Commit 98c92f19 authored by Vladislav Vinogradov's avatar Vladislav Vinogradov

added Generalized Hough implementation

parent 86c7e183
......@@ -770,11 +770,11 @@ CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat
GpuMat& result, Stream& stream = Stream::Null());
//! Performa bilateral filtering of passsed image
CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial,
CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial,
int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
//! Brute force non-local means algorith (slow but universal)
CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h,
CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h,
int search_widow_size = 11, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null());
......@@ -854,6 +854,38 @@ CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, flo
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
class CV_EXPORTS GeneralizedHough_GPU : public Algorithm
{
public:
static Ptr<GeneralizedHough_GPU> create(int method);
virtual ~GeneralizedHough_GPU();
//! set template to search
void setTemplate(const GpuMat& templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
void setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter = Point(-1, -1));
//! find template on image
void detect(const GpuMat& image, GpuMat& positions, int cannyThreshold = 100);
void detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions);
void download(const GpuMat& d_positions, OutputArray h_positions, OutputArray h_votes = noArray());
void release();
protected:
virtual void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) = 0;
virtual void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) = 0;
virtual void releaseImpl() = 0;
private:
GpuMat edges_;
CannyBuf cannyBuf_;
};
////////////////////////////// Matrix reductions //////////////////////////////
//! computes mean value and standard deviation of all or selected array elements
......
......@@ -1713,4 +1713,98 @@ PERF_TEST_P(Sz_Dp_MinDist, ImgProc_HoughCircles, Combine(GPU_TYPICAL_MAT_SIZES,
}
}
//////////////////////////////////////////////////////////////////////
// GeneralizedHough
CV_FLAGS(GHMethod, cv::GHT_POSITION, cv::GHT_SCALE, cv::GHT_ROTATION);
DEF_PARAM_TEST(Method_Sz, GHMethod, cv::Size);
PERF_TEST_P(Method_Sz, GeneralizedHough, Combine(
Values(GHMethod(cv::GHT_POSITION), GHMethod(cv::GHT_POSITION | cv::GHT_SCALE), GHMethod(cv::GHT_POSITION | cv::GHT_ROTATION), GHMethod(cv::GHT_POSITION | cv::GHT_SCALE | cv::GHT_ROTATION)),
GPU_TYPICAL_MAT_SIZES))
{
declare.time(10);
const int method = GET_PARAM(0);
const cv::Size imageSize = GET_PARAM(1);
const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(templ.empty());
cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0));
cv::RNG rng(123456789);
const int objCount = rng.uniform(5, 15);
for (int i = 0; i < objCount; ++i)
{
double scale = rng.uniform(0.7, 1.3);
bool rotate = rng.uniform(0, 2);
cv::Mat obj;
cv::resize(templ, obj, cv::Size(), scale, scale);
if (rotate)
obj = obj.t();
cv::Point pos;
pos.x = rng.uniform(0, image.cols - obj.cols);
pos.y = rng.uniform(0, image.rows - obj.rows);
cv::Mat roi = image(cv::Rect(pos, obj.size()));
cv::add(roi, obj, roi);
}
cv::Mat edges;
cv::Canny(image, edges, 50, 100);
cv::Mat dx, dy;
cv::Sobel(image, dx, CV_32F, 1, 0);
cv::Sobel(image, dy, CV_32F, 0, 1);
if (runOnGpu)
{
cv::gpu::GpuMat d_edges(edges);
cv::gpu::GpuMat d_dx(dx);
cv::gpu::GpuMat d_dy(dy);
cv::gpu::GpuMat d_position;
cv::Ptr<cv::gpu::GeneralizedHough_GPU> d_hough = cv::gpu::GeneralizedHough_GPU::create(method);
if (method & cv::GHT_ROTATION)
{
d_hough->set("maxAngle", 90.0);
d_hough->set("angleStep", 2.0);
}
d_hough->setTemplate(cv::gpu::GpuMat(templ));
d_hough->detect(d_edges, d_dx, d_dy, d_position);
TEST_CYCLE()
{
d_hough->detect(d_edges, d_dx, d_dy, d_position);
}
}
else
{
cv::Mat positions;
cv::Ptr<cv::GeneralizedHough> hough = cv::GeneralizedHough::create(method);
if (method & cv::GHT_ROTATION)
{
hough->set("maxAngle", 90.0);
hough->set("angleStep", 2.0);
}
hough->setTemplate(templ);
hough->detect(edges, dx, dy, positions);
TEST_CYCLE()
{
hough->detect(edges, dx, dy, positions);
}
}
}
} // namespace
......@@ -43,6 +43,9 @@
#include <thrust/sort.h>
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/emulation.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/dynamic_smem.hpp"
namespace cv { namespace gpu { namespace device
{
......@@ -53,8 +56,7 @@ namespace cv { namespace gpu { namespace device
////////////////////////////////////////////////////////////////////////
// buildPointList
const int PIXELS_PER_THREAD = 16;
template <int PIXELS_PER_THREAD>
__global__ void buildPointList(const PtrStepSzb src, unsigned int* list)
{
__shared__ unsigned int s_queues[4][32 * PIXELS_PER_THREAD];
......@@ -113,6 +115,8 @@ namespace cv { namespace gpu { namespace device
int buildPointList_gpu(PtrStepSzb src, unsigned int* list)
{
const int PIXELS_PER_THREAD = 16;
void* counterPtr;
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
......@@ -121,9 +125,9 @@ namespace cv { namespace gpu { namespace device
const dim3 block(32, 4);
const dim3 grid(divUp(src.cols, block.x * PIXELS_PER_THREAD), divUp(src.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(buildPointList, cudaFuncCachePreferShared) );
cudaSafeCall( cudaFuncSetCacheConfig(buildPointList<PIXELS_PER_THREAD>, cudaFuncCachePreferShared) );
buildPointList<<<grid, block>>>(src, list);
buildPointList<PIXELS_PER_THREAD><<<grid, block>>>(src, list);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
......@@ -167,7 +171,7 @@ namespace cv { namespace gpu { namespace device
__global__ void linesAccumShared(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho)
{
extern __shared__ int smem[];
int* smem = DynamicSharedMem<int>();
for (int i = threadIdx.x; i < numrho + 1; i += blockDim.x)
smem[i] = 0;
......@@ -410,7 +414,7 @@ namespace cv { namespace gpu { namespace device
float3* circles, const int maxCircles, const float dp,
const int minRadius, const int maxRadius, const int histSize, const int threshold)
{
extern __shared__ int smem[];
int* smem = DynamicSharedMem<int>();
for (int i = threadIdx.x; i < histSize + 2; i += blockDim.x)
smem[i] = 0;
......@@ -481,5 +485,1023 @@ namespace cv { namespace gpu { namespace device
return totalCount;
}
////////////////////////////////////////////////////////////////////////
// Generalized Hough
template <typename T, int PIXELS_PER_THREAD>
__global__ void buildEdgePointList(const PtrStepSzb edges, const PtrStep<T> dx, const PtrStep<T> dy, unsigned int* coordList, float* thetaList)
{
__shared__ unsigned int s_coordLists[4][32 * PIXELS_PER_THREAD];
__shared__ float s_thetaLists[4][32 * PIXELS_PER_THREAD];
__shared__ int s_sizes[4];
__shared__ int s_globStart[4];
const int x = blockIdx.x * blockDim.x * PIXELS_PER_THREAD + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (threadIdx.x == 0)
s_sizes[threadIdx.y] = 0;
__syncthreads();
if (y < edges.rows)
{
// fill the queue
const uchar* edgesRow = edges.ptr(y);
const T* dxRow = dx.ptr(y);
const T* dyRow = dy.ptr(y);
for (int i = 0, xx = x; i < PIXELS_PER_THREAD && xx < edges.cols; ++i, xx += blockDim.x)
{
const T dxVal = dxRow[xx];
const T dyVal = dyRow[xx];
if (edgesRow[xx] && (dxVal != 0 || dyVal != 0))
{
const unsigned int coord = (y << 16) | xx;
float theta = ::atan2f(dyVal, dxVal);
if (theta < 0)
theta += 2.0f * CV_PI_F;
const int qidx = Emulation::smem::atomicAdd(&s_sizes[threadIdx.y], 1);
s_coordLists[threadIdx.y][qidx] = coord;
s_thetaLists[threadIdx.y][qidx] = theta;
}
}
}
__syncthreads();
// let one thread reserve the space required in the global list
if (threadIdx.x == 0 && threadIdx.y == 0)
{
// find how many items are stored in each list
int totalSize = 0;
for (int i = 0; i < blockDim.y; ++i)
{
s_globStart[i] = totalSize;
totalSize += s_sizes[i];
}
// calculate the offset in the global list
const int globalOffset = atomicAdd(&g_counter, totalSize);
for (int i = 0; i < blockDim.y; ++i)
s_globStart[i] += globalOffset;
}
__syncthreads();
// copy local queues to global queue
const int qsize = s_sizes[threadIdx.y];
int gidx = s_globStart[threadIdx.y] + threadIdx.x;
for(int i = threadIdx.x; i < qsize; i += blockDim.x, gidx += blockDim.x)
{
coordList[gidx] = s_coordLists[threadIdx.y][i];
thetaList[gidx] = s_thetaLists[threadIdx.y][i];
}
}
template <typename T>
int buildEdgePointList_gpu(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList)
{
const int PIXELS_PER_THREAD = 8;
void* counterPtr;
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
const dim3 block(32, 4);
const dim3 grid(divUp(edges.cols, block.x * PIXELS_PER_THREAD), divUp(edges.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(buildEdgePointList<T, PIXELS_PER_THREAD>, cudaFuncCachePreferShared) );
buildEdgePointList<T, PIXELS_PER_THREAD><<<grid, block>>>(edges, (PtrStepSz<T>) dx, (PtrStepSz<T>) dy, coordList, thetaList);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
int totalCount;
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
return totalCount;
}
template int buildEdgePointList_gpu<short>(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
template int buildEdgePointList_gpu<int>(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
template int buildEdgePointList_gpu<float>(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
__global__ void buildRTable(const unsigned int* coordList, const float* thetaList, const int pointsCount,
PtrStep<short2> r_table, int* r_sizes, int maxSize,
const short2 templCenter, const float thetaScale)
{
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= pointsCount)
return;
const unsigned int coord = coordList[tid];
short2 p;
p.x = (coord & 0xFFFF);
p.y = (coord >> 16) & 0xFFFF;
const float theta = thetaList[tid];
const int n = __float2int_rn(theta * thetaScale);
const int ind = ::atomicAdd(r_sizes + n, 1);
if (ind < maxSize)
r_table(n, ind) = p - templCenter;
}
void buildRTable_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
PtrStepSz<short2> r_table, int* r_sizes,
short2 templCenter, int levels)
{
const dim3 block(256);
const dim3 grid(divUp(pointsCount, block.x));
const float thetaScale = levels / (2.0f * CV_PI_F);
buildRTable<<<grid, block>>>(coordList, thetaList, pointsCount, r_table, r_sizes, r_table.cols, templCenter, thetaScale);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// GHT_Ballard_Pos
__global__ void GHT_Ballard_Pos_calcHist(const unsigned int* coordList, const float* thetaList, const int pointsCount,
const PtrStep<short2> r_table, const int* r_sizes,
PtrStepSzi hist,
const float idp, const float thetaScale)
{
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= pointsCount)
return;
const unsigned int coord = coordList[tid];
short2 p;
p.x = (coord & 0xFFFF);
p.y = (coord >> 16) & 0xFFFF;
const float theta = thetaList[tid];
const int n = __float2int_rn(theta * thetaScale);
const short2* r_row = r_table.ptr(n);
const int r_row_size = r_sizes[n];
for (int j = 0; j < r_row_size; ++j)
{
short2 c = p - r_row[j];
c.x = __float2int_rn(c.x * idp);
c.y = __float2int_rn(c.y * idp);
if (c.x >= 0 && c.x < hist.cols - 2 && c.y >= 0 && c.y < hist.rows - 2)
::atomicAdd(hist.ptr(c.y + 1) + c.x + 1, 1);
}
}
void GHT_Ballard_Pos_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
PtrStepSz<short2> r_table, const int* r_sizes,
PtrStepSzi hist,
float dp, int levels)
{
const dim3 block(256);
const dim3 grid(divUp(pointsCount, block.x));
const float idp = 1.0f / dp;
const float thetaScale = levels / (2.0f * CV_PI_F);
GHT_Ballard_Pos_calcHist<<<grid, block>>>(coordList, thetaList, pointsCount, r_table, r_sizes, hist, idp, thetaScale);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void GHT_Ballard_Pos_findPosInHist(const PtrStepSzi hist, float4* out, int3* votes, const int maxSize, const float dp, const int threshold)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= hist.cols - 2 || y >= hist.rows - 2)
return;
const int curVotes = hist(y + 1, x + 1);
if (curVotes > threshold &&
curVotes > hist(y + 1, x) &&
curVotes >= hist(y + 1, x + 2) &&
curVotes > hist(y, x + 1) &&
curVotes >= hist(y + 2, x + 1))
{
const int ind = ::atomicAdd(&g_counter, 1);
if (ind < maxSize)
{
out[ind] = make_float4(x * dp, y * dp, 1.0f, 0.0f);
votes[ind] = make_int3(curVotes, 0, 0);
}
}
}
int GHT_Ballard_Pos_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int maxSize, float dp, int threshold)
{
void* counterPtr;
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
const dim3 block(32, 8);
const dim3 grid(divUp(hist.cols - 2, block.x), divUp(hist.rows - 2, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(GHT_Ballard_Pos_findPosInHist, cudaFuncCachePreferL1) );
GHT_Ballard_Pos_findPosInHist<<<grid, block>>>(hist, out, votes, maxSize, dp, threshold);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
int totalCount;
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
totalCount = ::min(totalCount, maxSize);
return totalCount;
}
////////////////////////////////////////////////////////////////////////
// GHT_Ballard_PosScale
__global__ void GHT_Ballard_PosScale_calcHist(const unsigned int* coordList, const float* thetaList,
PtrStep<short2> r_table, const int* r_sizes,
PtrStepi hist, const int rows, const int cols,
const float minScale, const float scaleStep, const int scaleRange,
const float idp, const float thetaScale)
{
const unsigned int coord = coordList[blockIdx.x];
float2 p;
p.x = (coord & 0xFFFF);
p.y = (coord >> 16) & 0xFFFF;
const float theta = thetaList[blockIdx.x];
const int n = __float2int_rn(theta * thetaScale);
const short2* r_row = r_table.ptr(n);
const int r_row_size = r_sizes[n];
for (int j = 0; j < r_row_size; ++j)
{
const float2 d = saturate_cast<float2>(r_row[j]);
for (int s = threadIdx.x; s < scaleRange; s += blockDim.x)
{
const float scale = minScale + s * scaleStep;
float2 c = p - scale * d;
c.x *= idp;
c.y *= idp;
if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows)
::atomicAdd(hist.ptr((s + 1) * (rows + 2) + __float2int_rn(c.y + 1)) + __float2int_rn(c.x + 1), 1);
}
}
}
void GHT_Ballard_PosScale_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
PtrStepSz<short2> r_table, const int* r_sizes,
PtrStepi hist, int rows, int cols,
float minScale, float scaleStep, int scaleRange,
float dp, int levels)
{
const dim3 block(256);
const dim3 grid(pointsCount);
const float idp = 1.0f / dp;
const float thetaScale = levels / (2.0f * CV_PI_F);
GHT_Ballard_PosScale_calcHist<<<grid, block>>>(coordList, thetaList,
r_table, r_sizes,
hist, rows, cols,
minScale, scaleStep, scaleRange,
idp, thetaScale);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void GHT_Ballard_PosScale_findPosInHist(const PtrStepi hist, const int rows, const int cols, const int scaleRange,
float4* out, int3* votes, const int maxSize,
const float minScale, const float scaleStep, const float dp, const int threshold)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= cols || y >= rows)
return;
for (int s = 0; s < scaleRange; ++s)
{
const float scale = minScale + s * scaleStep;
const int prevScaleIdx = (s) * (rows + 2);
const int curScaleIdx = (s + 1) * (rows + 2);
const int nextScaleIdx = (s + 2) * (rows + 2);
const int curVotes = hist(curScaleIdx + y + 1, x + 1);
if (curVotes > threshold &&
curVotes > hist(curScaleIdx + y + 1, x) &&
curVotes >= hist(curScaleIdx + y + 1, x + 2) &&
curVotes > hist(curScaleIdx + y, x + 1) &&
curVotes >= hist(curScaleIdx + y + 2, x + 1) &&
curVotes > hist(prevScaleIdx + y + 1, x + 1) &&
curVotes >= hist(nextScaleIdx + y + 1, x + 1))
{
const int ind = ::atomicAdd(&g_counter, 1);
if (ind < maxSize)
{
out[ind] = make_float4(x * dp, y * dp, scale, 0.0f);
votes[ind] = make_int3(curVotes, curVotes, 0);
}
}
}
}
int GHT_Ballard_PosScale_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int scaleRange, float4* out, int3* votes, int maxSize,
float minScale, float scaleStep, float dp, int threshold)
{
void* counterPtr;
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
const dim3 block(32, 8);
const dim3 grid(divUp(cols, block.x), divUp(rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(GHT_Ballard_PosScale_findPosInHist, cudaFuncCachePreferL1) );
GHT_Ballard_PosScale_findPosInHist<<<grid, block>>>(hist, rows, cols, scaleRange, out, votes, maxSize, minScale, scaleStep, dp, threshold);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
int totalCount;
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
totalCount = ::min(totalCount, maxSize);
return totalCount;
}
////////////////////////////////////////////////////////////////////////
// GHT_Ballard_PosRotation
__global__ void GHT_Ballard_PosRotation_calcHist(const unsigned int* coordList, const float* thetaList,
PtrStep<short2> r_table, const int* r_sizes,
PtrStepi hist, const int rows, const int cols,
const float minAngle, const float angleStep, const int angleRange,
const float idp, const float thetaScale)
{
const unsigned int coord = coordList[blockIdx.x];
float2 p;
p.x = (coord & 0xFFFF);
p.y = (coord >> 16) & 0xFFFF;
const float thetaVal = thetaList[blockIdx.x];
for (int a = threadIdx.x; a < angleRange; a += blockDim.x)
{
const float angle = (minAngle + a * angleStep) * (CV_PI_F / 180.0f);
float sinA, cosA;
sincosf(angle, &sinA, &cosA);
float theta = thetaVal - angle;
if (theta < 0)
theta += 2.0f * CV_PI_F;
const int n = __float2int_rn(theta * thetaScale);
const short2* r_row = r_table.ptr(n);
const int r_row_size = r_sizes[n];
for (int j = 0; j < r_row_size; ++j)
{
const float2 d = saturate_cast<float2>(r_row[j]);
const float2 dr = make_float2(d.x * cosA - d.y * sinA, d.x * sinA + d.y * cosA);
float2 c = make_float2(p.x - dr.x, p.y - dr.y);
c.x *= idp;
c.y *= idp;
if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows)
::atomicAdd(hist.ptr((a + 1) * (rows + 2) + __float2int_rn(c.y + 1)) + __float2int_rn(c.x + 1), 1);
}
}
}
void GHT_Ballard_PosRotation_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
PtrStepSz<short2> r_table, const int* r_sizes,
PtrStepi hist, int rows, int cols,
float minAngle, float angleStep, int angleRange,
float dp, int levels)
{
const dim3 block(256);
const dim3 grid(pointsCount);
const float idp = 1.0f / dp;
const float thetaScale = levels / (2.0f * CV_PI_F);
GHT_Ballard_PosRotation_calcHist<<<grid, block>>>(coordList, thetaList,
r_table, r_sizes,
hist, rows, cols,
minAngle, angleStep, angleRange,
idp, thetaScale);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void GHT_Ballard_PosRotation_findPosInHist(const PtrStepi hist, const int rows, const int cols, const int angleRange,
float4* out, int3* votes, const int maxSize,
const float minAngle, const float angleStep, const float dp, const int threshold)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= cols || y >= rows)
return;
for (int a = 0; a < angleRange; ++a)
{
const float angle = minAngle + a * angleStep;
const int prevAngleIdx = (a) * (rows + 2);
const int curAngleIdx = (a + 1) * (rows + 2);
const int nextAngleIdx = (a + 2) * (rows + 2);
const int curVotes = hist(curAngleIdx + y + 1, x + 1);
if (curVotes > threshold &&
curVotes > hist(curAngleIdx + y + 1, x) &&
curVotes >= hist(curAngleIdx + y + 1, x + 2) &&
curVotes > hist(curAngleIdx + y, x + 1) &&
curVotes >= hist(curAngleIdx + y + 2, x + 1) &&
curVotes > hist(prevAngleIdx + y + 1, x + 1) &&
curVotes >= hist(nextAngleIdx + y + 1, x + 1))
{
const int ind = ::atomicAdd(&g_counter, 1);
if (ind < maxSize)
{
out[ind] = make_float4(x * dp, y * dp, 1.0f, angle);
votes[ind] = make_int3(curVotes, 0, curVotes);
}
}
}
}
int GHT_Ballard_PosRotation_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int angleRange, float4* out, int3* votes, int maxSize,
float minAngle, float angleStep, float dp, int threshold)
{
void* counterPtr;
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
const dim3 block(32, 8);
const dim3 grid(divUp(cols, block.x), divUp(rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(GHT_Ballard_PosRotation_findPosInHist, cudaFuncCachePreferL1) );
GHT_Ballard_PosRotation_findPosInHist<<<grid, block>>>(hist, rows, cols, angleRange, out, votes, maxSize, minAngle, angleStep, dp, threshold);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
int totalCount;
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
totalCount = ::min(totalCount, maxSize);
return totalCount;
}
////////////////////////////////////////////////////////////////////////
// GHT_Guil_Full
struct FeatureTable
{
uchar* p1_pos_data;
size_t p1_pos_step;
uchar* p1_theta_data;
size_t p1_theta_step;
uchar* p2_pos_data;
size_t p2_pos_step;
uchar* d12_data;
size_t d12_step;
uchar* r1_data;
size_t r1_step;
uchar* r2_data;
size_t r2_step;
};
__constant__ FeatureTable c_templFeatures;
__constant__ FeatureTable c_imageFeatures;
void GHT_Guil_Full_setTemplFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2)
{
FeatureTable tbl;
tbl.p1_pos_data = p1_pos.data;
tbl.p1_pos_step = p1_pos.step;
tbl.p1_theta_data = p1_theta.data;
tbl.p1_theta_step = p1_theta.step;
tbl.p2_pos_data = p2_pos.data;
tbl.p2_pos_step = p2_pos.step;
tbl.d12_data = d12.data;
tbl.d12_step = d12.step;
tbl.r1_data = r1.data;
tbl.r1_step = r1.step;
tbl.r2_data = r2.data;
tbl.r2_step = r2.step;
cudaSafeCall( cudaMemcpyToSymbol(c_templFeatures, &tbl, sizeof(FeatureTable)) );
}
void GHT_Guil_Full_setImageFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2)
{
FeatureTable tbl;
tbl.p1_pos_data = p1_pos.data;
tbl.p1_pos_step = p1_pos.step;
tbl.p1_theta_data = p1_theta.data;
tbl.p1_theta_step = p1_theta.step;
tbl.p2_pos_data = p2_pos.data;
tbl.p2_pos_step = p2_pos.step;
tbl.d12_data = d12.data;
tbl.d12_step = d12.step;
tbl.r1_data = r1.data;
tbl.r1_step = r1.step;
tbl.r2_data = r2.data;
tbl.r2_step = r2.step;
cudaSafeCall( cudaMemcpyToSymbol(c_imageFeatures, &tbl, sizeof(FeatureTable)) );
}
struct TemplFeatureTable
{
static __device__ float2* p1_pos(int n)
{
return (float2*)(c_templFeatures.p1_pos_data + n * c_templFeatures.p1_pos_step);
}
static __device__ float* p1_theta(int n)
{
return (float*)(c_templFeatures.p1_theta_data + n * c_templFeatures.p1_theta_step);
}
static __device__ float2* p2_pos(int n)
{
return (float2*)(c_templFeatures.p2_pos_data + n * c_templFeatures.p2_pos_step);
}
static __device__ float* d12(int n)
{
return (float*)(c_templFeatures.d12_data + n * c_templFeatures.d12_step);
}
static __device__ float2* r1(int n)
{
return (float2*)(c_templFeatures.r1_data + n * c_templFeatures.r1_step);
}
static __device__ float2* r2(int n)
{
return (float2*)(c_templFeatures.r2_data + n * c_templFeatures.r2_step);
}
};
struct ImageFeatureTable
{
static __device__ float2* p1_pos(int n)
{
return (float2*)(c_imageFeatures.p1_pos_data + n * c_imageFeatures.p1_pos_step);
}
static __device__ float* p1_theta(int n)
{
return (float*)(c_imageFeatures.p1_theta_data + n * c_imageFeatures.p1_theta_step);
}
static __device__ float2* p2_pos(int n)
{
return (float2*)(c_imageFeatures.p2_pos_data + n * c_imageFeatures.p2_pos_step);
}
static __device__ float* d12(int n)
{
return (float*)(c_imageFeatures.d12_data + n * c_imageFeatures.d12_step);
}
static __device__ float2* r1(int n)
{
return (float2*)(c_imageFeatures.r1_data + n * c_imageFeatures.r1_step);
}
static __device__ float2* r2(int n)
{
return (float2*)(c_imageFeatures.r2_data + n * c_imageFeatures.r2_step);
}
};
__device__ float clampAngle(float a)
{
float res = a;
while (res > 2.0f * CV_PI_F)
res -= 2.0f * CV_PI_F;
while (res < 0.0f)
res += 2.0f * CV_PI_F;
return res;
}
__device__ bool angleEq(float a, float b, float eps)
{
return (::fabs(clampAngle(a - b)) <= eps);
}
template <class FT, bool isTempl>
__global__ void GHT_Guil_Full_buildFeatureList(const unsigned int* coordList, const float* thetaList, const int pointsCount,
int* sizes, const int maxSize,
const float xi, const float angleEpsilon, const float alphaScale,
const float2 center, const float maxDist)
{
const float p1_theta = thetaList[blockIdx.x];
const unsigned int coord1 = coordList[blockIdx.x];
float2 p1_pos;
p1_pos.x = (coord1 & 0xFFFF);
p1_pos.y = (coord1 >> 16) & 0xFFFF;
for (int i = threadIdx.x; i < pointsCount; i += blockDim.x)
{
const float p2_theta = thetaList[i];
const unsigned int coord2 = coordList[i];
float2 p2_pos;
p2_pos.x = (coord2 & 0xFFFF);
p2_pos.y = (coord2 >> 16) & 0xFFFF;
if (angleEq(p1_theta - p2_theta, xi, angleEpsilon))
{
const float2 d = p1_pos - p2_pos;
float alpha12 = clampAngle(::atan2(d.y, d.x) - p1_theta);
float d12 = ::sqrtf(d.x * d.x + d.y * d.y);
if (d12 > maxDist)
continue;
float2 r1 = p1_pos - center;
float2 r2 = p2_pos - center;
const int n = __float2int_rn(alpha12 * alphaScale);
const int ind = ::atomicAdd(sizes + n, 1);
if (ind < maxSize)
{
if (!isTempl)
{
FT::p1_pos(n)[ind] = p1_pos;
FT::p2_pos(n)[ind] = p2_pos;
}
FT::p1_theta(n)[ind] = p1_theta;
FT::d12(n)[ind] = d12;
if (isTempl)
{
FT::r1(n)[ind] = r1;
FT::r2(n)[ind] = r2;
}
}
}
}
}
template <class FT, bool isTempl>
void GHT_Guil_Full_buildFeatureList_caller(const unsigned int* coordList, const float* thetaList, int pointsCount,
int* sizes, int maxSize,
float xi, float angleEpsilon, int levels,
float2 center, float maxDist)
{
const dim3 block(256);
const dim3 grid(pointsCount);
const float alphaScale = levels / (2.0f * CV_PI_F);
GHT_Guil_Full_buildFeatureList<FT, isTempl><<<grid, block>>>(coordList, thetaList, pointsCount,
sizes, maxSize,
xi * (CV_PI_F / 180.0f), angleEpsilon * (CV_PI_F / 180.0f), alphaScale,
center, maxDist);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
thrust::device_ptr<int> sizesPtr(sizes);
thrust::transform(sizesPtr, sizesPtr + levels + 1, sizesPtr, device::bind2nd(device::minimum<int>(), maxSize));
}
void GHT_Guil_Full_buildTemplFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
int* sizes, int maxSize,
float xi, float angleEpsilon, int levels,
float2 center, float maxDist)
{
GHT_Guil_Full_buildFeatureList_caller<TemplFeatureTable, true>(coordList, thetaList, pointsCount,
sizes, maxSize,
xi, angleEpsilon, levels,
center, maxDist);
}
void GHT_Guil_Full_buildImageFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
int* sizes, int maxSize,
float xi, float angleEpsilon, int levels,
float2 center, float maxDist)
{
GHT_Guil_Full_buildFeatureList_caller<ImageFeatureTable, false>(coordList, thetaList, pointsCount,
sizes, maxSize,
xi, angleEpsilon, levels,
center, maxDist);
}
__global__ void GHT_Guil_Full_calcOHist(const int* templSizes, const int* imageSizes, int* OHist,
const float minAngle, const float maxAngle, const float iAngleStep, const int angleRange)
{
extern __shared__ int s_OHist[];
for (int i = threadIdx.x; i <= angleRange; i += blockDim.x)
s_OHist[i] = 0;
__syncthreads();
const int tIdx = blockIdx.x;
const int level = blockIdx.y;
const int tSize = templSizes[level];
if (tIdx < tSize)
{
const int imSize = imageSizes[level];
const float t_p1_theta = TemplFeatureTable::p1_theta(level)[tIdx];
for (int i = threadIdx.x; i < imSize; i += blockDim.x)
{
const float im_p1_theta = ImageFeatureTable::p1_theta(level)[i];
const float angle = clampAngle(im_p1_theta - t_p1_theta);
if (angle >= minAngle && angle <= maxAngle)
{
const int n = __float2int_rn((angle - minAngle) * iAngleStep);
Emulation::smem::atomicAdd(&s_OHist[n], 1);
}
}
}
__syncthreads();
for (int i = threadIdx.x; i <= angleRange; i += blockDim.x)
::atomicAdd(OHist + i, s_OHist[i]);
}
void GHT_Guil_Full_calcOHist_gpu(const int* templSizes, const int* imageSizes, int* OHist,
float minAngle, float maxAngle, float angleStep, int angleRange,
int levels, int tMaxSize)
{
const dim3 block(256);
const dim3 grid(tMaxSize, levels + 1);
minAngle *= (CV_PI_F / 180.0f);
maxAngle *= (CV_PI_F / 180.0f);
angleStep *= (CV_PI_F / 180.0f);
const size_t smemSize = (angleRange + 1) * sizeof(float);
GHT_Guil_Full_calcOHist<<<grid, block, smemSize>>>(templSizes, imageSizes, OHist,
minAngle, maxAngle, 1.0f / angleStep, angleRange);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void GHT_Guil_Full_calcSHist(const int* templSizes, const int* imageSizes, int* SHist,
const float angle, const float angleEpsilon,
const float minScale, const float maxScale, const float iScaleStep, const int scaleRange)
{
extern __shared__ int s_SHist[];
for (int i = threadIdx.x; i <= scaleRange; i += blockDim.x)
s_SHist[i] = 0;
__syncthreads();
const int tIdx = blockIdx.x;
const int level = blockIdx.y;
const int tSize = templSizes[level];
if (tIdx < tSize)
{
const int imSize = imageSizes[level];
const float t_p1_theta = TemplFeatureTable::p1_theta(level)[tIdx] + angle;
const float t_d12 = TemplFeatureTable::d12(level)[tIdx] + angle;
for (int i = threadIdx.x; i < imSize; i += blockDim.x)
{
const float im_p1_theta = ImageFeatureTable::p1_theta(level)[i];
const float im_d12 = ImageFeatureTable::d12(level)[i];
if (angleEq(im_p1_theta, t_p1_theta, angleEpsilon))
{
const float scale = im_d12 / t_d12;
if (scale >= minScale && scale <= maxScale)
{
const int s = __float2int_rn((scale - minScale) * iScaleStep);
Emulation::smem::atomicAdd(&s_SHist[s], 1);
}
}
}
}
__syncthreads();
for (int i = threadIdx.x; i <= scaleRange; i += blockDim.x)
::atomicAdd(SHist + i, s_SHist[i]);
}
void GHT_Guil_Full_calcSHist_gpu(const int* templSizes, const int* imageSizes, int* SHist,
float angle, float angleEpsilon,
float minScale, float maxScale, float iScaleStep, int scaleRange,
int levels, int tMaxSize)
{
const dim3 block(256);
const dim3 grid(tMaxSize, levels + 1);
angle *= (CV_PI_F / 180.0f);
angleEpsilon *= (CV_PI_F / 180.0f);
const size_t smemSize = (scaleRange + 1) * sizeof(float);
GHT_Guil_Full_calcSHist<<<grid, block, smemSize>>>(templSizes, imageSizes, SHist,
angle, angleEpsilon,
minScale, maxScale, iScaleStep, scaleRange);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void GHT_Guil_Full_calcPHist(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
const float angle, const float sinVal, const float cosVal, const float angleEpsilon, const float scale,
const float idp)
{
const int tIdx = blockIdx.x;
const int level = blockIdx.y;
const int tSize = templSizes[level];
if (tIdx < tSize)
{
const int imSize = imageSizes[level];
const float t_p1_theta = TemplFeatureTable::p1_theta(level)[tIdx] + angle;
float2 r1 = TemplFeatureTable::r1(level)[tIdx];
float2 r2 = TemplFeatureTable::r2(level)[tIdx];
r1 = r1 * scale;
r2 = r2 * scale;
r1 = make_float2(cosVal * r1.x - sinVal * r1.y, sinVal * r1.x + cosVal * r1.y);
r2 = make_float2(cosVal * r2.x - sinVal * r2.y, sinVal * r2.x + cosVal * r2.y);
for (int i = threadIdx.x; i < imSize; i += blockDim.x)
{
const float im_p1_theta = ImageFeatureTable::p1_theta(level)[i];
const float2 im_p1_pos = ImageFeatureTable::p1_pos(level)[i];
const float2 im_p2_pos = ImageFeatureTable::p2_pos(level)[i];
if (angleEq(im_p1_theta, t_p1_theta, angleEpsilon))
{
float2 c1, c2;
c1 = im_p1_pos - r1;
c1 = c1 * idp;
c2 = im_p2_pos - r2;
c2 = c2 * idp;
if (::fabs(c1.x - c2.x) > 1 || ::fabs(c1.y - c2.y) > 1)
continue;
if (c1.y >= 0 && c1.y < PHist.rows - 2 && c1.x >= 0 && c1.x < PHist.cols - 2)
::atomicAdd(PHist.ptr(__float2int_rn(c1.y) + 1) + __float2int_rn(c1.x) + 1, 1);
}
}
}
}
void GHT_Guil_Full_calcPHist_gpu(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
float angle, float angleEpsilon, float scale,
float dp,
int levels, int tMaxSize)
{
const dim3 block(256);
const dim3 grid(tMaxSize, levels + 1);
angle *= (CV_PI_F / 180.0f);
angleEpsilon *= (CV_PI_F / 180.0f);
const float sinVal = ::sinf(angle);
const float cosVal = ::cosf(angle);
cudaSafeCall( cudaFuncSetCacheConfig(GHT_Guil_Full_calcPHist, cudaFuncCachePreferL1) );
GHT_Guil_Full_calcPHist<<<grid, block>>>(templSizes, imageSizes, PHist,
angle, sinVal, cosVal, angleEpsilon, scale,
1.0f / dp);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void GHT_Guil_Full_findPosInHist(const PtrStepSzi hist, float4* out, int3* votes, const int maxSize,
const float angle, const int angleVotes, const float scale, const int scaleVotes,
const float dp, const int threshold)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= hist.cols - 2 || y >= hist.rows - 2)
return;
const int curVotes = hist(y + 1, x + 1);
if (curVotes > threshold &&
curVotes > hist(y + 1, x) &&
curVotes >= hist(y + 1, x + 2) &&
curVotes > hist(y, x + 1) &&
curVotes >= hist(y + 2, x + 1))
{
const int ind = ::atomicAdd(&g_counter, 1);
if (ind < maxSize)
{
out[ind] = make_float4(x * dp, y * dp, scale, angle);
votes[ind] = make_int3(curVotes, scaleVotes, angleVotes);
}
}
}
int GHT_Guil_Full_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int curSize, int maxSize,
float angle, int angleVotes, float scale, int scaleVotes,
float dp, int threshold)
{
void* counterPtr;
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
cudaSafeCall( cudaMemcpy(counterPtr, &curSize, sizeof(int), cudaMemcpyHostToDevice) );
const dim3 block(32, 8);
const dim3 grid(divUp(hist.cols - 2, block.x), divUp(hist.rows - 2, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(GHT_Guil_Full_findPosInHist, cudaFuncCachePreferL1) );
GHT_Guil_Full_findPosInHist<<<grid, block>>>(hist, out, votes, maxSize,
angle, angleVotes, scale, scaleVotes,
dp, threshold);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
int totalCount;
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
totalCount = ::min(totalCount, maxSize);
return totalCount;
}
}
}}}
......@@ -42,6 +42,10 @@
#include "precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA)
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
......@@ -52,6 +56,15 @@ void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, int, float, float, int, int,
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_nogpu(); }
void cv::gpu::HoughCirclesDownload(const GpuMat&, OutputArray) { throw_nogpu(); }
Ptr<GeneralizedHough_GPU> cv::gpu::GeneralizedHough_GPU::create(int) { throw_nogpu(); return Ptr<GeneralizedHough_GPU>(); }
cv::gpu::GeneralizedHough_GPU::~GeneralizedHough_GPU() {}
void cv::gpu::GeneralizedHough_GPU::setTemplate(const GpuMat&, int, Point) { throw_nogpu(); }
void cv::gpu::GeneralizedHough_GPU::setTemplate(const GpuMat&, const GpuMat&, const GpuMat&, Point) { throw_nogpu(); }
void cv::gpu::GeneralizedHough_GPU::detect(const GpuMat&, GpuMat&, int) { throw_nogpu(); }
void cv::gpu::GeneralizedHough_GPU::detect(const GpuMat&, const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::GeneralizedHough_GPU::download(const GpuMat&, OutputArray, OutputArray) { throw_nogpu(); }
void cv::gpu::GeneralizedHough_GPU::release() {}
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace device
......@@ -59,20 +72,21 @@ namespace cv { namespace gpu { namespace device
namespace hough
{
int buildPointList_gpu(PtrStepSzb src, unsigned int* list);
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20);
int linesGetResult_gpu(PtrStepSzi accum, float2* out, int* votes, int maxSize, float rho, float theta, int threshold, bool doSort);
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, PtrStepSzi accum, int minRadius, int maxRadius, float idp);
int buildCentersList_gpu(PtrStepSzi accum, unsigned int* centers, int threshold);
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20);
}
}}}
//////////////////////////////////////////////////////////
// HoughLines
namespace cv { namespace gpu { namespace device
{
namespace hough
{
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20);
int linesGetResult_gpu(PtrStepSzi accum, float2* out, int* votes, int maxSize, float rho, float theta, int threshold, bool doSort);
}
}}}
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
{
HoughLinesBuf buf;
......@@ -144,6 +158,17 @@ void cv::gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines_, Ou
//////////////////////////////////////////////////////////
// HoughCircles
namespace cv { namespace gpu { namespace device
{
namespace hough
{
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, PtrStepSzi accum, int minRadius, int maxRadius, float idp);
int buildCentersList_gpu(PtrStepSzi accum, unsigned int* centers, int threshold);
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20);
}
}}}
void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
{
HoughCirclesBuf buf;
......@@ -209,7 +234,7 @@ void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf&
std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight);
minDist *= minDist;
const float minDist2 = minDist * minDist;
for (int i = 0; i < centersCount; ++i)
{
......@@ -242,7 +267,7 @@ void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf&
float dx = (float)(p.x - m[j].x);
float dy = (float)(p.y - m[j].y);
if (dx * dx + dy * dy < minDist)
if (dx * dx + dy * dy < minDist2)
{
good = false;
goto break_out;
......@@ -292,4 +317,1056 @@ void cv::gpu::HoughCirclesDownload(const GpuMat& d_circles, cv::OutputArray h_ci
d_circles.download(h_circles);
}
//////////////////////////////////////////////////////////
// GeneralizedHough
namespace cv { namespace gpu { namespace device
{
namespace hough
{
template <typename T>
int buildEdgePointList_gpu(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
void buildRTable_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
PtrStepSz<short2> r_table, int* r_sizes,
short2 templCenter, int levels);
void GHT_Ballard_Pos_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
PtrStepSz<short2> r_table, const int* r_sizes,
PtrStepSzi hist,
float dp, int levels);
int GHT_Ballard_Pos_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int maxSize, float dp, int threshold);
void GHT_Ballard_PosScale_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
PtrStepSz<short2> r_table, const int* r_sizes,
PtrStepi hist, int rows, int cols,
float minScale, float scaleStep, int scaleRange,
float dp, int levels);
int GHT_Ballard_PosScale_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int scaleRange, float4* out, int3* votes, int maxSize,
float minScale, float scaleStep, float dp, int threshold);
void GHT_Ballard_PosRotation_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
PtrStepSz<short2> r_table, const int* r_sizes,
PtrStepi hist, int rows, int cols,
float minAngle, float angleStep, int angleRange,
float dp, int levels);
int GHT_Ballard_PosRotation_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int angleRange, float4* out, int3* votes, int maxSize,
float minAngle, float angleStep, float dp, int threshold);
void GHT_Guil_Full_setTemplFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
void GHT_Guil_Full_setImageFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
void GHT_Guil_Full_buildTemplFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
int* sizes, int maxSize,
float xi, float angleEpsilon, int levels,
float2 center, float maxDist);
void GHT_Guil_Full_buildImageFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
int* sizes, int maxSize,
float xi, float angleEpsilon, int levels,
float2 center, float maxDist);
void GHT_Guil_Full_calcOHist_gpu(const int* templSizes, const int* imageSizes, int* OHist,
float minAngle, float maxAngle, float angleStep, int angleRange,
int levels, int tMaxSize);
void GHT_Guil_Full_calcSHist_gpu(const int* templSizes, const int* imageSizes, int* SHist,
float angle, float angleEpsilon,
float minScale, float maxScale, float iScaleStep, int scaleRange,
int levels, int tMaxSize);
void GHT_Guil_Full_calcPHist_gpu(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
float angle, float angleEpsilon, float scale,
float dp,
int levels, int tMaxSize);
int GHT_Guil_Full_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int curSize, int maxSize,
float angle, int angleVotes, float scale, int scaleVotes,
float dp, int threshold);
}
}}}
namespace
{
/////////////////////////////////////
// Common
template <typename T, class A> void releaseVector(vector<T, A>& v)
{
vector<T, A> empty;
empty.swap(v);
}
class GHT_Pos : public GeneralizedHough_GPU
{
public:
GHT_Pos();
protected:
void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter);
void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions);
void releaseImpl();
virtual void processTempl() = 0;
virtual void processImage() = 0;
void buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy);
void filterMinDist();
void convertTo(GpuMat& positions);
int maxSize;
double minDist;
Size templSize;
Point templCenter;
GpuMat templEdges;
GpuMat templDx;
GpuMat templDy;
Size imageSize;
GpuMat imageEdges;
GpuMat imageDx;
GpuMat imageDy;
GpuMat edgePointList;
GpuMat outBuf;
int posCount;
vector<float4> oldPosBuf;
vector<int3> oldVoteBuf;
vector<float4> newPosBuf;
vector<int3> newVoteBuf;
vector<int> indexies;
};
GHT_Pos::GHT_Pos()
{
maxSize = 10000;
minDist = 1.0;
}
void GHT_Pos::setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter_)
{
templSize = edges.size();
templCenter = templCenter_;
ensureSizeIsEnough(templSize, edges.type(), templEdges);
ensureSizeIsEnough(templSize, dx.type(), templDx);
ensureSizeIsEnough(templSize, dy.type(), templDy);
edges.copyTo(templEdges);
dx.copyTo(templDx);
dy.copyTo(templDy);
processTempl();
}
void GHT_Pos::detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions)
{
imageSize = edges.size();
ensureSizeIsEnough(imageSize, edges.type(), imageEdges);
ensureSizeIsEnough(imageSize, dx.type(), imageDx);
ensureSizeIsEnough(imageSize, dy.type(), imageDy);
edges.copyTo(imageEdges);
dx.copyTo(imageDx);
dy.copyTo(imageDy);
posCount = 0;
processImage();
if (posCount == 0)
positions.release();
else
{
if (minDist > 1)
filterMinDist();
convertTo(positions);
}
}
void GHT_Pos::releaseImpl()
{
templSize = Size();
templCenter = Point(-1, -1);
templEdges.release();
templDx.release();
templDy.release();
imageSize = Size();
imageEdges.release();
imageDx.release();
imageDy.release();
edgePointList.release();
outBuf.release();
posCount = 0;
releaseVector(oldPosBuf);
releaseVector(oldVoteBuf);
releaseVector(newPosBuf);
releaseVector(newVoteBuf);
releaseVector(indexies);
}
void GHT_Pos::buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy)
{
using namespace cv::gpu::device::hough;
typedef int (*func_t)(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
static const func_t funcs[] =
{
0,
0,
0,
buildEdgePointList_gpu<short>,
buildEdgePointList_gpu<int>,
buildEdgePointList_gpu<float>,
0
};
CV_Assert(edges.type() == CV_8UC1);
CV_Assert(dx.size() == edges.size());
CV_Assert(dy.type() == dx.type() && dy.size() == edges.size());
const func_t func = funcs[dx.depth()];
CV_Assert(func != 0);
edgePointList.cols = edgePointList.step / sizeof(int);
ensureSizeIsEnough(2, edges.size().area(), CV_32SC1, edgePointList);
edgePointList.cols = func(edges, dx, dy, edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1));
}
#define votes_cmp_gt(l1, l2) (aux[l1].x > aux[l2].x)
static CV_IMPLEMENT_QSORT_EX( sortIndexies, int, votes_cmp_gt, const int3* )
void GHT_Pos::filterMinDist()
{
oldPosBuf.resize(posCount);
oldVoteBuf.resize(posCount);
cudaSafeCall( cudaMemcpy(&oldPosBuf[0], outBuf.ptr(0), posCount * sizeof(float4), cudaMemcpyDeviceToHost) );
cudaSafeCall( cudaMemcpy(&oldVoteBuf[0], outBuf.ptr(1), posCount * sizeof(int3), cudaMemcpyDeviceToHost) );
indexies.resize(posCount);
for (int i = 0; i < posCount; ++i)
indexies[i] = i;
sortIndexies(&indexies[0], posCount, &oldVoteBuf[0]);
newPosBuf.clear();
newVoteBuf.clear();
newPosBuf.reserve(posCount);
newVoteBuf.reserve(posCount);
const int cellSize = cvRound(minDist);
const int gridWidth = (imageSize.width + cellSize - 1) / cellSize;
const int gridHeight = (imageSize.height + cellSize - 1) / cellSize;
vector< vector<Point2f> > grid(gridWidth * gridHeight);
const double minDist2 = minDist * minDist;
for (int i = 0; i < posCount; ++i)
{
const int ind = indexies[i];
Point2f p(oldPosBuf[ind].x, oldPosBuf[ind].y);
bool good = true;
const int xCell = static_cast<int>(p.x / cellSize);
const int yCell = static_cast<int>(p.y / cellSize);
int x1 = xCell - 1;
int y1 = yCell - 1;
int x2 = xCell + 1;
int y2 = yCell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
x2 = std::min(gridWidth - 1, x2);
y2 = std::min(gridHeight - 1, y2);
for (int yy = y1; yy <= y2; ++yy)
{
for (int xx = x1; xx <= x2; ++xx)
{
const vector<Point2f>& m = grid[yy * gridWidth + xx];
for(size_t j = 0; j < m.size(); ++j)
{
const Point2f d = p - m[j];
if (d.ddot(d) < minDist2)
{
good = false;
goto break_out;
}
}
}
}
break_out:
if(good)
{
grid[yCell * gridWidth + xCell].push_back(p);
newPosBuf.push_back(oldPosBuf[ind]);
newVoteBuf.push_back(oldVoteBuf[ind]);
}
}
posCount = static_cast<int>(newPosBuf.size());
cudaSafeCall( cudaMemcpy(outBuf.ptr(0), &newPosBuf[0], posCount * sizeof(float4), cudaMemcpyHostToDevice) );
cudaSafeCall( cudaMemcpy(outBuf.ptr(1), &newVoteBuf[0], posCount * sizeof(int3), cudaMemcpyHostToDevice) );
}
void GHT_Pos::convertTo(GpuMat& positions)
{
ensureSizeIsEnough(2, posCount, CV_32FC4, positions);
GpuMat(2, posCount, CV_32FC4, outBuf.data, outBuf.step).copyTo(positions);
}
/////////////////////////////////////
// POSITION Ballard
class GHT_Ballard_Pos : public GHT_Pos
{
public:
AlgorithmInfo* info() const;
GHT_Ballard_Pos();
protected:
void releaseImpl();
void processTempl();
void processImage();
virtual void calcHist();
virtual void findPosInHist();
int levels;
int votesThreshold;
double dp;
GpuMat r_table;
GpuMat r_sizes;
GpuMat hist;
};
CV_INIT_ALGORITHM(GHT_Ballard_Pos, "GeneralizedHough_GPU.POSITION",
obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0,
"Maximal size of inner buffers.");
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
"Minimum distance between the centers of the detected objects.");
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
"R-Table levels.");
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
"Inverse ratio of the accumulator resolution to the image resolution."));
GHT_Ballard_Pos::GHT_Ballard_Pos()
{
levels = 360;
votesThreshold = 100;
dp = 1.0;
}
void GHT_Ballard_Pos::releaseImpl()
{
GHT_Pos::releaseImpl();
r_table.release();
r_sizes.release();
hist.release();
}
void GHT_Ballard_Pos::processTempl()
{
using namespace cv::gpu::device::hough;
CV_Assert(levels > 0);
buildEdgePointList(templEdges, templDx, templDy);
ensureSizeIsEnough(levels + 1, maxSize, CV_16SC2, r_table);
ensureSizeIsEnough(1, levels + 1, CV_32SC1, r_sizes);
r_sizes.setTo(Scalar::all(0));
if (edgePointList.cols > 0)
{
buildRTable_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
r_table, r_sizes.ptr<int>(), make_short2(templCenter.x, templCenter.y), levels);
min(r_sizes, maxSize, r_sizes);
}
}
void GHT_Ballard_Pos::processImage()
{
calcHist();
findPosInHist();
}
void GHT_Ballard_Pos::calcHist()
{
using namespace cv::gpu::device::hough;
CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1));
CV_Assert(dp > 0.0);
const double idp = 1.0 / dp;
buildEdgePointList(imageEdges, imageDx, imageDy);
ensureSizeIsEnough(cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2, CV_32SC1, hist);
hist.setTo(Scalar::all(0));
if (edgePointList.cols > 0)
{
GHT_Ballard_Pos_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
r_table, r_sizes.ptr<int>(),
hist,
dp, levels);
}
}
void GHT_Ballard_Pos::findPosInHist()
{
using namespace cv::gpu::device::hough;
CV_Assert(votesThreshold > 0);
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
posCount = GHT_Ballard_Pos_findPosInHist_gpu(hist, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, dp, votesThreshold);
}
/////////////////////////////////////
// POSITION & SCALE
class GHT_Ballard_PosScale : public GHT_Ballard_Pos
{
public:
AlgorithmInfo* info() const;
GHT_Ballard_PosScale();
protected:
void calcHist();
void findPosInHist();
double minScale;
double maxScale;
double scaleStep;
};
CV_INIT_ALGORITHM(GHT_Ballard_PosScale, "GeneralizedHough_GPU.POSITION_SCALE",
obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0,
"Maximal size of inner buffers.");
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
"Minimum distance between the centers of the detected objects.");
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
"R-Table levels.");
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
"Inverse ratio of the accumulator resolution to the image resolution.");
obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0,
"Minimal scale to detect.");
obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0,
"Maximal scale to detect.");
obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0,
"Scale step."));
GHT_Ballard_PosScale::GHT_Ballard_PosScale()
{
minScale = 0.5;
maxScale = 2.0;
scaleStep = 0.05;
}
void GHT_Ballard_PosScale::calcHist()
{
using namespace cv::gpu::device::hough;
CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1));
CV_Assert(dp > 0.0);
CV_Assert(minScale > 0.0 && minScale < maxScale);
CV_Assert(scaleStep > 0.0);
const double idp = 1.0 / dp;
const int scaleRange = cvCeil((maxScale - minScale) / scaleStep);
const int rows = cvCeil(imageSize.height * idp);
const int cols = cvCeil(imageSize.width * idp);
buildEdgePointList(imageEdges, imageDx, imageDy);
ensureSizeIsEnough((scaleRange + 2) * (rows + 2), cols + 2, CV_32SC1, hist);
hist.setTo(Scalar::all(0));
if (edgePointList.cols > 0)
{
GHT_Ballard_PosScale_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
r_table, r_sizes.ptr<int>(),
hist, rows, cols,
minScale, scaleStep, scaleRange, dp, levels);
}
}
void GHT_Ballard_PosScale::findPosInHist()
{
using namespace cv::gpu::device::hough;
CV_Assert(votesThreshold > 0);
const double idp = 1.0 / dp;
const int scaleRange = cvCeil((maxScale - minScale) / scaleStep);
const int rows = cvCeil(imageSize.height * idp);
const int cols = cvCeil(imageSize.width * idp);
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
posCount = GHT_Ballard_PosScale_findPosInHist_gpu(hist, rows, cols, scaleRange, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, minScale, scaleStep, dp, votesThreshold);
}
/////////////////////////////////////
// POSITION & Rotation
class GHT_Ballard_PosRotation : public GHT_Ballard_Pos
{
public:
AlgorithmInfo* info() const;
GHT_Ballard_PosRotation();
protected:
void calcHist();
void findPosInHist();
double minAngle;
double maxAngle;
double angleStep;
};
CV_INIT_ALGORITHM(GHT_Ballard_PosRotation, "GeneralizedHough_GPU.POSITION_ROTATION",
obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0,
"Maximal size of inner buffers.");
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
"Minimum distance between the centers of the detected objects.");
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
"R-Table levels.");
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
"Inverse ratio of the accumulator resolution to the image resolution.");
obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0,
"Minimal rotation angle to detect in degrees.");
obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0,
"Maximal rotation angle to detect in degrees.");
obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0,
"Angle step in degrees."));
GHT_Ballard_PosRotation::GHT_Ballard_PosRotation()
{
minAngle = 0.0;
maxAngle = 360.0;
angleStep = 1.0;
}
void GHT_Ballard_PosRotation::calcHist()
{
using namespace cv::gpu::device::hough;
CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1));
CV_Assert(dp > 0.0);
CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0);
CV_Assert(angleStep > 0.0 && angleStep < 360.0);
const double idp = 1.0 / dp;
const int angleRange = cvCeil((maxAngle - minAngle) / angleStep);
const int rows = cvCeil(imageSize.height * idp);
const int cols = cvCeil(imageSize.width * idp);
buildEdgePointList(imageEdges, imageDx, imageDy);
ensureSizeIsEnough((angleRange + 2) * (rows + 2), cols + 2, CV_32SC1, hist);
hist.setTo(Scalar::all(0));
if (edgePointList.cols > 0)
{
GHT_Ballard_PosRotation_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
r_table, r_sizes.ptr<int>(),
hist, rows, cols,
minAngle, angleStep, angleRange, dp, levels);
}
}
void GHT_Ballard_PosRotation::findPosInHist()
{
using namespace cv::gpu::device::hough;
CV_Assert(votesThreshold > 0);
const double idp = 1.0 / dp;
const int angleRange = cvCeil((maxAngle - minAngle) / angleStep);
const int rows = cvCeil(imageSize.height * idp);
const int cols = cvCeil(imageSize.width * idp);
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
posCount = GHT_Ballard_PosRotation_findPosInHist_gpu(hist, rows, cols, angleRange, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, minAngle, angleStep, dp, votesThreshold);
}
/////////////////////////////////////////
// POSITION & SCALE & ROTATION
double toRad(double a)
{
return a * CV_PI / 180.0;
}
double clampAngle(double a)
{
double res = a;
while (res > 360.0)
res -= 360.0;
while (res < 0)
res += 360.0;
return res;
}
bool angleEq(double a, double b, double eps = 1.0)
{
return (fabs(clampAngle(a - b)) <= eps);
}
class GHT_Guil_Full : public GHT_Pos
{
public:
AlgorithmInfo* info() const;
GHT_Guil_Full();
protected:
void releaseImpl();
void processTempl();
void processImage();
struct Feature
{
GpuMat p1_pos;
GpuMat p1_theta;
GpuMat p2_pos;
GpuMat d12;
GpuMat r1;
GpuMat r2;
GpuMat sizes;
int maxSize;
void create(int levels, int maxCapacity, bool isTempl);
void release();
};
typedef void (*set_func_t)(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
typedef void (*build_func_t)(const unsigned int* coordList, const float* thetaList, int pointsCount,
int* sizes, int maxSize,
float xi, float angleEpsilon, int levels,
float2 center, float maxDist);
void buildFeatureList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Feature& features,
set_func_t set_func, build_func_t build_func, bool isTempl, Point2d center = Point2d());
void calcOrientation();
void calcScale(double angle);
void calcPosition(double angle, int angleVotes, double scale, int scaleVotes);
double xi;
int levels;
double angleEpsilon;
double minAngle;
double maxAngle;
double angleStep;
int angleThresh;
double minScale;
double maxScale;
double scaleStep;
int scaleThresh;
double dp;
int posThresh;
Feature templFeatures;
Feature imageFeatures;
vector< pair<double, int> > angles;
vector< pair<double, int> > scales;
GpuMat hist;
vector<int> h_buf;
};
CV_INIT_ALGORITHM(GHT_Guil_Full, "GeneralizedHough_GPU.POSITION_SCALE_ROTATION",
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
"Minimum distance between the centers of the detected objects.");
obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0,
"Maximal size of inner buffers.");
obj.info()->addParam(obj, "xi", obj.xi, false, 0, 0,
"Angle difference in degrees between two points in feature.");
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
"Feature table levels.");
obj.info()->addParam(obj, "angleEpsilon", obj.angleEpsilon, false, 0, 0,
"Maximal difference between angles that treated as equal.");
obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0,
"Minimal rotation angle to detect in degrees.");
obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0,
"Maximal rotation angle to detect in degrees.");
obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0,
"Angle step in degrees.");
obj.info()->addParam(obj, "angleThresh", obj.angleThresh, false, 0, 0,
"Angle threshold.");
obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0,
"Minimal scale to detect.");
obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0,
"Maximal scale to detect.");
obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0,
"Scale step.");
obj.info()->addParam(obj, "scaleThresh", obj.scaleThresh, false, 0, 0,
"Scale threshold.");
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
"Inverse ratio of the accumulator resolution to the image resolution.");
obj.info()->addParam(obj, "posThresh", obj.posThresh, false, 0, 0,
"Position threshold."));
GHT_Guil_Full::GHT_Guil_Full()
{
maxSize = 1000;
xi = 90.0;
levels = 360;
angleEpsilon = 1.0;
minAngle = 0.0;
maxAngle = 360.0;
angleStep = 1.0;
angleThresh = 15000;
minScale = 0.5;
maxScale = 2.0;
scaleStep = 0.05;
scaleThresh = 1000;
dp = 1.0;
posThresh = 100;
}
void GHT_Guil_Full::releaseImpl()
{
GHT_Pos::releaseImpl();
templFeatures.release();
imageFeatures.release();
releaseVector(angles);
releaseVector(scales);
hist.release();
releaseVector(h_buf);
}
void GHT_Guil_Full::processTempl()
{
using namespace cv::gpu::device::hough;
buildFeatureList(templEdges, templDx, templDy, templFeatures,
GHT_Guil_Full_setTemplFeatures, GHT_Guil_Full_buildTemplFeatureList_gpu,
true, templCenter);
h_buf.resize(templFeatures.sizes.cols);
cudaSafeCall( cudaMemcpy(&h_buf[0], templFeatures.sizes.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) );
templFeatures.maxSize = *max_element(h_buf.begin(), h_buf.end());
}
void GHT_Guil_Full::processImage()
{
using namespace cv::gpu::device::hough;
CV_Assert(levels > 0);
CV_Assert(templFeatures.sizes.cols == levels + 1);
CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0);
CV_Assert(angleStep > 0.0 && angleStep < 360.0);
CV_Assert(angleThresh > 0);
CV_Assert(minScale > 0.0 && minScale < maxScale);
CV_Assert(scaleStep > 0.0);
CV_Assert(scaleThresh > 0);
CV_Assert(dp > 0.0);
CV_Assert(posThresh > 0);
const double iAngleStep = 1.0 / angleStep;
const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep);
const double iScaleStep = 1.0 / scaleStep;
const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep);
const double idp = 1.0 / dp;
const int histRows = cvCeil(imageSize.height * idp);
const int histCols = cvCeil(imageSize.width * idp);
ensureSizeIsEnough(histRows + 2, std::max(angleRange + 1, std::max(scaleRange + 1, histCols + 2)), CV_32SC1, hist);
h_buf.resize(std::max(angleRange + 1, scaleRange + 1));
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
buildFeatureList(imageEdges, imageDx, imageDy, imageFeatures,
GHT_Guil_Full_setImageFeatures, GHT_Guil_Full_buildImageFeatureList_gpu,
false);
calcOrientation();
for (size_t i = 0; i < angles.size(); ++i)
{
const double angle = angles[i].first;
const int angleVotes = angles[i].second;
calcScale(angle);
for (size_t j = 0; j < scales.size(); ++j)
{
const double scale = scales[j].first;
const int scaleVotes = scales[j].second;
calcPosition(angle, angleVotes, scale, scaleVotes);
}
}
}
void GHT_Guil_Full::Feature::create(int levels, int maxCapacity, bool isTempl)
{
if (!isTempl)
{
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, p1_pos);
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, p2_pos);
}
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC1, p1_theta);
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC1, d12);
if (isTempl)
{
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, r1);
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, r2);
}
ensureSizeIsEnough(1, levels + 1, CV_32SC1, sizes);
sizes.setTo(Scalar::all(0));
maxSize = 0;
}
void GHT_Guil_Full::Feature::release()
{
p1_pos.release();
p1_theta.release();
p2_pos.release();
d12.release();
r1.release();
r2.release();
sizes.release();
maxSize = 0;
}
void GHT_Guil_Full::buildFeatureList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Feature& features,
set_func_t set_func, build_func_t build_func, bool isTempl, Point2d center)
{
CV_Assert(levels > 0);
const double maxDist = sqrt((double) templSize.width * templSize.width + templSize.height * templSize.height) * maxScale;
features.create(levels, maxSize, isTempl);
set_func(features.p1_pos, features.p1_theta, features.p2_pos, features.d12, features.r1, features.r2);
buildEdgePointList(edges, dx, dy);
if (edgePointList.cols > 0)
{
build_func(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
features.sizes.ptr<int>(), maxSize, xi, angleEpsilon, levels, make_float2(center.x, center.y), maxDist);
}
}
void GHT_Guil_Full::calcOrientation()
{
using namespace cv::gpu::device::hough;
const double iAngleStep = 1.0 / angleStep;
const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep);
hist.setTo(Scalar::all(0));
GHT_Guil_Full_calcOHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0),
hist.ptr<int>(), minAngle, maxAngle, angleStep, angleRange, levels, templFeatures.maxSize);
cudaSafeCall( cudaMemcpy(&h_buf[0], hist.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) );
angles.clear();
for (int n = 0; n < angleRange; ++n)
{
if (h_buf[n] >= angleThresh)
{
const double angle = minAngle + n * angleStep;
angles.push_back(make_pair(angle, h_buf[n]));
}
}
}
void GHT_Guil_Full::calcScale(double angle)
{
using namespace cv::gpu::device::hough;
const double iScaleStep = 1.0 / scaleStep;
const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep);
hist.setTo(Scalar::all(0));
GHT_Guil_Full_calcSHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0),
hist.ptr<int>(), angle, angleEpsilon, minScale, maxScale, iScaleStep, scaleRange, levels, templFeatures.maxSize);
cudaSafeCall( cudaMemcpy(&h_buf[0], hist.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) );
scales.clear();
for (int s = 0; s < scaleRange; ++s)
{
if (h_buf[s] >= scaleThresh)
{
const double scale = minScale + s * scaleStep;
scales.push_back(make_pair(scale, h_buf[s]));
}
}
}
void GHT_Guil_Full::calcPosition(double angle, int angleVotes, double scale, int scaleVotes)
{
using namespace cv::gpu::device::hough;
hist.setTo(Scalar::all(0));
GHT_Guil_Full_calcPHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0),
hist, angle, angleEpsilon, scale, dp, levels, templFeatures.maxSize);
posCount = GHT_Guil_Full_findPosInHist_gpu(hist, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1),
posCount, maxSize, angle, angleVotes, scale, scaleVotes, dp, posThresh);
}
}
Ptr<GeneralizedHough_GPU> cv::gpu::GeneralizedHough_GPU::create(int method)
{
switch (method)
{
case GHT_POSITION:
CV_Assert( !GHT_Ballard_Pos_info_auto.name().empty() );
return new GHT_Ballard_Pos();
case (GHT_POSITION | GHT_SCALE):
CV_Assert( !GHT_Ballard_PosScale_info_auto.name().empty() );
return new GHT_Ballard_PosScale();
case (GHT_POSITION | GHT_ROTATION):
CV_Assert( !GHT_Ballard_PosRotation_info_auto.name().empty() );
return new GHT_Ballard_PosRotation();
case (GHT_POSITION | GHT_SCALE | GHT_ROTATION):
CV_Assert( !GHT_Guil_Full_info_auto.name().empty() );
return new GHT_Guil_Full();
}
CV_Error(CV_StsBadArg, "Unsupported method");
return Ptr<GeneralizedHough_GPU>();
}
cv::gpu::GeneralizedHough_GPU::~GeneralizedHough_GPU()
{
}
void cv::gpu::GeneralizedHough_GPU::setTemplate(const GpuMat& templ, int cannyThreshold, Point templCenter)
{
CV_Assert(templ.type() == CV_8UC1);
CV_Assert(cannyThreshold > 0);
ensureSizeIsEnough(templ.size(), CV_8UC1, edges_);
Canny(templ, cannyBuf_, edges_, cannyThreshold / 2, cannyThreshold);
if (templCenter == Point(-1, -1))
templCenter = Point(templ.cols / 2, templ.rows / 2);
setTemplateImpl(edges_, cannyBuf_.dx, cannyBuf_.dy, templCenter);
}
void cv::gpu::GeneralizedHough_GPU::setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter)
{
if (templCenter == Point(-1, -1))
templCenter = Point(edges.cols / 2, edges.rows / 2);
setTemplateImpl(edges, dx, dy, templCenter);
}
void cv::gpu::GeneralizedHough_GPU::detect(const GpuMat& image, GpuMat& positions, int cannyThreshold)
{
CV_Assert(image.type() == CV_8UC1);
CV_Assert(cannyThreshold > 0);
ensureSizeIsEnough(image.size(), CV_8UC1, edges_);
Canny(image, cannyBuf_, edges_, cannyThreshold / 2, cannyThreshold);
detectImpl(edges_, cannyBuf_.dx, cannyBuf_.dy, positions);
}
void cv::gpu::GeneralizedHough_GPU::detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions)
{
detectImpl(edges, dx, dy, positions);
}
void cv::gpu::GeneralizedHough_GPU::download(const GpuMat& d_positions, OutputArray h_positions_, OutputArray h_votes_)
{
if (d_positions.empty())
{
h_positions_.release();
if (h_votes_.needed())
h_votes_.release();
return;
}
CV_Assert(d_positions.rows == 2 && d_positions.type() == CV_32FC4);
h_positions_.create(1, d_positions.cols, CV_32FC4);
Mat h_positions = h_positions_.getMat();
d_positions.row(0).download(h_positions);
if (h_votes_.needed())
{
h_votes_.create(1, d_positions.cols, CV_32SC3);
Mat h_votes = h_votes_.getMat();
GpuMat d_votes(1, d_positions.cols, CV_32SC3, const_cast<int3*>(d_positions.ptr<int3>(1)));
d_votes.download(h_votes);
}
}
void cv::gpu::GeneralizedHough_GPU::release()
{
edges_.release();
cannyBuf_.release();
releaseImpl();
}
#endif /* !defined (HAVE_CUDA) */
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
namespace {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// HoughLines
PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, cv::Size, UseRoi)
{
static void generateLines(cv::Mat& img)
{
img.setTo(cv::Scalar::all(0));
cv::line(img, cv::Point(20, 0), cv::Point(20, img.rows), cv::Scalar::all(255));
cv::line(img, cv::Point(0, 50), cv::Point(img.cols, 50), cv::Scalar::all(255));
cv::line(img, cv::Point(0, 0), cv::Point(img.cols, img.rows), cv::Scalar::all(255));
cv::line(img, cv::Point(img.cols, 0), cv::Point(0, img.rows), cv::Scalar::all(255));
}
static void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines)
{
dst.setTo(cv::Scalar::all(0));
for (size_t i = 0; i < lines.size(); ++i)
{
float rho = lines[i][0], theta = lines[i][1];
cv::Point pt1, pt2;
double a = std::cos(theta), b = std::sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
cv::line(dst, pt1, pt2, cv::Scalar::all(255));
}
}
};
TEST_P(HoughLines, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(1);
const bool useRoi = GET_PARAM(2);
const float rho = 1.0f;
const float theta = 1.5f * CV_PI / 180.0f;
const int threshold = 100;
cv::Mat src(size, CV_8UC1);
generateLines(src);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLines(loadMat(src, useRoi), d_lines, rho, theta, threshold);
std::vector<cv::Vec2f> lines;
cv::gpu::HoughLinesDownload(d_lines, lines);
cv::Mat dst(size, CV_8UC1);
drawLines(dst, lines);
ASSERT_MAT_NEAR(src, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughLines, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// HoughCircles
PARAM_TEST_CASE(HoughCircles, cv::gpu::DeviceInfo, cv::Size, UseRoi)
{
static void drawCircles(cv::Mat& dst, const std::vector<cv::Vec3f>& circles, bool fill)
{
dst.setTo(cv::Scalar::all(0));
for (size_t i = 0; i < circles.size(); ++i)
cv::circle(dst, cv::Point2f(circles[i][0], circles[i][1]), (int)circles[i][2], cv::Scalar::all(255), fill ? -1 : 1);
}
};
TEST_P(HoughCircles, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(1);
const bool useRoi = GET_PARAM(2);
const float dp = 2.0f;
const float minDist = 10.0f;
const int minRadius = 10;
const int maxRadius = 20;
const int cannyThreshold = 100;
const int votesThreshold = 20;
std::vector<cv::Vec3f> circles_gold(4);
circles_gold[0] = cv::Vec3i(20, 20, minRadius);
circles_gold[1] = cv::Vec3i(90, 87, minRadius + 3);
circles_gold[2] = cv::Vec3i(30, 70, minRadius + 8);
circles_gold[3] = cv::Vec3i(80, 10, maxRadius);
cv::Mat src(size, CV_8UC1);
drawCircles(src, circles_gold, true);
cv::gpu::GpuMat d_circles;
cv::gpu::HoughCircles(loadMat(src, useRoi), d_circles, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
std::vector<cv::Vec3f> circles;
cv::gpu::HoughCirclesDownload(d_circles, circles);
ASSERT_FALSE(circles.empty());
for (size_t i = 0; i < circles.size(); ++i)
{
cv::Vec3f cur = circles[i];
bool found = false;
for (size_t j = 0; j < circles_gold.size(); ++j)
{
cv::Vec3f gold = circles_gold[j];
if (std::fabs(cur[0] - gold[0]) < minDist && std::fabs(cur[1] - gold[1]) < minDist && std::fabs(cur[2] - gold[2]) < minDist)
{
found = true;
break;
}
}
ASSERT_TRUE(found);
}
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughCircles, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// GeneralizedHough
PARAM_TEST_CASE(GeneralizedHough, cv::gpu::DeviceInfo, UseRoi)
{
};
TEST_P(GeneralizedHough, POSITION)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const bool useRoi = GET_PARAM(1);
cv::Mat templ = readImage("../cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(templ.empty());
cv::Point templCenter(templ.cols / 2, templ.rows / 2);
const size_t gold_count = 3;
cv::Point pos_gold[gold_count];
pos_gold[0] = cv::Point(templCenter.x + 10, templCenter.y + 10);
pos_gold[1] = cv::Point(2 * templCenter.x + 40, templCenter.y + 10);
pos_gold[2] = cv::Point(2 * templCenter.x + 40, 2 * templCenter.y + 40);
cv::Mat image(templ.rows * 3, templ.cols * 3, CV_8UC1, cv::Scalar::all(0));
for (size_t i = 0; i < gold_count; ++i)
{
cv::Rect rec(pos_gold[i].x - templCenter.x, pos_gold[i].y - templCenter.y, templ.cols, templ.rows);
cv::Mat imageROI = image(rec);
templ.copyTo(imageROI);
}
cv::Ptr<cv::gpu::GeneralizedHough_GPU> hough = cv::gpu::GeneralizedHough_GPU::create(cv::GHT_POSITION);
hough->set("votesThreshold", 200);
hough->setTemplate(loadMat(templ, useRoi));
cv::gpu::GpuMat d_pos;
hough->detect(loadMat(image, useRoi), d_pos);
std::vector<cv::Vec4f> pos;
hough->download(d_pos, pos);
ASSERT_EQ(gold_count, pos.size());
for (size_t i = 0; i < gold_count; ++i)
{
cv::Point gold = pos_gold[i];
bool found = false;
for (size_t j = 0; j < pos.size(); ++j)
{
cv::Point2f p(pos[j][0], pos[j][1]);
if (::fabs(p.x - gold.x) < 2 && ::fabs(p.y - gold.y) < 2)
{
found = true;
break;
}
}
ASSERT_TRUE(found);
}
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, GeneralizedHough, testing::Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
} // namespace
#endif // HAVE_CUDA
......@@ -1126,142 +1126,6 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine(
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// HoughLines
PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, cv::Size, UseRoi)
{
static void generateLines(cv::Mat& img)
{
img.setTo(cv::Scalar::all(0));
cv::line(img, cv::Point(20, 0), cv::Point(20, img.rows), cv::Scalar::all(255));
cv::line(img, cv::Point(0, 50), cv::Point(img.cols, 50), cv::Scalar::all(255));
cv::line(img, cv::Point(0, 0), cv::Point(img.cols, img.rows), cv::Scalar::all(255));
cv::line(img, cv::Point(img.cols, 0), cv::Point(0, img.rows), cv::Scalar::all(255));
}
static void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines)
{
dst.setTo(cv::Scalar::all(0));
for (size_t i = 0; i < lines.size(); ++i)
{
float rho = lines[i][0], theta = lines[i][1];
cv::Point pt1, pt2;
double a = std::cos(theta), b = std::sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
cv::line(dst, pt1, pt2, cv::Scalar::all(255));
}
}
};
TEST_P(HoughLines, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(1);
const bool useRoi = GET_PARAM(2);
const float rho = 1.0f;
const float theta = 1.5f * CV_PI / 180.0f;
const int threshold = 100;
cv::Mat src(size, CV_8UC1);
generateLines(src);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLines(loadMat(src, useRoi), d_lines, rho, theta, threshold);
std::vector<cv::Vec2f> lines;
cv::gpu::HoughLinesDownload(d_lines, lines);
cv::Mat dst(size, CV_8UC1);
drawLines(dst, lines);
ASSERT_MAT_NEAR(src, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughLines, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// HoughCircles
PARAM_TEST_CASE(HoughCircles, cv::gpu::DeviceInfo, cv::Size, UseRoi)
{
static void drawCircles(cv::Mat& dst, const std::vector<cv::Vec3f>& circles, bool fill)
{
dst.setTo(cv::Scalar::all(0));
for (size_t i = 0; i < circles.size(); ++i)
cv::circle(dst, cv::Point2f(circles[i][0], circles[i][1]), (int)circles[i][2], cv::Scalar::all(255), fill ? -1 : 1);
}
};
TEST_P(HoughCircles, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(1);
const bool useRoi = GET_PARAM(2);
const float dp = 2.0f;
const float minDist = 10.0f;
const int minRadius = 10;
const int maxRadius = 20;
const int cannyThreshold = 100;
const int votesThreshold = 20;
std::vector<cv::Vec3f> circles_gold(4);
circles_gold[0] = cv::Vec3i(20, 20, minRadius);
circles_gold[1] = cv::Vec3i(90, 87, minRadius + 3);
circles_gold[2] = cv::Vec3i(30, 70, minRadius + 8);
circles_gold[3] = cv::Vec3i(80, 10, maxRadius);
cv::Mat src(size, CV_8UC1);
drawCircles(src, circles_gold, true);
cv::gpu::GpuMat d_circles;
cv::gpu::HoughCircles(loadMat(src, useRoi), d_circles, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
std::vector<cv::Vec3f> circles;
cv::gpu::HoughCirclesDownload(d_circles, circles);
ASSERT_FALSE(circles.empty());
for (size_t i = 0; i < circles.size(); ++i)
{
cv::Vec3f cur = circles[i];
bool found = false;
for (size_t j = 0; j < circles_gold.size(); ++j)
{
cv::Vec3f gold = circles_gold[j];
if (std::fabs(cur[0] - gold[0]) < minDist && std::fabs(cur[1] - gold[1]) < minDist && std::fabs(cur[2] - gold[2]) < minDist)
{
found = true;
break;
}
}
ASSERT_TRUE(found);
}
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughCircles, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
} // namespace
#endif // HAVE_CUDA
......@@ -489,6 +489,42 @@ CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
double param1=100, double param2=100,
int minRadius=0, int maxRadius=0 );
enum
{
GHT_POSITION = 0,
GHT_SCALE = 1,
GHT_ROTATION = 2
};
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
class CV_EXPORTS GeneralizedHough : public Algorithm
{
public:
static Ptr<GeneralizedHough> create(int method);
virtual ~GeneralizedHough();
//! set template to search
void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1));
//! find template on image
void detect(InputArray image, OutputArray positions, OutputArray votes = cv::noArray(), int cannyThreshold = 100);
void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = cv::noArray());
void release();
protected:
virtual void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter) = 0;
virtual void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) = 0;
virtual void releaseImpl() = 0;
private:
Mat edges_, dx_, dy_;
};
//! erodes the image (applies the local minimum operator)
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
Point anchor=Point(-1,-1), int iterations=1,
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace std;
using namespace cv;
namespace
{
/////////////////////////////////////
// Common
template <typename T, class A> void releaseVector(vector<T, A>& v)
{
vector<T, A> empty;
empty.swap(v);
}
double toRad(double a)
{
return a * CV_PI / 180.0;
}
bool notNull(float v)
{
return fabs(v) > numeric_limits<float>::epsilon();
}
bool notNull(double v)
{
return fabs(v) > numeric_limits<double>::epsilon();
}
class GHT_Pos : public GeneralizedHough
{
public:
GHT_Pos();
protected:
void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter);
void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes);
void releaseImpl();
virtual void processTempl() = 0;
virtual void processImage() = 0;
void filterMinDist();
void convertTo(OutputArray positions, OutputArray votes);
double minDist;
Size templSize;
Point templCenter;
Mat templEdges;
Mat templDx;
Mat templDy;
Size imageSize;
Mat imageEdges;
Mat imageDx;
Mat imageDy;
vector<Vec4f> posOutBuf;
vector<Vec3i> voteOutBuf;
};
GHT_Pos::GHT_Pos()
{
minDist = 1.0;
}
void GHT_Pos::setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter_)
{
templSize = edges.size();
templCenter = templCenter_;
edges.copyTo(templEdges);
dx.copyTo(templDx);
dy.copyTo(templDy);
processTempl();
}
void GHT_Pos::detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes)
{
imageSize = edges.size();
edges.copyTo(imageEdges);
dx.copyTo(imageDx);
dy.copyTo(imageDy);
posOutBuf.clear();
voteOutBuf.clear();
processImage();
if (!posOutBuf.empty())
{
if (minDist > 1)
filterMinDist();
convertTo(positions, votes);
}
else
{
positions.release();
if (votes.needed())
votes.release();
}
}
void GHT_Pos::releaseImpl()
{
templSize = Size();
templCenter = Point(-1, -1);
templEdges.release();
templDx.release();
templDy.release();
imageSize = Size();
imageEdges.release();
imageDx.release();
imageDy.release();
releaseVector(posOutBuf);
releaseVector(voteOutBuf);
}
#define votes_cmp_gt(l1, l2) (aux[l1][0] > aux[l2][0])
static CV_IMPLEMENT_QSORT_EX( sortIndexies, size_t, votes_cmp_gt, const Vec3i* )
void GHT_Pos::filterMinDist()
{
size_t oldSize = posOutBuf.size();
const bool hasVotes = !voteOutBuf.empty();
CV_Assert(!hasVotes || voteOutBuf.size() == oldSize);
vector<Vec4f> oldPosBuf(posOutBuf);
vector<Vec3i> oldVoteBuf(voteOutBuf);
vector<size_t> indexies(oldSize);
for (size_t i = 0; i < oldSize; ++i)
indexies[i] = i;
sortIndexies(&indexies[0], oldSize, &oldVoteBuf[0]);
posOutBuf.clear();
voteOutBuf.clear();
const int cellSize = cvRound(minDist);
const int gridWidth = (imageSize.width + cellSize - 1) / cellSize;
const int gridHeight = (imageSize.height + cellSize - 1) / cellSize;
vector< vector<Point2f> > grid(gridWidth * gridHeight);
const double minDist2 = minDist * minDist;
for (size_t i = 0; i < oldSize; ++i)
{
const size_t ind = indexies[i];
Point2f p(oldPosBuf[ind][0], oldPosBuf[ind][1]);
bool good = true;
const int xCell = static_cast<int>(p.x / cellSize);
const int yCell = static_cast<int>(p.y / cellSize);
int x1 = xCell - 1;
int y1 = yCell - 1;
int x2 = xCell + 1;
int y2 = yCell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
x2 = std::min(gridWidth - 1, x2);
y2 = std::min(gridHeight - 1, y2);
for (int yy = y1; yy <= y2; ++yy)
{
for (int xx = x1; xx <= x2; ++xx)
{
const vector<Point2f>& m = grid[yy * gridWidth + xx];
for(size_t j = 0; j < m.size(); ++j)
{
const Point2f d = p - m[j];
if (d.ddot(d) < minDist2)
{
good = false;
goto break_out;
}
}
}
}
break_out:
if(good)
{
grid[yCell * gridWidth + xCell].push_back(p);
posOutBuf.push_back(oldPosBuf[ind]);
if (hasVotes)
voteOutBuf.push_back(oldVoteBuf[ind]);
}
}
}
void GHT_Pos::convertTo(OutputArray _positions, OutputArray _votes)
{
const int total = static_cast<int>(posOutBuf.size());
const bool hasVotes = !voteOutBuf.empty();
CV_Assert(!hasVotes || voteOutBuf.size() == posOutBuf.size());
_positions.create(1, total, CV_32FC4);
Mat positions = _positions.getMat();
Mat(1, total, CV_32FC4, &posOutBuf[0]).copyTo(positions);
if (_votes.needed())
{
if (!hasVotes)
_votes.release();
else
{
_votes.create(1, total, CV_32SC3);
Mat votes = _votes.getMat();
Mat(1, total, CV_32SC3, &voteOutBuf[0]).copyTo(votes);
}
}
}
/////////////////////////////////////
// POSITION Ballard
class GHT_Ballard_Pos : public GHT_Pos
{
public:
AlgorithmInfo* info() const;
GHT_Ballard_Pos();
protected:
void releaseImpl();
void processTempl();
void processImage();
virtual void calcHist();
virtual void findPosInHist();
int levels;
int votesThreshold;
double dp;
vector< vector<Point> > r_table;
Mat hist;
};
CV_INIT_ALGORITHM(GHT_Ballard_Pos, "GeneralizedHough.POSITION",
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
"Minimum distance between the centers of the detected objects.");
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
"R-Table levels.");
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
"Inverse ratio of the accumulator resolution to the image resolution."));
GHT_Ballard_Pos::GHT_Ballard_Pos()
{
levels = 360;
votesThreshold = 100;
dp = 1.0;
}
void GHT_Ballard_Pos::releaseImpl()
{
GHT_Pos::releaseImpl();
releaseVector(r_table);
hist.release();
}
void GHT_Ballard_Pos::processTempl()
{
CV_Assert(templEdges.type() == CV_8UC1);
CV_Assert(templDx.type() == CV_32FC1 && templDx.size() == templSize);
CV_Assert(templDy.type() == templDx.type() && templDy.size() == templSize);
CV_Assert(levels > 0);
const double thetaScale = levels / 360.0;
r_table.resize(levels + 1);
for_each(r_table.begin(), r_table.end(), mem_fun_ref(&vector<Point>::clear));
for (int y = 0; y < templSize.height; ++y)
{
const uchar* edgesRow = templEdges.ptr(y);
const float* dxRow = templDx.ptr<float>(y);
const float* dyRow = templDy.ptr<float>(y);
for (int x = 0; x < templSize.width; ++x)
{
const Point p(x, y);
if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x])))
{
const float theta = fastAtan2(dyRow[x], dxRow[x]);
const int n = cvRound(theta * thetaScale);
r_table[n].push_back(p - templCenter);
}
}
}
}
void GHT_Ballard_Pos::processImage()
{
calcHist();
findPosInHist();
}
void GHT_Ballard_Pos::calcHist()
{
CV_Assert(imageEdges.type() == CV_8UC1);
CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize);
CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize);
CV_Assert(levels > 0 && r_table.size() == static_cast<size_t>(levels + 1));
CV_Assert(dp > 0.0);
const double thetaScale = levels / 360.0;
const double idp = 1.0 / dp;
hist.create(cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2, CV_32SC1);
hist.setTo(0);
const int rows = hist.rows - 2;
const int cols = hist.cols - 2;
for (int y = 0; y < imageSize.height; ++y)
{
const uchar* edgesRow = imageEdges.ptr(y);
const float* dxRow = imageDx.ptr<float>(y);
const float* dyRow = imageDy.ptr<float>(y);
for (int x = 0; x < imageSize.width; ++x)
{
const Point p(x, y);
if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x])))
{
const float theta = fastAtan2(dyRow[x], dxRow[x]);
const int n = cvRound(theta * thetaScale);
const vector<Point>& r_row = r_table[n];
for (size_t j = 0; j < r_row.size(); ++j)
{
Point c = p - r_row[j];
c.x = cvRound(c.x * idp);
c.y = cvRound(c.y * idp);
if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows)
++hist.at<int>(c.y + 1, c.x + 1);
}
}
}
}
}
void GHT_Ballard_Pos::findPosInHist()
{
CV_Assert(votesThreshold > 0);
const int histRows = hist.rows - 2;
const int histCols = hist.cols - 2;
for(int y = 0; y < histRows; ++y)
{
const int* prevRow = hist.ptr<int>(y);
const int* curRow = hist.ptr<int>(y + 1);
const int* nextRow = hist.ptr<int>(y + 2);
for(int x = 0; x < histCols; ++x)
{
const int votes = curRow[x + 1];
if (votes > votesThreshold && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1])
{
posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), 1.0f, 0.0f));
voteOutBuf.push_back(Vec3i(votes, 0, 0));
}
}
}
}
/////////////////////////////////////
// POSITION & SCALE
class GHT_Ballard_PosScale : public GHT_Ballard_Pos
{
public:
AlgorithmInfo* info() const;
GHT_Ballard_PosScale();
protected:
void calcHist();
void findPosInHist();
double minScale;
double maxScale;
double scaleStep;
class Worker;
friend class Worker;
};
CV_INIT_ALGORITHM(GHT_Ballard_PosScale, "GeneralizedHough.POSITION_SCALE",
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
"Minimum distance between the centers of the detected objects.");
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
"R-Table levels.");
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
"Inverse ratio of the accumulator resolution to the image resolution.");
obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0,
"Minimal scale to detect.");
obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0,
"Maximal scale to detect.");
obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0,
"Scale step."));
GHT_Ballard_PosScale::GHT_Ballard_PosScale()
{
minScale = 0.5;
maxScale = 2.0;
scaleStep = 0.05;
}
class GHT_Ballard_PosScale::Worker : public ParallelLoopBody
{
public:
explicit Worker(GHT_Ballard_PosScale* base_) : base(base_) {}
void operator ()(const Range& range) const;
private:
GHT_Ballard_PosScale* base;
};
void GHT_Ballard_PosScale::Worker::operator ()(const Range& range) const
{
const double thetaScale = base->levels / 360.0;
const double idp = 1.0 / base->dp;
for (int s = range.start; s < range.end; ++s)
{
const double scale = base->minScale + s * base->scaleStep;
Mat curHist(base->hist.size[1], base->hist.size[2], CV_32SC1, base->hist.ptr(s + 1), base->hist.step[1]);
for (int y = 0; y < base->imageSize.height; ++y)
{
const uchar* edgesRow = base->imageEdges.ptr(y);
const float* dxRow = base->imageDx.ptr<float>(y);
const float* dyRow = base->imageDy.ptr<float>(y);
for (int x = 0; x < base->imageSize.width; ++x)
{
const Point2d p(x, y);
if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x])))
{
const float theta = fastAtan2(dyRow[x], dxRow[x]);
const int n = cvRound(theta * thetaScale);
const vector<Point>& r_row = base->r_table[n];
for (size_t j = 0; j < r_row.size(); ++j)
{
Point2d d = r_row[j];
Point2d c = p - d * scale;
c.x *= idp;
c.y *= idp;
if (c.x >= 0 && c.x < base->hist.size[2] - 2 && c.y >= 0 && c.y < base->hist.size[1] - 2)
++curHist.at<int>(cvRound(c.y + 1), cvRound(c.x + 1));
}
}
}
}
}
}
void GHT_Ballard_PosScale::calcHist()
{
CV_Assert(imageEdges.type() == CV_8UC1);
CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize);
CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize);
CV_Assert(levels > 0 && r_table.size() == static_cast<size_t>(levels + 1));
CV_Assert(dp > 0.0);
CV_Assert(minScale > 0.0 && minScale < maxScale);
CV_Assert(scaleStep > 0.0);
const double idp = 1.0 / dp;
const int scaleRange = cvCeil((maxScale - minScale) / scaleStep);
const int sizes[] = {scaleRange + 2, cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2};
hist.create(3, sizes, CV_32SC1);
hist.setTo(0);
parallel_for_(Range(0, scaleRange), Worker(this));
}
void GHT_Ballard_PosScale::findPosInHist()
{
CV_Assert(votesThreshold > 0);
const int scaleRange = hist.size[0] - 2;
const int histRows = hist.size[1] - 2;
const int histCols = hist.size[2] - 2;
for (int s = 0; s < scaleRange; ++s)
{
const float scale = static_cast<float>(minScale + s * scaleStep);
const Mat prevHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s), hist.step[1]);
const Mat curHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s + 1), hist.step[1]);
const Mat nextHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s + 2), hist.step[1]);
for(int y = 0; y < histRows; ++y)
{
const int* prevHistRow = prevHist.ptr<int>(y + 1);
const int* prevRow = curHist.ptr<int>(y);
const int* curRow = curHist.ptr<int>(y + 1);
const int* nextRow = curHist.ptr<int>(y + 2);
const int* nextHistRow = nextHist.ptr<int>(y + 1);
for(int x = 0; x < histCols; ++x)
{
const int votes = curRow[x + 1];
if (votes > votesThreshold &&
votes > curRow[x] &&
votes >= curRow[x + 2] &&
votes > prevRow[x + 1] &&
votes >= nextRow[x + 1] &&
votes > prevHistRow[x + 1] &&
votes >= nextHistRow[x + 1])
{
posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), scale, 0.0f));
voteOutBuf.push_back(Vec3i(votes, votes, 0));
}
}
}
}
}
/////////////////////////////////////
// POSITION & ROTATION
class GHT_Ballard_PosRotation : public GHT_Ballard_Pos
{
public:
AlgorithmInfo* info() const;
GHT_Ballard_PosRotation();
protected:
void calcHist();
void findPosInHist();
double minAngle;
double maxAngle;
double angleStep;
class Worker;
friend class Worker;
};
CV_INIT_ALGORITHM(GHT_Ballard_PosRotation, "GeneralizedHough.POSITION_ROTATION",
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
"Minimum distance between the centers of the detected objects.");
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
"R-Table levels.");
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
"Inverse ratio of the accumulator resolution to the image resolution.");
obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0,
"Minimal rotation angle to detect in degrees.");
obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0,
"Maximal rotation angle to detect in degrees.");
obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0,
"Angle step in degrees."));
GHT_Ballard_PosRotation::GHT_Ballard_PosRotation()
{
minAngle = 0.0;
maxAngle = 360.0;
angleStep = 1.0;
}
class GHT_Ballard_PosRotation::Worker : public ParallelLoopBody
{
public:
explicit Worker(GHT_Ballard_PosRotation* base_) : base(base_) {}
void operator ()(const Range& range) const;
private:
GHT_Ballard_PosRotation* base;
};
void GHT_Ballard_PosRotation::Worker::operator ()(const Range& range) const
{
const double thetaScale = base->levels / 360.0;
const double idp = 1.0 / base->dp;
for (int a = range.start; a < range.end; ++a)
{
const double angle = base->minAngle + a * base->angleStep;
const double sinA = ::sin(toRad(angle));
const double cosA = ::cos(toRad(angle));
Mat curHist(base->hist.size[1], base->hist.size[2], CV_32SC1, base->hist.ptr(a + 1), base->hist.step[1]);
for (int y = 0; y < base->imageSize.height; ++y)
{
const uchar* edgesRow = base->imageEdges.ptr(y);
const float* dxRow = base->imageDx.ptr<float>(y);
const float* dyRow = base->imageDy.ptr<float>(y);
for (int x = 0; x < base->imageSize.width; ++x)
{
const Point2d p(x, y);
if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x])))
{
double theta = fastAtan2(dyRow[x], dxRow[x]) - angle;
if (theta < 0)
theta += 360.0;
const int n = cvRound(theta * thetaScale);
const vector<Point>& r_row = base->r_table[n];
for (size_t j = 0; j < r_row.size(); ++j)
{
Point2d d = r_row[j];
Point2d c = p - Point2d(d.x * cosA - d.y * sinA, d.x * sinA + d.y * cosA);
c.x *= idp;
c.y *= idp;
if (c.x >= 0 && c.x < base->hist.size[2] - 2 && c.y >= 0 && c.y < base->hist.size[1] - 2)
++curHist.at<int>(cvRound(c.y + 1), cvRound(c.x + 1));
}
}
}
}
}
}
void GHT_Ballard_PosRotation::calcHist()
{
CV_Assert(imageEdges.type() == CV_8UC1);
CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize);
CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize);
CV_Assert(levels > 0 && r_table.size() == static_cast<size_t>(levels + 1));
CV_Assert(dp > 0.0);
CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0);
CV_Assert(angleStep > 0.0 && angleStep < 360.0);
const double idp = 1.0 / dp;
const int angleRange = cvCeil((maxAngle - minAngle) / angleStep);
const int sizes[] = {angleRange + 2, cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2};
hist.create(3, sizes, CV_32SC1);
hist.setTo(0);
parallel_for_(Range(0, angleRange), Worker(this));
}
void GHT_Ballard_PosRotation::findPosInHist()
{
CV_Assert(votesThreshold > 0);
const int angleRange = hist.size[0] - 2;
const int histRows = hist.size[1] - 2;
const int histCols = hist.size[2] - 2;
for (int a = 0; a < angleRange; ++a)
{
const float angle = static_cast<float>(minAngle + a * angleStep);
const Mat prevHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a), hist.step[1]);
const Mat curHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a + 1), hist.step[1]);
const Mat nextHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a + 2), hist.step[1]);
for(int y = 0; y < histRows; ++y)
{
const int* prevHistRow = prevHist.ptr<int>(y + 1);
const int* prevRow = curHist.ptr<int>(y);
const int* curRow = curHist.ptr<int>(y + 1);
const int* nextRow = curHist.ptr<int>(y + 2);
const int* nextHistRow = nextHist.ptr<int>(y + 1);
for(int x = 0; x < histCols; ++x)
{
const int votes = curRow[x + 1];
if (votes > votesThreshold &&
votes > curRow[x] &&
votes >= curRow[x + 2] &&
votes > prevRow[x + 1] &&
votes >= nextRow[x + 1] &&
votes > prevHistRow[x + 1] &&
votes >= nextHistRow[x + 1])
{
posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), 1.0f, angle));
voteOutBuf.push_back(Vec3i(votes, 0, votes));
}
}
}
}
}
/////////////////////////////////////////
// POSITION & SCALE & ROTATION
double clampAngle(double a)
{
double res = a;
while (res > 360.0)
res -= 360.0;
while (res < 0)
res += 360.0;
return res;
}
bool angleEq(double a, double b, double eps = 1.0)
{
return (fabs(clampAngle(a - b)) <= eps);
}
class GHT_Guil_Full : public GHT_Pos
{
public:
AlgorithmInfo* info() const;
GHT_Guil_Full();
protected:
void releaseImpl();
void processTempl();
void processImage();
struct ContourPoint
{
Point2d pos;
double theta;
};
struct Feature
{
ContourPoint p1;
ContourPoint p2;
double alpha12;
double d12;
Point2d r1;
Point2d r2;
};
void buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, vector< vector<Feature> >& features, Point2d center = Point2d());
void getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, vector<ContourPoint>& points);
void calcOrientation();
void calcScale(double angle);
void calcPosition(double angle, int angleVotes, double scale, int scaleVotes);
int maxSize;
double xi;
int levels;
double angleEpsilon;
double minAngle;
double maxAngle;
double angleStep;
int angleThresh;
double minScale;
double maxScale;
double scaleStep;
int scaleThresh;
double dp;
int posThresh;
vector< vector<Feature> > templFeatures;
vector< vector<Feature> > imageFeatures;
vector< pair<double, int> > angles;
vector< pair<double, int> > scales;
};
CV_INIT_ALGORITHM(GHT_Guil_Full, "GeneralizedHough.POSITION_SCALE_ROTATION",
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
"Minimum distance between the centers of the detected objects.");
obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0,
"Maximal size of inner buffers.");
obj.info()->addParam(obj, "xi", obj.xi, false, 0, 0,
"Angle difference in degrees between two points in feature.");
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
"Feature table levels.");
obj.info()->addParam(obj, "angleEpsilon", obj.angleEpsilon, false, 0, 0,
"Maximal difference between angles that treated as equal.");
obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0,
"Minimal rotation angle to detect in degrees.");
obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0,
"Maximal rotation angle to detect in degrees.");
obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0,
"Angle step in degrees.");
obj.info()->addParam(obj, "angleThresh", obj.angleThresh, false, 0, 0,
"Angle threshold.");
obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0,
"Minimal scale to detect.");
obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0,
"Maximal scale to detect.");
obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0,
"Scale step.");
obj.info()->addParam(obj, "scaleThresh", obj.scaleThresh, false, 0, 0,
"Scale threshold.");
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
"Inverse ratio of the accumulator resolution to the image resolution.");
obj.info()->addParam(obj, "posThresh", obj.posThresh, false, 0, 0,
"Position threshold."));
GHT_Guil_Full::GHT_Guil_Full()
{
maxSize = 1000;
xi = 90.0;
levels = 360;
angleEpsilon = 1.0;
minAngle = 0.0;
maxAngle = 360.0;
angleStep = 1.0;
angleThresh = 15000;
minScale = 0.5;
maxScale = 2.0;
scaleStep = 0.05;
scaleThresh = 1000;
dp = 1.0;
posThresh = 100;
}
void GHT_Guil_Full::releaseImpl()
{
GHT_Pos::releaseImpl();
releaseVector(templFeatures);
releaseVector(imageFeatures);
releaseVector(angles);
releaseVector(scales);
}
void GHT_Guil_Full::processTempl()
{
buildFeatureList(templEdges, templDx, templDy, templFeatures, templCenter);
}
void GHT_Guil_Full::processImage()
{
buildFeatureList(imageEdges, imageDx, imageDy, imageFeatures);
calcOrientation();
for (size_t i = 0; i < angles.size(); ++i)
{
const double angle = angles[i].first;
const int angleVotes = angles[i].second;
calcScale(angle);
for (size_t j = 0; j < scales.size(); ++j)
{
const double scale = scales[j].first;
const int scaleVotes = scales[j].second;
calcPosition(angle, angleVotes, scale, scaleVotes);
}
}
}
void GHT_Guil_Full::buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, vector< vector<Feature> >& features, Point2d center)
{
CV_Assert(levels > 0);
const double maxDist = sqrt((double) templSize.width * templSize.width + templSize.height * templSize.height) * maxScale;
const double alphaScale = levels / 360.0;
vector<ContourPoint> points;
getContourPoints(edges, dx, dy, points);
features.resize(levels + 1);
for_each(features.begin(), features.end(), mem_fun_ref(&vector<Feature>::clear));
for_each(features.begin(), features.end(), bind2nd(mem_fun_ref(&vector<Feature>::reserve), maxSize));
for (size_t i = 0; i < points.size(); ++i)
{
ContourPoint p1 = points[i];
for (size_t j = 0; j < points.size(); ++j)
{
ContourPoint p2 = points[j];
if (angleEq(p1.theta - p2.theta, xi, angleEpsilon))
{
const Point2d d = p1.pos - p2.pos;
Feature f;
f.p1 = p1;
f.p2 = p2;
f.alpha12 = clampAngle(fastAtan2(d.y, d.x) - p1.theta);
f.d12 = norm(d);
if (f.d12 > maxDist)
continue;
f.r1 = p1.pos - center;
f.r2 = p2.pos - center;
const int n = cvRound(f.alpha12 * alphaScale);
if (features[n].size() < static_cast<size_t>(maxSize))
features[n].push_back(f);
}
}
}
}
void GHT_Guil_Full::getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, vector<ContourPoint>& points)
{
CV_Assert(edges.type() == CV_8UC1);
CV_Assert(dx.type() == CV_32FC1 && dx.size == edges.size);
CV_Assert(dy.type() == dx.type() && dy.size == edges.size);
points.clear();
points.reserve(edges.size().area());
for (int y = 0; y < edges.rows; ++y)
{
const uchar* edgesRow = edges.ptr(y);
const float* dxRow = dx.ptr<float>(y);
const float* dyRow = dy.ptr<float>(y);
for (int x = 0; x < edges.cols; ++x)
{
if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x])))
{
ContourPoint p;
p.pos = Point2d(x, y);
p.theta = fastAtan2(dyRow[x], dxRow[x]);
points.push_back(p);
}
}
}
}
void GHT_Guil_Full::calcOrientation()
{
CV_Assert(levels > 0);
CV_Assert(templFeatures.size() == static_cast<size_t>(levels + 1));
CV_Assert(imageFeatures.size() == templFeatures.size());
CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0);
CV_Assert(angleStep > 0.0 && angleStep < 360.0);
CV_Assert(angleThresh > 0);
const double iAngleStep = 1.0 / angleStep;
const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep);
vector<int> OHist(angleRange + 1, 0);
for (int i = 0; i <= levels; ++i)
{
const vector<Feature>& templRow = templFeatures[i];
const vector<Feature>& imageRow = imageFeatures[i];
for (size_t j = 0; j < templRow.size(); ++j)
{
Feature templF = templRow[j];
for (size_t k = 0; k < imageRow.size(); ++k)
{
Feature imF = imageRow[k];
const double angle = clampAngle(imF.p1.theta - templF.p1.theta);
if (angle >= minAngle && angle <= maxAngle)
{
const int n = cvRound((angle - minAngle) * iAngleStep);
++OHist[n];
}
}
}
}
angles.clear();
for (int n = 0; n < angleRange; ++n)
{
if (OHist[n] >= angleThresh)
{
const double angle = minAngle + n * angleStep;
angles.push_back(make_pair(angle, OHist[n]));
}
}
}
void GHT_Guil_Full::calcScale(double angle)
{
CV_Assert(levels > 0);
CV_Assert(templFeatures.size() == static_cast<size_t>(levels + 1));
CV_Assert(imageFeatures.size() == templFeatures.size());
CV_Assert(minScale > 0.0 && minScale < maxScale);
CV_Assert(scaleStep > 0.0);
CV_Assert(scaleThresh > 0);
const double iScaleStep = 1.0 / scaleStep;
const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep);
vector<int> SHist(scaleRange + 1, 0);
for (int i = 0; i <= levels; ++i)
{
const vector<Feature>& templRow = templFeatures[i];
const vector<Feature>& imageRow = imageFeatures[i];
for (size_t j = 0; j < templRow.size(); ++j)
{
Feature templF = templRow[j];
templF.p1.theta += angle;
for (size_t k = 0; k < imageRow.size(); ++k)
{
Feature imF = imageRow[k];
if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon))
{
const double scale = imF.d12 / templF.d12;
if (scale >= minScale && scale <= maxScale)
{
const int s = cvRound((scale - minScale) * iScaleStep);
++SHist[s];
}
}
}
}
}
scales.clear();
for (int s = 0; s < scaleRange; ++s)
{
if (SHist[s] >= scaleThresh)
{
const double scale = minScale + s * scaleStep;
scales.push_back(make_pair(scale, SHist[s]));
}
}
}
void GHT_Guil_Full::calcPosition(double angle, int angleVotes, double scale, int scaleVotes)
{
CV_Assert(levels > 0);
CV_Assert(templFeatures.size() == static_cast<size_t>(levels + 1));
CV_Assert(imageFeatures.size() == templFeatures.size());
CV_Assert(dp > 0.0);
CV_Assert(posThresh > 0);
const double sinVal = sin(toRad(angle));
const double cosVal = cos(toRad(angle));
const double idp = 1.0 / dp;
const int histRows = cvCeil(imageSize.height * idp);
const int histCols = cvCeil(imageSize.width * idp);
Mat DHist(histRows + 2, histCols + 2, CV_32SC1, Scalar::all(0));
for (int i = 0; i <= levels; ++i)
{
const vector<Feature>& templRow = templFeatures[i];
const vector<Feature>& imageRow = imageFeatures[i];
for (size_t j = 0; j < templRow.size(); ++j)
{
Feature templF = templRow[j];
templF.p1.theta += angle;
templF.r1 *= scale;
templF.r2 *= scale;
templF.r1 = Point2d(cosVal * templF.r1.x - sinVal * templF.r1.y, sinVal * templF.r1.x + cosVal * templF.r1.y);
templF.r2 = Point2d(cosVal * templF.r2.x - sinVal * templF.r2.y, sinVal * templF.r2.x + cosVal * templF.r2.y);
for (size_t k = 0; k < imageRow.size(); ++k)
{
Feature imF = imageRow[k];
if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon))
{
Point2d c1, c2;
c1 = imF.p1.pos - templF.r1;
c1 *= idp;
c2 = imF.p2.pos - templF.r2;
c2 *= idp;
if (fabs(c1.x - c2.x) > 1 || fabs(c1.y - c2.y) > 1)
continue;
if (c1.y >= 0 && c1.y < histRows && c1.x >= 0 && c1.x < histCols)
++DHist.at<int>(cvRound(c1.y) + 1, cvRound(c1.x) + 1);
}
}
}
}
for(int y = 0; y < histRows; ++y)
{
const int* prevRow = DHist.ptr<int>(y);
const int* curRow = DHist.ptr<int>(y + 1);
const int* nextRow = DHist.ptr<int>(y + 2);
for(int x = 0; x < histCols; ++x)
{
const int votes = curRow[x + 1];
if (votes > posThresh && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1])
{
posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), static_cast<float>(scale), static_cast<float>(angle)));
voteOutBuf.push_back(Vec3i(votes, scaleVotes, angleVotes));
}
}
}
}
}
Ptr<GeneralizedHough> cv::GeneralizedHough::create(int method)
{
switch (method)
{
case GHT_POSITION:
CV_Assert( !GHT_Ballard_Pos_info_auto.name().empty() );
return new GHT_Ballard_Pos();
case (GHT_POSITION | GHT_SCALE):
CV_Assert( !GHT_Ballard_PosScale_info_auto.name().empty() );
return new GHT_Ballard_PosScale();
case (GHT_POSITION | GHT_ROTATION):
CV_Assert( !GHT_Ballard_PosRotation_info_auto.name().empty() );
return new GHT_Ballard_PosRotation();
case (GHT_POSITION | GHT_SCALE | GHT_ROTATION):
CV_Assert( !GHT_Guil_Full_info_auto.name().empty() );
return new GHT_Guil_Full();
}
CV_Error(CV_StsBadArg, "Unsupported method");
return Ptr<GeneralizedHough>();
}
cv::GeneralizedHough::~GeneralizedHough()
{
}
void cv::GeneralizedHough::setTemplate(InputArray _templ, int cannyThreshold, Point templCenter)
{
Mat templ = _templ.getMat();
CV_Assert(templ.type() == CV_8UC1);
CV_Assert(cannyThreshold > 0);
Canny(templ, edges_, cannyThreshold / 2, cannyThreshold);
Sobel(templ, dx_, CV_32F, 1, 0);
Sobel(templ, dy_, CV_32F, 0, 1);
if (templCenter == Point(-1, -1))
templCenter = Point(templ.cols / 2, templ.rows / 2);
setTemplateImpl(edges_, dx_, dy_, templCenter);
}
void cv::GeneralizedHough::setTemplate(InputArray _edges, InputArray _dx, InputArray _dy, Point templCenter)
{
Mat edges = _edges.getMat();
Mat dx = _dx.getMat();
Mat dy = _dy.getMat();
if (templCenter == Point(-1, -1))
templCenter = Point(edges.cols / 2, edges.rows / 2);
setTemplateImpl(edges, dx, dy, templCenter);
}
void cv::GeneralizedHough::detect(InputArray _image, OutputArray positions, OutputArray votes, int cannyThreshold)
{
Mat image = _image.getMat();
CV_Assert(image.type() == CV_8UC1);
CV_Assert(cannyThreshold > 0);
Canny(image, edges_, cannyThreshold / 2, cannyThreshold);
Sobel(image, dx_, CV_32F, 1, 0);
Sobel(image, dy_, CV_32F, 0, 1);
detectImpl(edges_, dx_, dy_, positions, votes);
}
void cv::GeneralizedHough::detect(InputArray _edges, InputArray _dx, InputArray _dy, OutputArray positions, OutputArray votes)
{
cv::Mat edges = _edges.getMat();
cv::Mat dx = _dx.getMat();
cv::Mat dy = _dy.getMat();
detectImpl(edges, dx, dy, positions, votes);
}
void cv::GeneralizedHough::release()
{
edges_.release();
dx_.release();
dy_.release();
releaseImpl();
}
#include <vector>
#include <iostream>
#include <string>
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/gpu/gpu.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/contrib/contrib.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
static Mat loadImage(const string& name)
{
Mat image = imread(name, IMREAD_GRAYSCALE);
if (image.empty())
{
cerr << "Can't load image - " << name << endl;
exit(-1);
}
return image;
}
int main(int argc, const char* argv[])
{
CommandLineParser cmd(argc, argv,
"{ image i | pic1.png | input image }"
"{ template t | templ.png | template image }"
"{ scale s | | estimate scale }"
"{ rotation r | | estimate rotation }"
"{ gpu | | use gpu version }"
"{ minDist | 100 | minimum distance between the centers of the detected objects }"
"{ levels | 360 | R-Table levels }"
"{ votesThreshold | 30 | the accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected }"
"{ angleThresh | 10000 | angle votes treshold }"
"{ scaleThresh | 1000 | scale votes treshold }"
"{ posThresh | 100 | position votes threshold }"
"{ dp | 2 | inverse ratio of the accumulator resolution to the image resolution }"
"{ minScale | 0.5 | minimal scale to detect }"
"{ maxScale | 2 | maximal scale to detect }"
"{ scaleStep | 0.05 | scale step }"
"{ minAngle | 0 | minimal rotation angle to detect in degrees }"
"{ maxAngle | 360 | maximal rotation angle to detect in degrees }"
"{ angleStep | 1 | angle step in degrees }"
"{ maxSize | 1000 | maximal size of inner buffers }"
"{ help h ? | | print help message }"
);
cmd.about("This program demonstrates arbitary object finding with the Generalized Hough transform.");
if (cmd.has("help"))
{
cmd.printMessage();
return 0;
}
const string templName = cmd.get<string>("template");
const string imageName = cmd.get<string>("image");
const bool estimateScale = cmd.has("scale");
const bool estimateRotation = cmd.has("rotation");
const bool useGpu = cmd.has("gpu");
const double minDist = cmd.get<double>("minDist");
const int levels = cmd.get<int>("levels");
const int votesThreshold = cmd.get<int>("votesThreshold");
const int angleThresh = cmd.get<int>("angleThresh");
const int scaleThresh = cmd.get<int>("scaleThresh");
const int posThresh = cmd.get<int>("posThresh");
const double dp = cmd.get<double>("dp");
const double minScale = cmd.get<double>("minScale");
const double maxScale = cmd.get<double>("maxScale");
const double scaleStep = cmd.get<double>("scaleStep");
const double minAngle = cmd.get<double>("minAngle");
const double maxAngle = cmd.get<double>("maxAngle");
const double angleStep = cmd.get<double>("angleStep");
const int maxSize = cmd.get<int>("maxSize");
if (!cmd.check())
{
cmd.printErrors();
return -1;
}
Mat templ = loadImage(templName);
Mat image = loadImage(imageName);
int method = GHT_POSITION;
if (estimateScale)
method += GHT_SCALE;
if (estimateRotation)
method += GHT_ROTATION;
vector<Vec4f> position;
cv::TickMeter tm;
if (useGpu)
{
GpuMat d_templ(templ);
GpuMat d_image(image);
GpuMat d_position;
Ptr<GeneralizedHough_GPU> d_hough = GeneralizedHough_GPU::create(method);
d_hough->set("minDist", minDist);
d_hough->set("levels", levels);
d_hough->set("dp", dp);
d_hough->set("maxSize", maxSize);
if (estimateScale && estimateRotation)
{
d_hough->set("angleThresh", angleThresh);
d_hough->set("scaleThresh", scaleThresh);
d_hough->set("posThresh", posThresh);
}
else
{
d_hough->set("votesThreshold", votesThreshold);
}
if (estimateScale)
{
d_hough->set("minScale", minScale);
d_hough->set("maxScale", maxScale);
d_hough->set("scaleStep", scaleStep);
}
if (estimateRotation)
{
d_hough->set("minAngle", minAngle);
d_hough->set("maxAngle", maxAngle);
d_hough->set("angleStep", angleStep);
}
d_hough->setTemplate(d_templ);
tm.start();
d_hough->detect(d_image, d_position);
d_hough->download(d_position, position);
tm.stop();
}
else
{
Ptr<GeneralizedHough> hough = GeneralizedHough::create(method);
hough->set("minDist", minDist);
hough->set("levels", levels);
hough->set("dp", dp);
if (estimateScale && estimateRotation)
{
hough->set("angleThresh", angleThresh);
hough->set("scaleThresh", scaleThresh);
hough->set("posThresh", posThresh);
hough->set("maxSize", maxSize);
}
else
{
hough->set("votesThreshold", votesThreshold);
}
if (estimateScale)
{
hough->set("minScale", minScale);
hough->set("maxScale", maxScale);
hough->set("scaleStep", scaleStep);
}
if (estimateRotation)
{
hough->set("minAngle", minAngle);
hough->set("maxAngle", maxAngle);
hough->set("angleStep", angleStep);
}
hough->setTemplate(templ);
tm.start();
hough->detect(image, position);
tm.stop();
}
cout << "Found : " << position.size() << " objects" << endl;
cout << "Detection time : " << tm.getTimeMilli() << " ms" << endl;
Mat out;
cvtColor(image, out, COLOR_GRAY2BGR);
for (size_t i = 0; i < position.size(); ++i)
{
Point2f pos(position[i][0], position[i][1]);
float scale = position[i][2];
float angle = position[i][3];
RotatedRect rect;
rect.center = pos;
rect.size = Size2f(templ.cols * scale, templ.rows * scale);
rect.angle = angle;
Point2f pts[4];
rect.points(pts);
line(out, pts[0], pts[1], Scalar(0, 0, 255), 3);
line(out, pts[1], pts[2], Scalar(0, 0, 255), 3);
line(out, pts[2], pts[3], Scalar(0, 0, 255), 3);
line(out, pts[3], pts[0], Scalar(0, 0, 255), 3);
}
imshow("out", out);
waitKey();
return 0;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment