}
/* End functions for Möller-Trumbore intersection algorithm
* */
/* End functions for Möller-Trumbore intersection algorithm */
// Function to get the nearest 3D point to the Ray origin
cv
::
Point3f
get_nearest_3D_point
(
std
::
vector
<
cv
::
Point3f
>
&
points_list
,
cv
::
Point3f
origin
)
static
cv
::
Point3f
get_nearest_3D_point
(
std
::
vector
<
cv
::
Point3f
>
&
points_list
,
cv
::
Point3f
origin
)
{
cv
::
Point3f
p1
=
points_list
[
0
];
cv
::
Point3f
p2
=
points_list
[
1
];
...
...
@@ -71,15 +62,15 @@ cv::Point3f get_nearest_3D_point(std::vector<cv::Point3f> &points_list, cv::Poin
PnPProblem
::
PnPProblem
(
const
double
params
[])
{
_A_matrix
=
cv
::
Mat
::
zeros
(
3
,
3
,
CV_64FC1
);
// intrinsic camera parameters
_A_matrix
.
at
<
double
>
(
0
,
0
)
=
params
[
0
];
// [ fx 0 cx ]
_A_matrix
.
at
<
double
>
(
1
,
1
)
=
params
[
1
];
// [ 0 fy cy ]
_A_matrix
.
at
<
double
>
(
0
,
2
)
=
params
[
2
];
// [ 0 0 1 ]
_A_matrix
.
at
<
double
>
(
1
,
2
)
=
params
[
3
];
_A_matrix
.
at
<
double
>
(
2
,
2
)
=
1
;
_R_matrix
=
cv
::
Mat
::
zeros
(
3
,
3
,
CV_64FC1
);
// rotation matrix
_t_matrix
=
cv
::
Mat
::
zeros
(
3
,
1
,
CV_64FC1
);
// translation matrix
_P_matrix
=
cv
::
Mat
::
zeros
(
3
,
4
,
CV_64FC1
);
// rotation-translation matrix
A_matrix_
=
cv
::
Mat
::
zeros
(
3
,
3
,
CV_64FC1
);
// intrinsic camera parameters
A_matrix_
.
at
<
double
>
(
0
,
0
)
=
params
[
0
];
// [ fx 0 cx ]
A_matrix_
.
at
<
double
>
(
1
,
1
)
=
params
[
1
];
// [ 0 fy cy ]
A_matrix_
.
at
<
double
>
(
0
,
2
)
=
params
[
2
];
// [ 0 0 1 ]
A_matrix_
.
at
<
double
>
(
1
,
2
)
=
params
[
3
];
A_matrix_
.
at
<
double
>
(
2
,
2
)
=
1
;
R_matrix_
=
cv
::
Mat
::
zeros
(
3
,
3
,
CV_64FC1
);
// rotation matrix
t_matrix_
=
cv
::
Mat
::
zeros
(
3
,
1
,
CV_64FC1
);
// translation matrix
P_matrix_
=
cv
::
Mat
::
zeros
(
3
,
4
,
CV_64FC1
);
// rotation-translation matrix
}
...
...
@@ -91,21 +82,20 @@ PnPProblem::~PnPProblem()
void
PnPProblem
::
set_P_matrix
(
const
cv
::
Mat
&
R_matrix
,
const
cv
::
Mat
&
t_matrix
)
{
// Rotation-Translation Matrix Definition
_P_matrix
.
at
<
double
>
(
0
,
0
)
=
R_matrix
.
at
<
double
>
(
0
,
0
);
_P_matrix
.
at
<
double
>
(
0
,
1
)
=
R_matrix
.
at
<
double
>
(
0
,
1
);
_P_matrix
.
at
<
double
>
(
0
,
2
)
=
R_matrix
.
at
<
double
>
(
0
,
2
);
_P_matrix
.
at
<
double
>
(
1
,
0
)
=
R_matrix
.
at
<
double
>
(
1
,
0
);
_P_matrix
.
at
<
double
>
(
1
,
1
)
=
R_matrix
.
at
<
double
>
(
1
,
1
);
_P_matrix
.
at
<
double
>
(
1
,
2
)
=
R_matrix
.
at
<
double
>
(
1
,
2
);
_P_matrix
.
at
<
double
>
(
2
,
0
)
=
R_matrix
.
at
<
double
>
(
2
,
0
);
_P_matrix
.
at
<
double
>
(
2
,
1
)
=
R_matrix
.
at
<
double
>
(
2
,
1
);
_P_matrix
.
at
<
double
>
(
2
,
2
)
=
R_matrix
.
at
<
double
>
(
2
,
2
);
_P_matrix
.
at
<
double
>
(
0
,
3
)
=
t_matrix
.
at
<
double
>
(
0
);
_P_matrix
.
at
<
double
>
(
1
,
3
)
=
t_matrix
.
at
<
double
>
(
1
);
_P_matrix
.
at
<
double
>
(
2
,
3
)
=
t_matrix
.
at
<
double
>
(
2
);
P_matrix_
.
at
<
double
>
(
0
,
0
)
=
R_matrix
.
at
<
double
>
(
0
,
0
);
P_matrix_
.
at
<
double
>
(
0
,
1
)
=
R_matrix
.
at
<
double
>
(
0
,
1
);
P_matrix_
.
at
<
double
>
(
0
,
2
)
=
R_matrix
.
at
<
double
>
(
0
,
2
);
P_matrix_
.
at
<
double
>
(
1
,
0
)
=
R_matrix
.
at
<
double
>
(
1
,
0
);
P_matrix_
.
at
<
double
>
(
1
,
1
)
=
R_matrix
.
at
<
double
>
(
1
,
1
);
P_matrix_
.
at
<
double
>
(
1
,
2
)
=
R_matrix
.
at
<
double
>
(
1
,
2
);
P_matrix_
.
at
<
double
>
(
2
,
0
)
=
R_matrix
.
at
<
double
>
(
2
,
0
);
P_matrix_
.
at
<
double
>
(
2
,
1
)
=
R_matrix
.
at
<
double
>
(
2
,
1
);
P_matrix_
.
at
<
double
>
(
2
,
2
)
=
R_matrix
.
at
<
double
>
(
2
,
2
);
P_matrix_
.
at
<
double
>
(
0
,
3
)
=
t_matrix
.
at
<
double
>
(
0
);
P_matrix_
.
at
<
double
>
(
1
,
3
)
=
t_matrix
.
at
<
double
>
(
1
);
P_matrix_
.
at
<
double
>
(
2
,
3
)
=
t_matrix
.
at
<
double
>
(
2
);
}
// Estimate the pose given a list of 2D/3D correspondences and the method to use
bool
PnPProblem
::
estimatePose
(
const
std
::
vector
<
cv
::
Point3f
>
&
list_points3d
,
const
std
::
vector
<
cv
::
Point2f
>
&
list_points2d
,
...
...
@@ -118,15 +108,15 @@ bool PnPProblem::estimatePose( const std::vector<cv::Point3f> &list_points3d,
bool
useExtrinsicGuess
=
false
;
// Pose estimation
bool
correspondence
=
cv
::
solvePnP
(
list_points3d
,
list_points2d
,
_A_matrix
,
distCoeffs
,
rvec
,
tvec
,
bool
correspondence
=
cv
::
solvePnP
(
list_points3d
,
list_points2d
,
A_matrix_
,
distCoeffs
,
rvec
,
tvec
,
useExtrinsicGuess
,
flags
);
// Transforms Rotation Vector to Matrix
Rodrigues
(
rvec
,
_R_matrix
);
_t_matrix
=
tvec
;
Rodrigues
(
rvec
,
R_matrix_
);
t_matrix_
=
tvec
;
// Set projection matrix
this
->
set_P_matrix
(
_R_matrix
,
_t_matrix
);
this
->
set_P_matrix
(
R_matrix_
,
t_matrix_
);
return
correspondence
;
}
...
...
@@ -145,14 +135,14 @@ void PnPProblem::estimatePoseRANSAC( const std::vector<cv::Point3f> &list_points
bool
useExtrinsicGuess
=
false
;
// if true the function uses the provided rvec and tvec values as
// initial approximations of the rotation and translation vectors
cv
::
solvePnPRansac
(
list_points3d
,
list_points2d
,
_A_matrix
,
distCoeffs
,
rvec
,
tvec
,
cv
::
solvePnPRansac
(
list_points3d
,
list_points2d
,
A_matrix_
,
distCoeffs
,
rvec
,
tvec
,
useExtrinsicGuess
,
iterationsCount
,
reprojectionError
,
confidence
,
inliers
,
flags
);
Rodrigues
(
rvec
,
_R_matrix
);
// converts Rotation Vector to Matrix
_t_matrix
=
tvec
;
// set translation matrix
Rodrigues
(
rvec
,
R_matrix_
);
// converts Rotation Vector to Matrix
t_matrix_
=
tvec
;
// set translation matrix
this
->
set_P_matrix
(
_R_matrix
,
_t_matrix
);
// set rotation-translation matrix
this
->
set_P_matrix
(
R_matrix_
,
t_matrix_
);
// set rotation-translation matrix
}
...
...
@@ -170,9 +160,7 @@ std::vector<cv::Point2f> PnPProblem::verify_points(Mesh *mesh)
return
verified_points_2d
;
}
// Backproject a 3D point to 2D using the estimated pose parameters
cv
::
Point2f
PnPProblem
::
backproject3DPoint
(
const
cv
::
Point3f
&
point3d
)
{
// 3D point vector [x y z 1]'
...
...
@@ -184,7 +172,7 @@ cv::Point2f PnPProblem::backproject3DPoint(const cv::Point3f &point3d)
// 2D point vector [u v 1]'
cv
::
Mat
point2d_vec
=
cv
::
Mat
(
4
,
1
,
CV_64FC1
);
point2d_vec
=
_A_matrix
*
_P_matrix
*
point3d_vec
;
point2d_vec
=
A_matrix_
*
P_matrix_
*
point3d_vec
;
// Normalization of [u v]'
cv
::
Point2f
point2d
;
...
...
@@ -211,13 +199,13 @@ bool PnPProblem::backproject2DPoint(const Mesh *mesh, const cv::Point2f &point2d
point2d_vec
.
at
<
double
>
(
2
)
=
lambda
;
// Point in camera coordinates
cv
::
Mat
X_c
=
_A_matrix
.
inv
()
*
point2d_vec
;
// 3x1
cv
::
Mat
X_c
=
A_matrix_
.
inv
()
*
point2d_vec
;
// 3x1
// Point in world coordinates
cv
::
Mat
X_w
=
_R_matrix
.
inv
()
*
(
X_c
-
_t_matrix
);
// 3x1
cv
::
Mat
X_w
=
R_matrix_
.
inv
()
*
(
X_c
-
t_matrix_
);
// 3x1
// Center of projection
cv
::
Mat
C_op
=
cv
::
Mat
(
_R_matrix
.
inv
()).
mul
(
-
1
)
*
_t_matrix
;
// 3x1
cv
::
Mat
C_op
=
cv
::
Mat
(
R_matrix_
.
inv
()).
mul
(
-
1
)
*
t_matrix_
;
// 3x1
// Ray direction vector
cv
::
Mat
ray
=
X_w
-
C_op
;
// 3x1
...
...
@@ -236,7 +224,7 @@ bool PnPProblem::backproject2DPoint(const Mesh *mesh, const cv::Point2f &point2d
cv
::
Point3f
V1
=
mesh
->
getVertex
(
triangles_list
[
i
][
1
]);
cv
::
Point3f
V2
=
mesh
->
getVertex
(
triangles_list
[
i
][
2
]);
Triangle
T
(
i
,
V0
,
V1
,
V2
);
Triangle
T
(
V0
,
V1
,
V2
);
double
out
;
if
(
this
->
intersect_MollerTrumbore
(
R
,
T
,
&
out
))
...
...
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/PnPProblem.h
View file @
9b71f5fd
...
...
@@ -18,7 +18,6 @@
class
PnPProblem
{
public
:
explicit
PnPProblem
(
const
double
param
[]);
// custom constructor
virtual
~
PnPProblem
();
...
...
@@ -32,27 +31,22 @@ public:
int
flags
,
cv
::
Mat
&
inliers
,
int
iterationsCount
,
float
reprojectionError
,
double
confidence
);
cv
::
Mat
get_A_matrix
()
const
{
return
_A_matrix
;
}
cv
::
Mat
get_R_matrix
()
const
{
return
_R_matrix
;
}
cv
::
Mat
get_t_matrix
()
const
{
return
_t_matrix
;
}
cv
::
Mat
get_P_matrix
()
const
{
return
_P_matrix
;
}
cv
::
Mat
get_A_matrix
()
const
{
return
A_matrix_
;
}
cv
::
Mat
get_R_matrix
()
const
{
return
R_matrix_
;
}
cv
::
Mat
get_t_matrix
()
const
{
return
t_matrix_
;
}
cv
::
Mat
get_P_matrix
()
const
{
return
P_matrix_
;
}
void
set_P_matrix
(
const
cv
::
Mat
&
R_matrix
,
const
cv
::
Mat
&
t_matrix
);
private
:
/** The calibration matrix */
cv
::
Mat
_A_matrix
;
cv
::
Mat
A_matrix_
;
/** The computed rotation matrix */
cv
::
Mat
_R_matrix
;
cv
::
Mat
R_matrix_
;
/** The computed translation matrix */
cv
::
Mat
_t_matrix
;
cv
::
Mat
t_matrix_
;
/** The computed projection matrix */
cv
::
Mat
_P_matrix
;
cv
::
Mat
P_matrix_
;
};
// Functions for Möller-Trumbore intersection algorithm
cv
::
Point3f
CROSS
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
);
double
DOT
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
);
cv
::
Point3f
SUB
(
cv
::
Point3f
v1
,
cv
::
Point3f
v2
);
#endif
/* PNPPROBLEM_H_ */
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/RobustMatcher.cpp
View file @
9b71f5fd
...
...
@@ -55,12 +55,10 @@ void RobustMatcher::symmetryTest( const std::vector<std::vector<cv::DMatch> >& m
const
std
::
vector
<
std
::
vector
<
cv
::
DMatch
>
>&
matches2
,
std
::
vector
<
cv
::
DMatch
>&
symMatches
)
{
// for all matches image 1 -> image 2
for
(
std
::
vector
<
std
::
vector
<
cv
::
DMatch
>
>::
const_iterator
matchIterator1
=
matches1
.
begin
();
matchIterator1
!=
matches1
.
end
();
++
matchIterator1
)
{
// ignore deleted matches
if
(
matchIterator1
->
empty
()
||
matchIterator1
->
size
()
<
2
)
continue
;
...
...
@@ -74,27 +72,22 @@ void RobustMatcher::symmetryTest( const std::vector<std::vector<cv::DMatch> >& m
continue
;
// Match symmetry test
if
((
*
matchIterator1
)[
0
].
queryIdx
==
(
*
matchIterator2
)[
0
].
trainIdx
&&
(
*
matchIterator2
)[
0
].
queryIdx
==
(
*
matchIterator1
)[
0
].
trainIdx
)
if
((
*
matchIterator1
)[
0
].
queryIdx
==
(
*
matchIterator2
)[
0
].
trainIdx
&&
(
*
matchIterator2
)[
0
].
queryIdx
==
(
*
matchIterator1
)[
0
].
trainIdx
)
{
// add symmetrical match
symMatches
.
push_back
(
cv
::
DMatch
((
*
matchIterator1
)[
0
].
queryIdx
,
(
*
matchIterator1
)[
0
].
trainIdx
,
(
*
matchIterator1
)[
0
].
distance
));
symMatches
.
push_back
(
cv
::
DMatch
((
*
matchIterator1
)[
0
].
queryIdx
,
(
*
matchIterator1
)[
0
].
trainIdx
,
(
*
matchIterator1
)[
0
].
distance
));
break
;
// next match in image 1 -> image 2
}
}
}
}
void
RobustMatcher
::
robustMatch
(
const
cv
::
Mat
&
frame
,
std
::
vector
<
cv
::
DMatch
>&
good_matches
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints_frame
,
const
cv
::
Mat
&
descriptors_model
)
std
::
vector
<
cv
::
KeyPoint
>&
keypoints_frame
,
const
cv
::
Mat
&
descriptors_model
,
const
std
::
vector
<
cv
::
KeyPoint
>&
keypoints_model
)
{
// 1a. Detection of the ORB features
this
->
computeKeyPoints
(
frame
,
keypoints_frame
);
...
...
@@ -120,11 +113,16 @@ void RobustMatcher::robustMatch( const cv::Mat& frame, std::vector<cv::DMatch>&
// 4. Remove non-symmetrical matches
symmetryTest
(
matches12
,
matches21
,
good_matches
);
if
(
!
training_img_
.
empty
()
&&
!
keypoints_model
.
empty
())
{
cv
::
drawMatches
(
frame
,
keypoints_frame
,
training_img_
,
keypoints_model
,
good_matches
,
img_matching_
);
}
}
void
RobustMatcher
::
fastRobustMatch
(
const
cv
::
Mat
&
frame
,
std
::
vector
<
cv
::
DMatch
>&
good_matches
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints_frame
,
const
cv
::
Mat
&
descriptors_model
)
const
cv
::
Mat
&
descriptors_model
,
const
std
::
vector
<
cv
::
KeyPoint
>&
keypoints_model
)
{
good_matches
.
clear
();
...
...
@@ -149,4 +147,8 @@ void RobustMatcher::fastRobustMatch( const cv::Mat& frame, std::vector<cv::DMatc
if
(
!
matchIterator
->
empty
())
good_matches
.
push_back
((
*
matchIterator
)[
0
]);
}
if
(
!
training_img_
.
empty
()
&&
!
keypoints_model
.
empty
())
{
cv
::
drawMatches
(
frame
,
keypoints_frame
,
training_img_
,
keypoints_model
,
good_matches
,
img_matching_
);
}
}
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/RobustMatcher.h
View file @
9b71f5fd
...
...
@@ -16,7 +16,8 @@
class
RobustMatcher
{
public
:
RobustMatcher
()
:
ratio_
(
0
.
8
f
)
RobustMatcher
()
:
detector_
(),
extractor_
(),
matcher_
(),
ratio_
(
0
.
8
f
),
training_img_
(),
img_matching_
()
{
// ORB is the default feature
detector_
=
cv
::
ORB
::
create
();
...
...
@@ -43,9 +44,13 @@ public:
// Compute the descriptors of an image given its keypoints
void
computeDescriptors
(
const
cv
::
Mat
&
image
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints
,
cv
::
Mat
&
descriptors
);
cv
::
Mat
getImageMatching
()
const
{
return
img_matching_
;
}
// Set ratio parameter for the ratio test
void
setRatio
(
float
rat
)
{
ratio_
=
rat
;
}
void
setTrainingImage
(
const
cv
::
Mat
&
img
)
{
training_img_
=
img
;
}
// Clear matches for which NN ratio is > than threshold
// return the number of removed points
// (corresponding entries being cleared,
...
...
@@ -60,12 +65,14 @@ public:
// Match feature points using ratio and symmetry test
void
robustMatch
(
const
cv
::
Mat
&
frame
,
std
::
vector
<
cv
::
DMatch
>&
good_matches
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints_frame
,
const
cv
::
Mat
&
descriptors_model
);
const
cv
::
Mat
&
descriptors_model
,
const
std
::
vector
<
cv
::
KeyPoint
>&
keypoints_model
);
// Match feature points using ratio test
void
fastRobustMatch
(
const
cv
::
Mat
&
frame
,
std
::
vector
<
cv
::
DMatch
>&
good_matches
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints_frame
,
const
cv
::
Mat
&
descriptors_model
);
const
cv
::
Mat
&
descriptors_model
,
const
std
::
vector
<
cv
::
KeyPoint
>&
keypoints_model
);
private
:
// pointer to the feature point detector object
...
...
@@ -76,6 +83,10 @@ private:
cv
::
Ptr
<
cv
::
DescriptorMatcher
>
matcher_
;
// max ratio between 1st and 2nd NN
float
ratio_
;
// training image
cv
::
Mat
training_img_
;
// matching image
cv
::
Mat
img_matching_
;
};
#endif
/* ROBUSTMATCHER_H_ */
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/Utils.cpp
View file @
9b71f5fd
...
...
@@ -11,18 +11,22 @@
#include "ModelRegistration.h"
#include "Utils.h"
#include <opencv2/opencv_modules.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/flann.hpp>
#if defined (HAVE_OPENCV_XFEATURES2D)
#include <opencv2/xfeatures2d.hpp>
#endif
// For text
int
fontFace
=
cv
::
FONT_ITALIC
;
double
fontScale
=
0.75
;
int
thickness_font
=
2
;
const
int
fontFace
=
cv
::
FONT_ITALIC
;
const
double
fontScale
=
0.75
;
const
int
thickness_font
=
2
;
// For circles
int
lineType
=
8
;
int
radius
=
4
;
double
thickness_circ
=
-
1
;
const
int
lineType
=
8
;
const
int
radius
=
4
;
// Draw a text with the question point
void
drawQuestion
(
cv
::
Mat
image
,
cv
::
Point3f
point
,
cv
::
Scalar
color
)
...
...
@@ -50,9 +54,8 @@ void drawText2(cv::Mat image, std::string text, cv::Scalar color)
// Draw a text with the frame ratio
void
drawFPS
(
cv
::
Mat
image
,
double
fps
,
cv
::
Scalar
color
)
{
std
::
string
fps_str
=
IntToString
((
int
)
fps
);
std
::
string
text
=
fps_str
+
" FPS"
;
cv
::
putText
(
image
,
text
,
cv
::
Point
(
500
,
50
),
fontFace
,
fontScale
,
color
,
thickness_font
,
8
);
std
::
string
fps_str
=
cv
::
format
(
"%.2f FPS"
,
fps
);
cv
::
putText
(
image
,
fps_str
,
cv
::
Point
(
500
,
50
),
fontFace
,
fontScale
,
color
,
thickness_font
,
8
);
}
// Draw a text with the frame ratio
...
...
@@ -141,10 +144,9 @@ void draw3DCoordinateAxes(cv::Mat image, const std::vector<cv::Point2f> &list_po
cv
::
Point2i
pointZ
=
list_points2d
[
3
];
drawArrow
(
image
,
origin
,
pointX
,
red
,
9
,
2
);
drawArrow
(
image
,
origin
,
pointY
,
blue
,
9
,
2
);
drawArrow
(
image
,
origin
,
pointZ
,
green
,
9
,
2
);
drawArrow
(
image
,
origin
,
pointY
,
green
,
9
,
2
);
drawArrow
(
image
,
origin
,
pointZ
,
blue
,
9
,
2
);
cv
::
circle
(
image
,
origin
,
radius
/
2
,
black
,
-
1
,
lineType
);
}
// Draw the object mesh
...
...
@@ -296,3 +298,104 @@ std::string IntToString ( int Number )
ss
<<
Number
;
return
ss
.
str
();
}
void
createFeatures
(
const
std
::
string
&
featureName
,
int
numKeypoints
,
cv
::
Ptr
<
cv
::
Feature2D
>
&
detector
,
cv
::
Ptr
<
cv
::
Feature2D
>
&
descriptor
)
{
if
(
featureName
==
"ORB"
)
{
detector
=
cv
::
ORB
::
create
(
numKeypoints
);
descriptor
=
cv
::
ORB
::
create
(
numKeypoints
);
}
else
if
(
featureName
==
"KAZE"
)
{
detector
=
cv
::
KAZE
::
create
();
descriptor
=
cv
::
KAZE
::
create
();
}
else
if
(
featureName
==
"AKAZE"
)
{
detector
=
cv
::
AKAZE
::
create
();
descriptor
=
cv
::
AKAZE
::
create
();
}
else
if
(
featureName
==
"BRISK"
)
{
detector
=
cv
::
BRISK
::
create
();
descriptor
=
cv
::
BRISK
::
create
();
}
else
if
(
featureName
==
"SIFT"
)
{
#if defined (OPENCV_ENABLE_NONFREE) && defined (HAVE_OPENCV_XFEATURES2D)
detector
=
cv
::
xfeatures2d
::
SIFT
::
create
();
descriptor
=
cv
::
xfeatures2d
::
SIFT
::
create
();
#else
std
::
cout
<<
"xfeatures2d module is not available or nonfree is not enabled."
<<
std
::
endl
;
std
::
cout
<<
"Default to ORB."
<<
std
::
endl
;
detector
=
cv
::
ORB
::
create
(
numKeypoints
);
descriptor
=
cv
::
ORB
::
create
(
numKeypoints
);
#endif
}
else
if
(
featureName
==
"SURF"
)
{
#if defined (OPENCV_ENABLE_NONFREE) && defined (HAVE_OPENCV_XFEATURES2D)
detector
=
cv
::
xfeatures2d
::
SURF
::
create
(
100
,
4
,
3
,
true
);
//extended=true
descriptor
=
cv
::
xfeatures2d
::
SURF
::
create
(
100
,
4
,
3
,
true
);
//extended=true
#else
std
::
cout
<<
"xfeatures2d module is not available or nonfree is not enabled."
<<
std
::
endl
;
std
::
cout
<<
"Default to ORB."
<<
std
::
endl
;
detector
=
cv
::
ORB
::
create
(
numKeypoints
);
descriptor
=
cv
::
ORB
::
create
(
numKeypoints
);
#endif
}
else
if
(
featureName
==
"BINBOOST"
)
{
#if defined (HAVE_OPENCV_XFEATURES2D)
detector
=
cv
::
KAZE
::
create
();
descriptor
=
cv
::
xfeatures2d
::
BoostDesc
::
create
();
#else
std
::
cout
<<
"xfeatures2d module is not available."
<<
std
::
endl
;
std
::
cout
<<
"Default to ORB."
<<
std
::
endl
;
detector
=
cv
::
ORB
::
create
(
numKeypoints
);
descriptor
=
cv
::
ORB
::
create
(
numKeypoints
);
#endif
}
else
if
(
featureName
==
"VGG"
)
{
#if defined (HAVE_OPENCV_XFEATURES2D)
detector
=
cv
::
KAZE
::
create
();
descriptor
=
cv
::
xfeatures2d
::
VGG
::
create
();
#else
std
::
cout
<<
"xfeatures2d module is not available."
<<
std
::
endl
;
std
::
cout
<<
"Default to ORB."
<<
std
::
endl
;
detector
=
cv
::
ORB
::
create
(
numKeypoints
);
descriptor
=
cv
::
ORB
::
create
(
numKeypoints
);
#endif
}
}
cv
::
Ptr
<
cv
::
DescriptorMatcher
>
createMatcher
(
const
std
::
string
&
featureName
,
bool
useFLANN
)
{
if
(
featureName
==
"ORB"
||
featureName
==
"BRISK"
||
featureName
==
"AKAZE"
||
featureName
==
"BINBOOST"
)
{
if
(
useFLANN
)
{
cv
::
Ptr
<
cv
::
flann
::
IndexParams
>
indexParams
=
cv
::
makePtr
<
cv
::
flann
::
LshIndexParams
>
(
6
,
12
,
1
);
// instantiate LSH index parameters
cv
::
Ptr
<
cv
::
flann
::
SearchParams
>
searchParams
=
cv
::
makePtr
<
cv
::
flann
::
SearchParams
>
(
50
);
// instantiate flann search parameters
return
cv
::
makePtr
<
cv
::
FlannBasedMatcher
>
(
indexParams
,
searchParams
);
}
else
{
return
cv
::
DescriptorMatcher
::
create
(
"BruteForce-Hamming"
);
}
}
else
{
if
(
useFLANN
)
{
return
cv
::
DescriptorMatcher
::
create
(
"FlannBased"
);
}
else
{
return
cv
::
DescriptorMatcher
::
create
(
"BruteForce"
);
}
}
}
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/Utils.h
View file @
9b71f5fd
...
...
@@ -10,6 +10,7 @@
#include <iostream>
#include <opencv2/features2d.hpp>
#include "PnPProblem.h"
// Draw a text with the question point
...
...
@@ -66,4 +67,8 @@ std::string FloatToString ( float Number );
// Converts a given integer to a string
std
::
string
IntToString
(
int
Number
);
void
createFeatures
(
const
std
::
string
&
featureName
,
int
numKeypoints
,
cv
::
Ptr
<
cv
::
Feature2D
>
&
detector
,
cv
::
Ptr
<
cv
::
Feature2D
>
&
descriptor
);
cv
::
Ptr
<
cv
::
DescriptorMatcher
>
createMatcher
(
const
std
::
string
&
featureName
,
bool
useFLANN
);
#endif
/* UTILS_H_ */
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/main_detection.cpp
View file @
9b71f5fd
// C++
#include <iostream>
#include <time.h>
// OpenCV
#include <opencv2/core.hpp>
#include <opencv2/core/util
ity
.hpp>
#include <opencv2/core/util
s/filesystem
.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
...
...
@@ -21,59 +20,18 @@
using
namespace
cv
;
using
namespace
std
;
string
tutorial_path
=
"../../samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/"
;
// path to tutorial
string
video_read_path
=
tutorial_path
+
"Data/box.mp4"
;
// recorded video
string
yml_read_path
=
tutorial_path
+
"Data/cookies_ORB.yml"
;
// 3dpts + descriptors
string
ply_read_path
=
tutorial_path
+
"Data/box.ply"
;
// mesh
// Intrinsic camera parameters: UVC WEBCAM
double
f
=
55
;
// focal length in mm
double
sx
=
22.3
,
sy
=
14.9
;
// sensor size
double
width
=
640
,
height
=
480
;
// image size
double
params_WEBCAM
[]
=
{
width
*
f
/
sx
,
// fx
height
*
f
/
sy
,
// fy
width
/
2
,
// cx
height
/
2
};
// cy
// Some basic colors
Scalar
red
(
0
,
0
,
255
);
Scalar
green
(
0
,
255
,
0
);
Scalar
blue
(
255
,
0
,
0
);
Scalar
yellow
(
0
,
255
,
255
);
// Robust Matcher parameters
int
numKeyPoints
=
2000
;
// number of detected keypoints
float
ratioTest
=
0.70
f
;
// ratio test
bool
fast_match
=
true
;
// fastRobustMatch() or robustMatch()
// RANSAC parameters
int
iterationsCount
=
500
;
// number of Ransac iterations.
float
reprojectionError
=
2.0
;
// maximum allowed distance to consider it an inlier.
double
confidence
=
0.95
;
// ransac successful confidence.
// Kalman Filter parameters
int
minInliersKalman
=
30
;
// Kalman threshold updating
// PnP parameters
int
pnpMethod
=
SOLVEPNP_ITERATIVE
;
/** Functions headers **/
void
help
();
void
initKalmanFilter
(
KalmanFilter
&
KF
,
int
nStates
,
int
nMeasurements
,
int
nInputs
,
double
dt
);
void
predictKalmanFilter
(
KalmanFilter
&
KF
,
Mat
&
translation_predicted
,
Mat
&
rotation_predicted
);
void
updateKalmanFilter
(
KalmanFilter
&
KF
,
Mat
&
measurements
,
Mat
&
translation_estimated
,
Mat
&
rotation_estimated
);
void
fillMeasurements
(
Mat
&
measurements
,
const
Mat
&
translation_measured
,
const
Mat
&
rotation_measured
);
/** Main program **/
int
main
(
int
argc
,
char
*
argv
[])
{
help
();
const
String
keys
=
...
...
@@ -84,14 +42,63 @@ int main(int argc, char *argv[])
"{keypoints k |2000 | number of keypoints to detect }"
"{ratio r |0.7 | threshold for ratio test }"
"{iterations it |500 | RANSAC maximum iterations count }"
"{error e |2.0 | RANSAC reprojection error
}"
"{confidence c |0.95 | RANSAC confidence
}"
"{error e |6.0 | RANSAC reprojection error
}"
"{confidence c |0.99 | RANSAC confidence
}"
"{inliers in |30 | minimum inliers for Kalman update }"
"{method pnp |0 | PnP method: (0) ITERATIVE - (1) EPNP - (2) P3P - (3) DLS
}"
"{method pnp |0 | PnP method: (0) ITERATIVE - (1) EPNP - (2) P3P - (3) DLS - (5) AP3P
}"
"{fast f |true | use of robust fast match }"
"{feature |ORB | feature name (ORB, KAZE, AKAZE, BRISK, SIFT, SURF, BINBOOST, VGG) }"
"{FLANN |false | use FLANN library for descriptors matching }"
"{save | | path to the directory where to save the image results }"
"{displayFiltered |false | display filtered pose (from Kalman filter) }"
;
CommandLineParser
parser
(
argc
,
argv
,
keys
);
string
video_read_path
=
samples
::
findFile
(
"samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/Data/box.mp4"
);
// recorded video
string
yml_read_path
=
samples
::
findFile
(
"samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/Data/cookies_ORB.yml"
);
// 3dpts + descriptors
string
ply_read_path
=
samples
::
findFile
(
"samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/Data/box.ply"
);
// mesh
// Intrinsic camera parameters: UVC WEBCAM
double
f
=
55
;
// focal length in mm
double
sx
=
22.3
,
sy
=
14.9
;
// sensor size
double
width
=
640
,
height
=
480
;
// image size
double
params_WEBCAM
[]
=
{
width
*
f
/
sx
,
// fx
height
*
f
/
sy
,
// fy
width
/
2
,
// cx
height
/
2
};
// cy
// Some basic colors
Scalar
red
(
0
,
0
,
255
);
Scalar
green
(
0
,
255
,
0
);
Scalar
blue
(
255
,
0
,
0
);
Scalar
yellow
(
0
,
255
,
255
);
// Robust Matcher parameters
int
numKeyPoints
=
2000
;
// number of detected keypoints
float
ratioTest
=
0.70
f
;
// ratio test
bool
fast_match
=
true
;
// fastRobustMatch() or robustMatch()
// RANSAC parameters
int
iterationsCount
=
500
;
// number of Ransac iterations.
float
reprojectionError
=
6.0
;
// maximum allowed distance to consider it an inlier.
double
confidence
=
0.99
;
// ransac successful confidence.
// Kalman Filter parameters
int
minInliersKalman
=
30
;
// Kalman threshold updating
// PnP parameters
int
pnpMethod
=
SOLVEPNP_ITERATIVE
;
string
featureName
=
"ORB"
;
bool
useFLANN
=
false
;
// Save results
string
saveDirectory
=
""
;
Mat
frameSave
;
int
frameCount
=
0
;
bool
displayFilteredPose
=
false
;
if
(
parser
.
has
(
"help"
))
{
parser
.
printMessage
();
...
...
@@ -102,16 +109,36 @@ int main(int argc, char *argv[])
video_read_path
=
parser
.
get
<
string
>
(
"video"
).
size
()
>
0
?
parser
.
get
<
string
>
(
"video"
)
:
video_read_path
;
yml_read_path
=
parser
.
get
<
string
>
(
"model"
).
size
()
>
0
?
parser
.
get
<
string
>
(
"model"
)
:
yml_read_path
;
ply_read_path
=
parser
.
get
<
string
>
(
"mesh"
).
size
()
>
0
?
parser
.
get
<
string
>
(
"mesh"
)
:
ply_read_path
;
numKeyPoints
=
!
parser
.
has
(
"keypoints"
)
?
parser
.
get
<
int
>
(
"keypoints"
)
:
numKeyPoints
;
ratioTest
=
!
parser
.
has
(
"ratio"
)
?
parser
.
get
<
float
>
(
"ratio"
)
:
ratioTest
;
fast_match
=
!
parser
.
has
(
"fast"
)
?
parser
.
get
<
bool
>
(
"fast"
)
:
fast_match
;
iterationsCount
=
!
parser
.
has
(
"iterations"
)
?
parser
.
get
<
int
>
(
"iterations"
)
:
iterationsCount
;
reprojectionError
=
!
parser
.
has
(
"error"
)
?
parser
.
get
<
float
>
(
"error"
)
:
reprojectionError
;
confidence
=
!
parser
.
has
(
"confidence"
)
?
parser
.
get
<
float
>
(
"confidence"
)
:
confidence
;
minInliersKalman
=
!
parser
.
has
(
"inliers"
)
?
parser
.
get
<
int
>
(
"inliers"
)
:
minInliersKalman
;
pnpMethod
=
!
parser
.
has
(
"method"
)
?
parser
.
get
<
int
>
(
"method"
)
:
pnpMethod
;
numKeyPoints
=
parser
.
has
(
"keypoints"
)
?
parser
.
get
<
int
>
(
"keypoints"
)
:
numKeyPoints
;
ratioTest
=
parser
.
has
(
"ratio"
)
?
parser
.
get
<
float
>
(
"ratio"
)
:
ratioTest
;
fast_match
=
parser
.
has
(
"fast"
)
?
parser
.
get
<
bool
>
(
"fast"
)
:
fast_match
;
iterationsCount
=
parser
.
has
(
"iterations"
)
?
parser
.
get
<
int
>
(
"iterations"
)
:
iterationsCount
;
reprojectionError
=
parser
.
has
(
"error"
)
?
parser
.
get
<
float
>
(
"error"
)
:
reprojectionError
;
confidence
=
parser
.
has
(
"confidence"
)
?
parser
.
get
<
float
>
(
"confidence"
)
:
confidence
;
minInliersKalman
=
parser
.
has
(
"inliers"
)
?
parser
.
get
<
int
>
(
"inliers"
)
:
minInliersKalman
;
pnpMethod
=
parser
.
has
(
"method"
)
?
parser
.
get
<
int
>
(
"method"
)
:
pnpMethod
;
featureName
=
parser
.
has
(
"feature"
)
?
parser
.
get
<
string
>
(
"feature"
)
:
featureName
;
useFLANN
=
parser
.
has
(
"FLANN"
)
?
parser
.
get
<
bool
>
(
"FLANN"
)
:
useFLANN
;
saveDirectory
=
parser
.
has
(
"save"
)
?
parser
.
get
<
string
>
(
"save"
)
:
saveDirectory
;
displayFilteredPose
=
parser
.
has
(
"displayFiltered"
)
?
parser
.
get
<
bool
>
(
"displayFiltered"
)
:
displayFilteredPose
;
}
std
::
cout
<<
"Video: "
<<
video_read_path
<<
std
::
endl
;
std
::
cout
<<
"Training data: "
<<
yml_read_path
<<
std
::
endl
;
std
::
cout
<<
"CAD model: "
<<
ply_read_path
<<
std
::
endl
;
std
::
cout
<<
"Ratio test threshold: "
<<
ratioTest
<<
std
::
endl
;
std
::
cout
<<
"Fast match(no symmetry test)?: "
<<
fast_match
<<
std
::
endl
;
std
::
cout
<<
"RANSAC number of iterations: "
<<
iterationsCount
<<
std
::
endl
;
std
::
cout
<<
"RANSAC reprojection error: "
<<
reprojectionError
<<
std
::
endl
;
std
::
cout
<<
"RANSAC confidence threshold: "
<<
confidence
<<
std
::
endl
;
std
::
cout
<<
"Kalman number of inliers: "
<<
minInliersKalman
<<
std
::
endl
;
std
::
cout
<<
"PnP method: "
<<
pnpMethod
<<
std
::
endl
;
std
::
cout
<<
"Feature: "
<<
featureName
<<
std
::
endl
;
std
::
cout
<<
"Number of keypoints for ORB: "
<<
numKeyPoints
<<
std
::
endl
;
std
::
cout
<<
"Use FLANN-based matching? "
<<
useFLANN
<<
std
::
endl
;
std
::
cout
<<
"Save directory: "
<<
saveDirectory
<<
std
::
endl
;
std
::
cout
<<
"Display filtered pose from Kalman filter? "
<<
displayFilteredPose
<<
std
::
endl
;
PnPProblem
pnp_detection
(
params_WEBCAM
);
PnPProblem
pnp_detection_est
(
params_WEBCAM
);
...
...
@@ -123,18 +150,17 @@ int main(int argc, char *argv[])
RobustMatcher
rmatcher
;
// instantiate RobustMatcher
Ptr
<
FeatureDetector
>
orb
=
ORB
::
create
();
rmatcher
.
setFeatureDetector
(
orb
);
// set feature detector
rmatcher
.
setDescriptorExtractor
(
orb
);
// set descriptor extractor
Ptr
<
flann
::
IndexParams
>
indexParams
=
makePtr
<
flann
::
LshIndexParams
>
(
6
,
12
,
1
);
// instantiate LSH index parameters
Ptr
<
flann
::
SearchParams
>
searchParams
=
makePtr
<
flann
::
SearchParams
>
(
50
);
// instantiate flann search parameters
// instantiate FlannBased matcher
Ptr
<
DescriptorMatcher
>
matcher
=
makePtr
<
FlannBasedMatcher
>
(
indexParams
,
searchParams
);
rmatcher
.
setDescriptorMatcher
(
matcher
);
// set matcher
Ptr
<
FeatureDetector
>
detector
,
descriptor
;
createFeatures
(
featureName
,
numKeyPoints
,
detector
,
descriptor
);
rmatcher
.
setFeatureDetector
(
detector
);
// set feature detector
rmatcher
.
setDescriptorExtractor
(
descriptor
);
// set descriptor extractor
rmatcher
.
setDescriptorMatcher
(
createMatcher
(
featureName
,
useFLANN
));
// set matcher
rmatcher
.
setRatio
(
ratioTest
);
// set ratio test parameter
if
(
!
model
.
get_trainingImagePath
().
empty
())
{
Mat
trainingImg
=
imread
(
model
.
get_trainingImagePath
());
rmatcher
.
setTrainingImage
(
trainingImg
);
}
KalmanFilter
KF
;
// instantiate Kalman Filter
int
nStates
=
18
;
// the number of states
...
...
@@ -143,19 +169,17 @@ int main(int argc, char *argv[])
double
dt
=
0.125
;
// time between measurements (1/FPS)
initKalmanFilter
(
KF
,
nStates
,
nMeasurements
,
nInputs
,
dt
);
// init function
Mat
measurements
(
nMeasurements
,
1
,
CV_64F
);
measurements
.
setTo
(
Scalar
(
0
));
Mat
measurements
(
nMeasurements
,
1
,
CV_64FC1
);
measurements
.
setTo
(
Scalar
(
0
));
bool
good_measurement
=
false
;
// Get the MODEL INFO
vector
<
Point3f
>
list_points3d_model
=
model
.
get_points3d
();
// list with model 3D coordinates
Mat
descriptors_model
=
model
.
get_descriptors
();
// list with descriptors of each 3D coordinate
vector
<
KeyPoint
>
keypoints_model
=
model
.
get_keypoints
();
// Create & Open Window
namedWindow
(
"REAL TIME DEMO"
,
WINDOW_KEEPRATIO
);
VideoCapture
cap
;
// instantiate VideoCapture
cap
.
open
(
video_read_path
);
// open a recorded video
...
...
@@ -165,45 +189,45 @@ int main(int argc, char *argv[])
return
-
1
;
}
// start and end times
time_t
start
,
end
;
// fps calculated using number of frames / seconds
// floating point seconds elapsed since start
double
fps
,
sec
;
// frame counter
int
counter
=
0
;
// start the clock
time
(
&
start
);
if
(
!
saveDirectory
.
empty
())
{
if
(
!
cv
::
utils
::
fs
::
exists
(
saveDirectory
))
{
std
::
cout
<<
"Create directory: "
<<
saveDirectory
<<
std
::
endl
;
cv
::
utils
::
fs
::
createDirectories
(
saveDirectory
);
}
}
Mat
frame
,
frame_vis
;
// Measure elapsed time
TickMeter
tm
;
Mat
frame
,
frame_vis
,
frame_matching
;
while
(
cap
.
read
(
frame
)
&&
(
char
)
waitKey
(
30
)
!=
27
)
// capture frame until ESC is pressed
{
tm
.
reset
();
tm
.
start
();
frame_vis
=
frame
.
clone
();
// refresh visualisation frame
// -- Step 1: Robust matching between model descriptors and scene descriptors
vector
<
DMatch
>
good_matches
;
// to obtain the 3D points of the model
vector
<
KeyPoint
>
keypoints_scene
;
// to obtain the 2D points of the scene
if
(
fast_match
)
{
rmatcher
.
fastRobustMatch
(
frame
,
good_matches
,
keypoints_scene
,
descriptor
s_model
);
rmatcher
.
fastRobustMatch
(
frame
,
good_matches
,
keypoints_scene
,
descriptors_model
,
keypoint
s_model
);
}
else
{
rmatcher
.
robustMatch
(
frame
,
good_matches
,
keypoints_scene
,
descriptor
s_model
);
rmatcher
.
robustMatch
(
frame
,
good_matches
,
keypoints_scene
,
descriptors_model
,
keypoint
s_model
);
}
frame_matching
=
rmatcher
.
getImageMatching
();
if
(
!
frame_matching
.
empty
())
{
imshow
(
"Keypoints matching"
,
frame_matching
);
}
// -- Step 2: Find out the 2D/3D correspondences
vector
<
Point3f
>
list_points3d_model_match
;
// container for the model 3D coordinates found in the scene
vector
<
Point2f
>
list_points2d_scene_match
;
// container for the model 2D coordinates found in the scene
...
...
@@ -218,13 +242,14 @@ int main(int argc, char *argv[])
// Draw outliers
draw2DPoints
(
frame_vis
,
list_points2d_scene_match
,
red
);
Mat
inliers_idx
;
vector
<
Point2f
>
list_points2d_inliers
;
// Instantiate estimated translation and rotation
good_measurement
=
false
;
if
(
good_matches
.
size
()
>=
4
)
// OpenCV requires solvePnPRANSAC to minimally have 4 set of points
{
// -- Step 3: Estimate the pose using RANSAC approach
pnp_detection
.
estimatePoseRANSAC
(
list_points3d_model_match
,
list_points2d_scene_match
,
pnpMethod
,
inliers_idx
,
...
...
@@ -241,81 +266,68 @@ int main(int argc, char *argv[])
// Draw inliers points 2D
draw2DPoints
(
frame_vis
,
list_points2d_inliers
,
blue
);
// -- Step 5: Kalman Filter
good_measurement
=
false
;
// GOOD MEASUREMENT
if
(
inliers_idx
.
rows
>=
minInliersKalman
)
{
// Get the measured translation
Mat
translation_measured
(
3
,
1
,
CV_64F
);
translation_measured
=
pnp_detection
.
get_t_matrix
();
Mat
translation_measured
=
pnp_detection
.
get_t_matrix
();
// Get the measured rotation
Mat
rotation_measured
(
3
,
3
,
CV_64F
);
rotation_measured
=
pnp_detection
.
get_R_matrix
();
Mat
rotation_measured
=
pnp_detection
.
get_R_matrix
();
// fill the measurements vector
fillMeasurements
(
measurements
,
translation_measured
,
rotation_measured
);
good_measurement
=
true
;
}
// Instantiate estimated translation and rotation
Mat
translation_estimated
(
3
,
1
,
CV_64F
);
Mat
rotation_estimated
(
3
,
3
,
CV_64F
);
// update the Kalman filter with good measurements
// update the Kalman filter with good measurements, otherwise with previous valid measurements
Mat
translation_estimated
(
3
,
1
,
CV_64FC1
);
Mat
rotation_estimated
(
3
,
3
,
CV_64FC1
);
updateKalmanFilter
(
KF
,
measurements
,
translation_estimated
,
rotation_estimated
);
// -- Step 6: Set estimated projection matrix
pnp_detection_est
.
set_P_matrix
(
rotation_estimated
,
translation_estimated
);
}
// -- Step X: Draw pose
if
(
good_measurement
)
{
drawObjectMesh
(
frame_vis
,
&
mesh
,
&
pnp_detection
,
green
);
// draw current pose
}
else
// -- Step X: Draw pose and coordinate frame
float
l
=
5
;
vector
<
Point2f
>
pose_points2d
;
if
(
!
good_measurement
||
displayFilteredPose
)
{
drawObjectMesh
(
frame_vis
,
&
mesh
,
&
pnp_detection_est
,
yellow
);
// draw estimated pose
}
float
l
=
5
;
vector
<
Point2f
>
pose_points2d
;
pose_points2d
.
push_back
(
pnp_detection_est
.
backproject3DPoint
(
Point3f
(
0
,
0
,
0
)));
// axis center
pose_points2d
.
push_back
(
pnp_detection_est
.
backproject3DPoint
(
Point3f
(
l
,
0
,
0
)));
// axis x
pose_points2d
.
push_back
(
pnp_detection_est
.
backproject3DPoint
(
Point3f
(
0
,
l
,
0
)));
// axis y
pose_points2d
.
push_back
(
pnp_detection_est
.
backproject3DPoint
(
Point3f
(
0
,
0
,
l
)));
// axis z
draw3DCoordinateAxes
(
frame_vis
,
pose_points2d
);
// draw axes
}
else
{
drawObjectMesh
(
frame_vis
,
&
mesh
,
&
pnp_detection
,
green
);
// draw current pose
pose_points2d
.
push_back
(
pnp_detection
.
backproject3DPoint
(
Point3f
(
0
,
0
,
0
)));
// axis center
pose_points2d
.
push_back
(
pnp_detection
.
backproject3DPoint
(
Point3f
(
l
,
0
,
0
)));
// axis x
pose_points2d
.
push_back
(
pnp_detection
.
backproject3DPoint
(
Point3f
(
0
,
l
,
0
)));
// axis y
pose_points2d
.
push_back
(
pnp_detection
.
backproject3DPoint
(
Point3f
(
0
,
0
,
l
)));
// axis z
draw3DCoordinateAxes
(
frame_vis
,
pose_points2d
);
// draw axes
}
// FRAME RATE
// see how much time has elapsed
time
(
&
end
);
tm
.
stop
(
);
// calculate current FPS
++
counter
;
sec
=
difftime
(
end
,
start
);
fps
=
counter
/
sec
;
double
fps
=
1.0
/
tm
.
getTimeSec
();
drawFPS
(
frame_vis
,
fps
,
yellow
);
// frame ratio
double
detection_ratio
=
((
double
)
inliers_idx
.
rows
/
(
double
)
good_matches
.
size
())
*
100
;
drawConfidence
(
frame_vis
,
detection_ratio
,
yellow
);
// -- Step X: Draw some debugging text
// Draw some debug text
int
inliers_int
=
inliers_idx
.
rows
;
int
outliers_int
=
(
int
)
good_matches
.
size
()
-
inliers_int
;
...
...
@@ -329,41 +341,62 @@ int main(int argc, char *argv[])
drawText2
(
frame_vis
,
text2
,
red
);
imshow
(
"REAL TIME DEMO"
,
frame_vis
);
if
(
!
saveDirectory
.
empty
())
{
const
int
widthSave
=
!
frame_matching
.
empty
()
?
frame_matching
.
cols
:
frame_vis
.
cols
;
const
int
heightSave
=
!
frame_matching
.
empty
()
?
frame_matching
.
rows
+
frame_vis
.
rows
:
frame_vis
.
rows
;
frameSave
=
Mat
::
zeros
(
heightSave
,
widthSave
,
CV_8UC3
);
if
(
!
frame_matching
.
empty
())
{
int
startX
=
(
int
)((
widthSave
-
frame_vis
.
cols
)
/
2.0
);
Mat
roi
=
frameSave
(
Rect
(
startX
,
0
,
frame_vis
.
cols
,
frame_vis
.
rows
));
frame_vis
.
copyTo
(
roi
);
roi
=
frameSave
(
Rect
(
0
,
frame_vis
.
rows
,
frame_matching
.
cols
,
frame_matching
.
rows
));
frame_matching
.
copyTo
(
roi
);
}
else
{
frame_vis
.
copyTo
(
frameSave
);
}
string
saveFilename
=
format
(
string
(
saveDirectory
+
"/image_%04d.png"
).
c_str
(),
frameCount
);
imwrite
(
saveFilename
,
frameSave
);
frameCount
++
;
}
}
// Close and Destroy Window
destroyWindow
(
"REAL TIME DEMO"
);
cout
<<
"GOODBYE ..."
<<
endl
;
}
/**********************************************************************************************************/
void
help
()
{
cout
<<
"--------------------------------------------------------------------------"
<<
endl
<<
"This program shows how to detect an object given its 3D textured model. You can choose to "
<<
"use a recorded video or the webcam."
<<
endl
<<
"Usage:"
<<
endl
<<
"./cpp-tutorial-pnp_detection -help"
<<
endl
<<
"Keys:"
<<
endl
<<
"'esc' - to quit."
<<
endl
<<
"--------------------------------------------------------------------------"
<<
endl
<<
endl
;
cout
<<
"--------------------------------------------------------------------------"
<<
endl
<<
"This program shows how to detect an object given its 3D textured model. You can choose to "
<<
"use a recorded video or the webcam."
<<
endl
<<
"Usage:"
<<
endl
<<
"./cpp-tutorial-pnp_detection -help"
<<
endl
<<
"Keys:"
<<
endl
<<
"'esc' - to quit."
<<
endl
<<
"--------------------------------------------------------------------------"
<<
endl
<<
endl
;
}
/**********************************************************************************************************/
void
initKalmanFilter
(
KalmanFilter
&
KF
,
int
nStates
,
int
nMeasurements
,
int
nInputs
,
double
dt
)
{
KF
.
init
(
nStates
,
nMeasurements
,
nInputs
,
CV_64F
);
// init Kalman Filter
setIdentity
(
KF
.
processNoiseCov
,
Scalar
::
all
(
1e-5
));
// set process noise
setIdentity
(
KF
.
measurementNoiseCov
,
Scalar
::
all
(
1e-2
));
// set measurement noise
setIdentity
(
KF
.
errorCovPost
,
Scalar
::
all
(
1
));
// error covariance
/** DYNAMIC MODEL **/
// [1 0 0 dt 0 0 dt2 0 0 0 0 0 0 0 0 0 0 0]
...
...
@@ -423,14 +456,12 @@ void initKalmanFilter(KalmanFilter &KF, int nStates, int nMeasurements, int nInp
KF
.
measurementMatrix
.
at
<
double
>
(
3
,
9
)
=
1
;
// roll
KF
.
measurementMatrix
.
at
<
double
>
(
4
,
10
)
=
1
;
// pitch
KF
.
measurementMatrix
.
at
<
double
>
(
5
,
11
)
=
1
;
// yaw
}
/**********************************************************************************************************/
void
updateKalmanFilter
(
KalmanFilter
&
KF
,
Mat
&
measurement
,
Mat
&
translation_estimated
,
Mat
&
rotation_estimated
)
{
// First predict, to update the internal statePre variable
Mat
prediction
=
KF
.
predict
();
...
...
@@ -450,7 +481,6 @@ void updateKalmanFilter( KalmanFilter &KF, Mat &measurement,
// Convert estimated quaternion to rotation matrix
rotation_estimated
=
euler2rot
(
eulers_estimated
);
}
/**********************************************************************************************************/
...
...
samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/main_registration.cpp
View file @
9b71f5fd
...
...
@@ -18,34 +18,22 @@ using namespace std;
/** GLOBAL VARIABLES **/
string
tutorial_path
=
"../../samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/"
;
// path to tutorial
string
img_path
=
tutorial_path
+
"Data/resized_IMG_3875.JPG"
;
// image to register
string
ply_read_path
=
tutorial_path
+
"Data/box.ply"
;
// object mesh
string
write_path
=
tutorial_path
+
"Data/cookies_ORB.yml"
;
// output file
// Boolean the know if the registration it's done
bool
end_registration
=
false
;
// Intrinsic camera parameters: UVC WEBCAM
double
f
=
45
;
// focal length in mm
double
sx
=
22.3
,
sy
=
14.9
;
double
width
=
2592
,
height
=
1944
;
double
params_CANON
[]
=
{
width
*
f
/
sx
,
// fx
const
double
f
=
45
;
// focal length in mm
const
double
sx
=
22.3
,
sy
=
14.9
;
const
double
width
=
2592
,
height
=
1944
;
const
double
params_CANON
[]
=
{
width
*
f
/
sx
,
// fx
height
*
f
/
sy
,
// fy
width
/
2
,
// cx
height
/
2
};
// cy
// Setup the points to register in the image
// In the order of the *.ply file and starting at 1
int
n
=
8
;
int
pts
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
// 3 -> 4
// Some basic colors
Scalar
red
(
0
,
0
,
255
);
Scalar
green
(
0
,
255
,
0
);
Scalar
blue
(
255
,
0
,
0
);
Scalar
yellow
(
0
,
255
,
255
);
const
int
n
=
8
;
const
int
pts
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
// 3 -> 4
/*
* CREATE MODEL REGISTRATION OBJECT
...
...
@@ -58,13 +46,25 @@ Model model;
Mesh
mesh
;
PnPProblem
pnp_registration
(
params_CANON
);
/** Functions headers **/
void
help
();
/**********************************************************************************************************/
static
void
help
()
{
cout
<<
"--------------------------------------------------------------------------"
<<
endl
<<
"This program shows how to create your 3D textured model. "
<<
endl
<<
"Usage:"
<<
endl
<<
"./cpp-tutorial-pnp_registration"
<<
endl
<<
"--------------------------------------------------------------------------"
<<
endl
<<
endl
;
}
// Mouse events for model registration
static
void
onMouseModelRegistration
(
int
event
,
int
x
,
int
y
,
int
,
void
*
)
{
if
(
event
==
EVENT_LBUTTONUP
)
{
bool
is_registrable
=
registration
.
is_registrable
();
if
(
is_registrable
)
{
int
n_regist
=
registration
.
getNumRegist
();
int
n_vertex
=
pts
[
n_regist
];
...
...
@@ -72,9 +72,6 @@ static void onMouseModelRegistration( int event, int x, int y, int, void* )
Point2f
point_2d
=
Point2f
((
float
)
x
,(
float
)
y
);
Point3f
point_3d
=
mesh
.
getVertex
(
n_vertex
-
1
);
bool
is_registrable
=
registration
.
is_registrable
();
if
(
is_registrable
)
{
registration
.
registerPoint
(
point_2d
,
point_3d
);
if
(
registration
.
getNumRegist
()
==
registration
.
getNumMax
()
)
end_registration
=
true
;
}
...
...
@@ -82,21 +79,56 @@ static void onMouseModelRegistration( int event, int x, int y, int, void* )
}
/** Main program **/
int
main
()
int
main
(
int
argc
,
char
*
argv
[]
)
{
help
();
const
String
keys
=
"{help h | | print this message }"
"{image i | | path to input image }"
"{model | | path to output yml model }"
"{mesh | | path to ply mesh }"
"{keypoints k |2000 | number of keypoints to detect (only for ORB) }"
"{feature |ORB | feature name (ORB, KAZE, AKAZE, BRISK, SIFT, SURF, BINBOOST, VGG) }"
;
CommandLineParser
parser
(
argc
,
argv
,
keys
);
string
img_path
=
samples
::
findFile
(
"samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/Data/resized_IMG_3875.JPG"
);
// image to register
string
ply_read_path
=
samples
::
findFile
(
"samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/Data/box.ply"
);
// object mesh
string
write_path
=
samples
::
findFile
(
"samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/Data/cookies_ORB.yml"
);
// output file
int
numKeyPoints
=
2000
;
string
featureName
=
"ORB"
;
if
(
parser
.
has
(
"help"
))
{
parser
.
printMessage
();
return
0
;
}
else
{
img_path
=
parser
.
get
<
string
>
(
"image"
).
size
()
>
0
?
parser
.
get
<
string
>
(
"image"
)
:
img_path
;
ply_read_path
=
parser
.
get
<
string
>
(
"mesh"
).
size
()
>
0
?
parser
.
get
<
string
>
(
"mesh"
)
:
ply_read_path
;
write_path
=
parser
.
get
<
string
>
(
"model"
).
size
()
>
0
?
parser
.
get
<
string
>
(
"model"
)
:
write_path
;
numKeyPoints
=
parser
.
has
(
"keypoints"
)
?
parser
.
get
<
int
>
(
"keypoints"
)
:
numKeyPoints
;
featureName
=
parser
.
has
(
"feature"
)
?
parser
.
get
<
string
>
(
"feature"
)
:
featureName
;
}
std
::
cout
<<
"Input image: "
<<
img_path
<<
std
::
endl
;
std
::
cout
<<
"CAD model: "
<<
ply_read_path
<<
std
::
endl
;
std
::
cout
<<
"Output training file: "
<<
write_path
<<
std
::
endl
;
std
::
cout
<<
"Feature: "
<<
featureName
<<
std
::
endl
;
std
::
cout
<<
"Number of keypoints for ORB: "
<<
numKeyPoints
<<
std
::
endl
;
// load a mesh given the *.ply file path
mesh
.
load
(
ply_read_path
);
// set parameters
int
numKeyPoints
=
10000
;
//Instantiate robust matcher: detector, extractor, matcher
RobustMatcher
rmatcher
;
Ptr
<
FeatureDetector
>
detector
=
ORB
::
create
(
numKeyPoints
);
Ptr
<
Feature2D
>
detector
,
descriptor
;
createFeatures
(
featureName
,
numKeyPoints
,
detector
,
descriptor
);
rmatcher
.
setFeatureDetector
(
detector
);
rmatcher
.
setDescriptorExtractor
(
descriptor
);
/** GROUND TRUTH OF THE FIRST IMAGE **/
...
...
@@ -104,13 +136,13 @@ int main()
namedWindow
(
"MODEL REGISTRATION"
,
WINDOW_KEEPRATIO
);
// Set up the mouse events
setMouseCallback
(
"MODEL REGISTRATION"
,
onMouseModelRegistration
,
0
);
setMouseCallback
(
"MODEL REGISTRATION"
,
onMouseModelRegistration
,
0
);
// Open the image to register
Mat
img_in
=
imread
(
img_path
,
IMREAD_COLOR
);
Mat
img_vis
=
img_in
.
clone
()
;
Mat
img_vis
;
if
(
!
img_in
.
data
)
{
if
(
img_in
.
empty
()
)
{
cout
<<
"Could not open or find the image"
<<
endl
;
return
-
1
;
}
...
...
@@ -122,6 +154,12 @@ int main()
cout
<<
"Click the box corners ..."
<<
endl
;
cout
<<
"Waiting ..."
<<
endl
;
// Some basic colors
const
Scalar
red
(
0
,
0
,
255
);
const
Scalar
green
(
0
,
255
,
0
);
const
Scalar
blue
(
255
,
0
,
0
);
const
Scalar
yellow
(
0
,
255
,
255
);
// Loop until all the points are registered
while
(
waitKey
(
30
)
<
0
)
{
...
...
@@ -176,7 +214,6 @@ int main()
// Compute all the 2D points of the mesh to verify the algorithm and draw it
vector
<
Point2f
>
list_points2d_mesh
=
pnp_registration
.
verify_points
(
&
mesh
);
draw2DPoints
(
img_vis
,
list_points2d_mesh
,
green
);
}
else
{
cout
<<
"Correspondence not found"
<<
endl
<<
endl
;
}
...
...
@@ -215,6 +252,7 @@ int main()
}
}
model
.
set_trainingImagePath
(
img_path
);
// save the model into a *.yaml file
model
.
save
(
write_path
);
...
...
@@ -252,17 +290,4 @@ int main()
destroyWindow
(
"MODEL REGISTRATION"
);
cout
<<
"GOODBYE"
<<
endl
;
}
/**********************************************************************************************************/
void
help
()
{
cout
<<
"--------------------------------------------------------------------------"
<<
endl
<<
"This program shows how to create your 3D textured model. "
<<
endl
<<
"Usage:"
<<
endl
<<
"./cpp-tutorial-pnp_registration"
<<
endl
<<
"--------------------------------------------------------------------------"
<<
endl
<<
endl
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment