Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
9698b93d
Commit
9698b93d
authored
Feb 01, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #10717 from pengli:dnn
parents
78ce5b81
6aec71d7
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
536 additions
and
22 deletions
+536
-22
batch_norm_layer.cpp
modules/dnn/src/layers/batch_norm_layer.cpp
+1
-1
eltwise_layer.cpp
modules/dnn/src/layers/eltwise_layer.cpp
+40
-14
mvn_layer.cpp
modules/dnn/src/layers/mvn_layer.cpp
+71
-5
slice_layer.cpp
modules/dnn/src/layers/slice_layer.cpp
+49
-0
eltwise.cl
modules/dnn/src/opencl/eltwise.cl
+98
-0
mvn.cl
modules/dnn/src/opencl/mvn.cl
+180
-0
slice.cl
modules/dnn/src/opencl/slice.cl
+87
-0
test_layers.cpp
modules/dnn/test/test_layers.cpp
+10
-2
No files found.
modules/dnn/src/layers/batch_norm_layer.cpp
View file @
9698b93d
...
...
@@ -144,7 +144,7 @@ public:
UMat
src
=
inputs
[
ii
].
reshape
(
1
,
s
.
size
(),
&
s
[
0
]);
UMat
dst
=
outputs
[
ii
].
reshape
(
1
,
s
.
size
(),
&
s
[
0
]);
int
number
=
(
s
[
1
]
%
8
==
0
)
?
8
:
((
s
[
1
]
%
4
==
0
)
?
4
:
1
);
String
buildopt
=
format
(
"-DNUM=%d
"
,
number
);
String
buildopt
=
format
(
"-DNUM=%d"
,
number
);
String
kname
=
format
(
"batch_norm%d"
,
number
);
ocl
::
Kernel
kernel
(
kname
.
c_str
(),
ocl
::
dnn
::
batchnorm_oclsrc
,
buildopt
);
if
(
kernel
.
empty
())
...
...
modules/dnn/src/layers/eltwise_layer.cpp
View file @
9698b93d
...
...
@@ -43,6 +43,7 @@
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
#include "opencl_kernels_dnn.hpp"
namespace
cv
{
...
...
@@ -271,22 +272,47 @@ public:
switch
(
op
)
{
case
SUM
:
if
(
coeffs
.
empty
())
{
add
(
inputs
[
0
],
inputs
[
1
],
outputs
[
0
]);
for
(
int
i
=
2
;
i
<
inputs
.
size
();
++
i
)
add
(
outputs
[
0
],
inputs
[
i
],
outputs
[
0
]);
}
else
{
UMat
mul0
,
mul1
;
multiply
(
coeffs
[
0
],
inputs
[
0
],
mul0
);
multiply
(
coeffs
[
1
],
inputs
[
1
],
mul1
);
add
(
mul0
,
mul1
,
outputs
[
0
]);
for
(
int
i
=
2
;
i
<
inputs
.
size
();
++
i
)
int
channels
=
total
(
shape
(
outputs
[
0
]),
0
,
2
);
int
plane_size
=
total
(
shape
(
outputs
[
0
]),
2
);
if
(
channels
%
4
==
0
&&
plane_size
%
4
==
0
)
{
size_t
localsize
[]
=
{
128
};
size_t
globalsize
[]
=
{
(
size_t
)
channels
/
4
*
localsize
[
0
]
};
for
(
int
i
=
0
;
i
<
(
inputs
.
size
()
-
1
);
++
i
)
{
String
buildopt
=
format
(
"-DLOOP=%d"
,
i
);
ocl
::
Kernel
kernel
(
"op_sum4"
,
ocl
::
dnn
::
eltwise_oclsrc
,
buildopt
);
int
idx
=
0
;
UMat
inpMat
=
(
i
==
0
)
?
inputs
[
0
]
:
UMat
();
float
coeff1
=
(
coeffs
.
empty
()
||
i
>
0
)
?
1.0
f
:
coeffs
[
i
];
float
coeff2
=
coeffs
.
empty
()
?
1.0
f
:
coeffs
[
i
+
1
];
kernel
.
set
(
idx
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
inputs
[
0
]));
kernel
.
set
(
idx
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
inputs
[
1
]));
kernel
.
set
(
idx
++
,
(
int
)
plane_size
);
kernel
.
set
(
idx
++
,
(
float
)
coeff1
);
kernel
.
set
(
idx
++
,
(
float
)
coeff2
);
kernel
.
set
(
idx
++
,
ocl
::
KernelArg
::
PtrReadWrite
(
outputs
[
0
]));
bool
ret
=
kernel
.
run
(
1
,
globalsize
,
localsize
,
false
);
if
(
!
ret
)
return
false
;
}
}
else
{
multiply
(
coeffs
[
i
],
inputs
[
i
],
mul0
);
add
(
mul0
,
outputs
[
0
],
outputs
[
0
]);
float
coeff1
=
coeffs
.
empty
()
?
1.
f
:
coeffs
[
0
];
float
coeff2
=
coeffs
.
empty
()
?
1.
f
:
coeffs
[
1
];
UMat
mul0
,
mul1
;
multiply
(
coeff1
,
inputs
[
0
],
mul0
);
multiply
(
coeff2
,
inputs
[
1
],
mul1
);
add
(
mul0
,
mul1
,
outputs
[
0
]);
for
(
int
i
=
2
;
i
<
inputs
.
size
();
++
i
)
{
float
coeff
=
coeffs
.
empty
()
?
1.
f
:
coeffs
[
i
];
multiply
(
coeff
,
inputs
[
i
],
mul0
);
add
(
mul0
,
outputs
[
0
],
outputs
[
0
]);
}
}
}
break
;
...
...
modules/dnn/src/layers/mvn_layer.cpp
View file @
9698b93d
...
...
@@ -93,6 +93,67 @@ public:
}
#ifdef HAVE_OPENCL
bool
fast_forward_ocl
(
std
::
vector
<
UMat
>
&
inputs
,
std
::
vector
<
UMat
>
&
outputs
)
{
if
(
fuse_batch_norm
&&
scale
.
empty
())
{
bnorm
->
getScaleShift
(
scale
,
shift
);
bnorm_weight
=
scale
.
getUMat
(
ACCESS_READ
);
bnorm_bias
=
shift
.
getUMat
(
ACCESS_READ
);
}
int
splitDim
=
(
acrossChannels
)
?
1
:
2
;
for
(
size_t
inpIdx
=
0
;
inpIdx
<
inputs
.
size
();
inpIdx
++
)
{
UMat
&
inpMat
=
inputs
[
inpIdx
];
UMat
&
outMat
=
outputs
[
inpIdx
];
int
newRows
=
total
(
shape
(
inpMat
),
0
,
splitDim
);
MatShape
s
=
shape
(
newRows
,
inpMat
.
total
()
/
newRows
);
UMat
oneMat
=
UMat
::
ones
(
s
[
1
],
1
,
CV_32F
);
UMat
meanMat
=
UMat
(
s
[
0
],
1
,
CV_32F
);
UMat
tmpMat
=
UMat
(
s
[
0
],
s
[
1
],
CV_32F
);
float
alpha
=
1.0
f
/
s
[
1
];
String
buildopt
=
"-DNUM=4"
;
ocl
::
Kernel
k
(
"mean_fuse4"
,
ocl
::
dnn
::
mvn_oclsrc
,
buildopt
);
size_t
localsize
[]
=
{
128
};
size_t
globalsize
[]
=
{
(
size_t
)
s
[
0
]
/
4
*
localsize
[
0
]
};
int
argId
=
0
;
k
.
set
(
argId
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
inpMat
));
k
.
set
(
argId
++
,
(
int
)
s
[
1
]);
k
.
set
(
argId
++
,
alpha
);
k
.
set
(
argId
++
,
ocl
::
KernelArg
::
PtrWriteOnly
(
meanMat
));
k
.
set
(
argId
++
,
ocl
::
KernelArg
::
PtrWriteOnly
(
tmpMat
));
k
.
set
(
argId
++
,
NULL
,
localsize
[
0
]
*
sizeof
(
cl_float4
));
bool
ret
=
k
.
run
(
1
,
globalsize
,
localsize
,
false
);
if
(
!
ret
)
return
false
;
buildopt
+=
format
(
" %s %s"
,
(
fuse_batch_norm
)
?
"-DFUSE_BATCH_NORM"
:
""
,
(
fuse_relu
)
?
"-DFUSE_RELU"
:
""
);
ocl
::
Kernel
k1
(
"mvn_fuse4"
,
ocl
::
dnn
::
mvn_oclsrc
,
buildopt
);
argId
=
0
;
k1
.
set
(
argId
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
tmpMat
));
k1
.
set
(
argId
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
inpMat
));
k1
.
set
(
argId
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
meanMat
));
k1
.
set
(
argId
++
,
(
int
)
s
[
1
]);
k1
.
set
(
argId
++
,
(
float
)
alpha
);
k1
.
set
(
argId
++
,
(
float
)
eps
);
k1
.
set
(
argId
++
,
(
float
)
relu_slope
);
k1
.
set
(
argId
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
bnorm_weight
));
k1
.
set
(
argId
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
bnorm_bias
));
k1
.
set
(
argId
++
,
ocl
::
KernelArg
::
PtrWriteOnly
(
outMat
));
k1
.
set
(
argId
++
,
NULL
,
localsize
[
0
]
*
sizeof
(
cl_float4
));
ret
=
k1
.
run
(
1
,
globalsize
,
localsize
,
false
);
if
(
!
ret
)
return
false
;
}
return
true
;
}
bool
forward_ocl
(
InputArrayOfArrays
inputs_
,
OutputArrayOfArrays
outputs_
,
OutputArrayOfArrays
internals_
)
{
std
::
vector
<
UMat
>
inputs
;
...
...
@@ -101,6 +162,15 @@ public:
inputs_
.
getUMatVector
(
inputs
);
outputs_
.
getUMatVector
(
outputs
);
int
splitDim
=
(
acrossChannels
)
?
1
:
2
;
int
row_size
=
total
(
shape
(
inputs
[
0
]),
0
,
splitDim
);
int
plane_size
=
total
(
shape
(
inputs
[
0
]),
splitDim
);
if
(
normVariance
&&
(
row_size
%
4
==
0
)
&&
(
plane_size
%
4
==
0
))
{
bool
ret
=
fast_forward_ocl
(
inputs
,
outputs
);
return
ret
;
}
if
(
fuse_batch_norm
&&
scale
.
empty
())
{
bnorm
->
getScaleShift
(
scale
,
shift
);
...
...
@@ -112,11 +182,7 @@ public:
{
UMat
&
inpMat
=
inputs
[
inpIdx
];
UMat
&
outMat
=
outputs
[
inpIdx
];
int
splitDim
=
(
acrossChannels
)
?
1
:
2
;
int
i
,
newRows
=
1
;
for
(
i
=
0
;
i
<
splitDim
;
i
++
)
newRows
*=
inpMat
.
size
[
i
];
int
newRows
=
total
(
shape
(
inpMat
),
0
,
splitDim
);
MatShape
s
=
shape
(
newRows
,
inpMat
.
total
()
/
newRows
);
UMat
oneMat
=
UMat
::
ones
(
s
[
1
],
1
,
CV_32F
);
...
...
modules/dnn/src/layers/slice_layer.cpp
View file @
9698b93d
...
...
@@ -43,6 +43,7 @@
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "opencl_kernels_dnn.hpp"
namespace
cv
{
...
...
@@ -171,11 +172,59 @@ public:
}
}
#ifdef HAVE_OPENCL
bool
forward_ocl
(
InputArrayOfArrays
inputs_
,
OutputArrayOfArrays
outputs_
,
OutputArrayOfArrays
internals_
)
{
std
::
vector
<
UMat
>
inputs
;
std
::
vector
<
UMat
>
outputs
;
inputs_
.
getUMatVector
(
inputs
);
outputs_
.
getUMatVector
(
outputs
);
if
(
inputs
[
0
].
dims
<
4
)
return
false
;
const
UMat
&
inpMat
=
inputs
[
0
];
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
int
groups
=
outputs
[
i
].
size
[
0
];
int
channels
=
outputs
[
i
].
size
[
1
];
int
rows
=
outputs
[
i
].
size
[
2
];
int
cols
=
outputs
[
i
].
size
[
3
];
int
number
=
(
cols
%
8
==
0
)
?
8
:
((
cols
%
4
==
0
)
?
4
:
1
);
String
buildopt
=
format
(
"-DNUM=%d "
,
number
);
String
kname
=
format
(
"slice%d"
,
number
);
ocl
::
Kernel
kernel
(
kname
.
c_str
(),
ocl
::
dnn
::
slice_oclsrc
,
buildopt
);
size_t
global
[]
=
{
(
size_t
)
groups
*
channels
,
(
size_t
)
rows
*
cols
/
number
};
int
idx
=
0
;
kernel
.
set
(
idx
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
inpMat
));
kernel
.
set
(
idx
++
,
(
int
)(
inpMat
.
size
[
2
]
*
inpMat
.
size
[
3
]));
kernel
.
set
(
idx
++
,
(
int
)
inpMat
.
size
[
3
]);
kernel
.
set
(
idx
++
,
(
int
)
global
[
0
]);
kernel
.
set
(
idx
++
,
(
int
)(
rows
*
cols
));
kernel
.
set
(
idx
++
,
(
int
)
cols
);
kernel
.
set
(
idx
++
,
(
int
)
sliceRanges
[
i
][
2
].
start
);
kernel
.
set
(
idx
++
,
(
int
)
sliceRanges
[
i
][
3
].
start
);
kernel
.
set
(
idx
++
,
ocl
::
KernelArg
::
PtrWriteOnly
(
outputs
[
i
]));
bool
ret
=
kernel
.
run
(
2
,
global
,
NULL
,
false
);
if
(
!
ret
)
return
false
;
}
return
true
;
}
#endif
void
forward
(
InputArrayOfArrays
inputs_arr
,
OutputArrayOfArrays
outputs_arr
,
OutputArrayOfArrays
internals_arr
)
{
CV_TRACE_FUNCTION
();
CV_TRACE_ARG_VALUE
(
name
,
"name"
,
name
.
c_str
());
CV_OCL_RUN
((
preferableTarget
==
DNN_TARGET_OPENCL
)
&&
OCL_PERFORMANCE_CHECK
(
ocl
::
Device
::
getDefault
().
isIntel
()),
forward_ocl
(
inputs_arr
,
outputs_arr
,
internals_arr
))
Layer
::
forward_fallback
(
inputs_arr
,
outputs_arr
,
internals_arr
);
}
...
...
modules/dnn/src/opencl/eltwise.cl
0 → 100644
View file @
9698b93d
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2017
,
Intel
Corporation,
all
rights
reserved.
//
Copyright
(
c
)
2016-2017
Fabian
David
Tschopp,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
"as is"
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
#
define
Dtype
float
#
define
Dtype4
float4
#
define
Dtype8
float8
__kernel
void
op_sum4
(
__global
const
Dtype
*
A,
__global
const
Dtype
*
B,
unsigned
int
A_col_size,
const
float
coeff1,
const
float
coeff2,
__global
Dtype
*
C
)
{
unsigned
int
row_gid
=
get_group_id
(
0
)
;
unsigned
int
lid
=
get_local_id
(
0
)
;
const
__global
Dtype
*src0_read
=
A
+
row_gid
*
4
*
A_col_size
;
const
__global
Dtype
*src1_read
=
B
+
row_gid
*
4
*
A_col_size
;
__global
Dtype
*dst0_read
=
C
+
row_gid
*
4
*
A_col_size
;
Dtype4
a0,
a1,
a2,
a3
;
Dtype4
dot0,
dot1,
dot2,
dot3
;
unsigned
int
i
=
lid
;
while
(
i
<
A_col_size
/
4
)
{
const
Dtype4
b0
=
vload4
(
i,
src1_read
)
;
const
Dtype4
b1
=
vload4
(
i,
src1_read
+
A_col_size
)
;
const
Dtype4
b2
=
vload4
(
i,
src1_read
+
2
*
A_col_size
)
;
const
Dtype4
b3
=
vload4
(
i,
src1_read
+
3
*
A_col_size
)
;
#
if
LOOP
==
0
a0
=
vload4
(
i,
src0_read
)
;
a1
=
vload4
(
i,
src0_read
+
A_col_size
)
;
a2
=
vload4
(
i,
src0_read
+
2
*
A_col_size
)
;
a3
=
vload4
(
i,
src0_read
+
3
*
A_col_size
)
;
dot0
=
a0
*
coeff1
+
b0
*
coeff2
;
dot1
=
a1
*
coeff1
+
b1
*
coeff2
;
dot2
=
a2
*
coeff1
+
b2
*
coeff2
;
dot3
=
a3
*
coeff1
+
b3
*
coeff2
;
#
else
a0
=
vload4
(
i,
dst0_read
)
;
a1
=
vload4
(
i,
dst0_read
+
A_col_size
)
;
a2
=
vload4
(
i,
dst0_read
+
2
*
A_col_size
)
;
a3
=
vload4
(
i,
dst0_read
+
3
*
A_col_size
)
;
dot0
=
a0
+
b0
*
coeff2
;
dot1
=
a1
+
b1
*
coeff2
;
dot2
=
a2
+
b2
*
coeff2
;
dot3
=
a3
+
b3
*
coeff2
;
#
endif
vstore4
(
dot0,
i,
dst0_read
)
;
vstore4
(
dot1,
i,
dst0_read
+
A_col_size
)
;
vstore4
(
dot2,
i,
dst0_read
+
2
*
A_col_size
)
;
vstore4
(
dot3,
i,
dst0_read
+
3
*
A_col_size
)
;
i
+=
get_local_size
(
0
)
;
}
}
modules/dnn/src/opencl/mvn.cl
View file @
9698b93d
...
...
@@ -50,18 +50,24 @@
#
define
vec_type
Dtype8
#
define
CALC_MEAN
calc_mean8
#
define
MVN
mvn8
#
define
MEAN_FUSE
mean_fuse8
#
define
MVN_FUSE
mvn_fuse8
#
elif
NUM
==
4
#
define
load
(
src,
index
)
vload4
(
0
,
src
+
index
)
#
define
store
(
vec,
dst,
index
)
vstore4
(
vec,
0
,
dst
+
index
)
#
define
vec_type
Dtype4
#
define
CALC_MEAN
calc_mean4
#
define
MVN
mvn4
#
define
MEAN_FUSE
mean_fuse4
#
define
MVN_FUSE
mvn_fuse4
#
elif
NUM
==
1
#
define
load
(
src,
index
)
src[index]
#
define
store
(
vec,
dst,
index
)
dst[index]
=
vec
#
define
vec_type
Dtype
#
define
CALC_MEAN
calc_mean1
#
define
MVN
mvn1
#
define
MEAN_FUSE
mean_fuse1
#
define
MVN_FUSE
mvn_fuse1
#
endif
__kernel
void
CALC_MEAN
(
__global
const
Dtype*
src,
...
...
@@ -128,3 +134,177 @@ __kernel void MVN(__global const Dtype* src,
store
(
dst_vec,
dst,
index
)
;
}
__kernel
void
MEAN_FUSE
(
__global
const
Dtype
*
A,
unsigned
int
A_col_size,
float
alpha,
__global
Dtype4
*
result,
__global
Dtype
*
B,
__local
Dtype4
*
work
)
{
unsigned
int
row_gid
=
get_group_id
(
0
)
;
unsigned
int
lid
=
get_local_id
(
0
)
;
const
__global
Dtype
*src0_read
=
A
+
row_gid
*
4
*
A_col_size
;
__global
Dtype
*dst0_read
=
B
+
row_gid
*
4
*
A_col_size
;
Dtype4
dot0,
dot1,
dot2,
dot3
;
dot0
=
dot1
=
dot2
=
dot3
=
(
Dtype4
)(
0.f
)
;
unsigned
int
i
=
lid
;
const
Dtype4
b0
=
(
Dtype4
)
1.f
;
while
(
i
<
A_col_size
/
4
)
{
const
Dtype4
a0
=
vload4
(
i,
src0_read
)
;
const
Dtype4
a1
=
vload4
(
i,
src0_read
+
A_col_size
)
;
const
Dtype4
a2
=
vload4
(
i,
src0_read
+
2
*
A_col_size
)
;
const
Dtype4
a3
=
vload4
(
i,
src0_read
+
3
*
A_col_size
)
;
dot0
+=
a0
;
dot1
+=
a1
;
dot2
+=
a2
;
dot3
+=
a3
;
i
+=
get_local_size
(
0
)
;
}
work[lid].s0
=
dot
(
dot0,
b0
)
;
work[lid].s1
=
dot
(
dot1,
b0
)
;
work[lid].s2
=
dot
(
dot2,
b0
)
;
work[lid].s3
=
dot
(
dot3,
b0
)
;
for
(
unsigned
int
stride=get_local_size
(
0
)
/2
; stride>0 ; stride>>=1)
{
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
lid
<
stride
)
work[lid]
+=
work[lid+stride]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
lid
==
0
)
{
result[row_gid]
=
alpha
*
work[0]
;
}
Dtype4
sum
=
work[0]
*
alpha
;
i
=
lid
;
while
(
i
<
A_col_size
/
4
)
{
const
Dtype4
a0
=
vload4
(
i,
src0_read
)
;
const
Dtype4
a1
=
vload4
(
i,
src0_read
+
A_col_size
)
;
const
Dtype4
a2
=
vload4
(
i,
src0_read
+
2
*
A_col_size
)
;
const
Dtype4
a3
=
vload4
(
i,
src0_read
+
3
*
A_col_size
)
;
dot0
=
native_powr
(
a0
-
(
Dtype4
)
sum.x,
2
)
;
dot1
=
native_powr
(
a1
-
(
Dtype4
)
sum.y,
2
)
;
dot2
=
native_powr
(
a2
-
(
Dtype4
)
sum.z,
2
)
;
dot3
=
native_powr
(
a3
-
(
Dtype4
)
sum.w,
2
)
;
vstore4
(
dot0,
i,
dst0_read
)
;
vstore4
(
dot1,
i,
dst0_read
+
A_col_size
)
;
vstore4
(
dot2,
i,
dst0_read
+
2
*
A_col_size
)
;
vstore4
(
dot3,
i,
dst0_read
+
3
*
A_col_size
)
;
i
+=
get_local_size
(
0
)
;
}
}
__kernel
void
MVN_FUSE
(
__global
const
Dtype
*
tmp,
__global
const
Dtype
*
A,
__global
const
Dtype4
*
mean,
unsigned
int
A_col_size,
const
float
alpha_val,
const
float
eps,
const
float
relu_slope,
__global
const
Dtype4
*
bnorm_weight,
__global
const
Dtype4
*
bnorm_bias,
__global
Dtype
*
B,
__local
Dtype4
*
work
)
{
unsigned
int
row_gid
=
get_group_id
(
0
)
;
unsigned
int
lid
=
get_local_id
(
0
)
;
const
__global
Dtype
*src0_read
=
tmp
+
row_gid
*
4
*
A_col_size
;
const
__global
Dtype
*src1_read
=
A
+
row_gid
*
4
*
A_col_size
;
__global
Dtype
*dst0_read
=
B
+
row_gid
*
4
*
A_col_size
;
Dtype4
dot0,
dot1,
dot2,
dot3
;
dot0
=
dot1
=
dot2
=
dot3
=
(
Dtype4
)(
0.f
)
;
unsigned
int
i
=
lid
;
const
Dtype4
b0
=
(
Dtype4
)
1.f
;
while
(
i
<
A_col_size
/
4
)
{
const
Dtype4
a0
=
vload4
(
i,
src0_read
)
;
const
Dtype4
a1
=
vload4
(
i,
src0_read
+
A_col_size
)
;
const
Dtype4
a2
=
vload4
(
i,
src0_read
+
2
*
A_col_size
)
;
const
Dtype4
a3
=
vload4
(
i,
src0_read
+
3
*
A_col_size
)
;
dot0
+=
a0
;
dot1
+=
a1
;
dot2
+=
a2
;
dot3
+=
a3
;
i
+=
get_local_size
(
0
)
;
}
work[lid].s0
=
dot
(
dot0,
b0
)
;
work[lid].s1
=
dot
(
dot1,
b0
)
;
work[lid].s2
=
dot
(
dot2,
b0
)
;
work[lid].s3
=
dot
(
dot3,
b0
)
;
for
(
unsigned
int
stride=get_local_size
(
0
)
/2
; stride>0 ; stride>>=1)
{
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
lid
<
stride
)
work[lid]
+=
work[lid+stride]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
Dtype4
mean_val
=
mean[row_gid]
;
Dtype4
dev_val
=
sqrt
(
work[0]
*
alpha_val
)
+
(
Dtype4
)
eps
;
Dtype4
alpha
=
(
Dtype4
)
1.f
/
dev_val
;
Dtype4
w
=
(
Dtype4
)
1.f
;
Dtype4
b
=
(
Dtype4
)
0.f
;
#
ifdef
FUSE_BATCH_NORM
w
=
bnorm_weight[row_gid]
;
b
=
bnorm_bias[row_gid]
;
#
endif
i
=
lid
;
while
(
i
<
A_col_size
/
4
)
{
const
Dtype4
a0
=
vload4
(
i,
src1_read
)
;
const
Dtype4
a1
=
vload4
(
i,
src1_read
+
A_col_size
)
;
const
Dtype4
a2
=
vload4
(
i,
src1_read
+
2
*
A_col_size
)
;
const
Dtype4
a3
=
vload4
(
i,
src1_read
+
3
*
A_col_size
)
;
dot0
=
(
a0
-
(
Dtype4
)
mean_val.x
)
*
alpha.x
;
dot1
=
(
a1
-
(
Dtype4
)
mean_val.y
)
*
alpha.y
;
dot2
=
(
a2
-
(
Dtype4
)
mean_val.z
)
*
alpha.z
;
dot3
=
(
a3
-
(
Dtype4
)
mean_val.w
)
*
alpha.w
;
dot0
=
dot0
*
w.x
+
(
Dtype4
)
b.x
;
dot1
=
dot1
*
w.y
+
(
Dtype4
)
b.y
;
dot2
=
dot2
*
w.z
+
(
Dtype4
)
b.z
;
dot3
=
dot3
*
w.w
+
(
Dtype4
)
b.w
;
#
ifdef
FUSE_RELU
Dtype4
new0
=
dot0
*
relu_slope
;
dot0
=
select
(
new0,
dot0,
dot0
>
(
Dtype4
)
0.f
)
;
Dtype4
new1
=
dot1
*
relu_slope
;
dot1
=
select
(
new1,
dot1,
dot1
>
(
Dtype4
)
0.f
)
;
Dtype4
new2
=
dot2
*
relu_slope
;
dot2
=
select
(
new2,
dot2,
dot2
>
(
Dtype4
)
0.f
)
;
Dtype4
new3
=
dot3
*
relu_slope
;
dot3
=
select
(
new3,
dot3,
dot3
>
(
Dtype4
)
0.f
)
;
#
endif
vstore4
(
dot0,
i,
dst0_read
)
;
vstore4
(
dot1,
i,
dst0_read
+
A_col_size
)
;
vstore4
(
dot2,
i,
dst0_read
+
2
*
A_col_size
)
;
vstore4
(
dot3,
i,
dst0_read
+
3
*
A_col_size
)
;
i
+=
get_local_size
(
0
)
;
}
}
modules/dnn/src/opencl/slice.cl
0 → 100644
View file @
9698b93d
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2017
,
Intel
Corporation,
all
rights
reserved.
//
Copyright
(
c
)
2016-2017
Fabian
David
Tschopp,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
"as is"
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
#
define
Dtype
float
#
define
Dtype4
float4
#
define
Dtype8
float8
#
if
NUM
==
8
#
define
load
(
src,
index
)
vload8
(
0
,
src
+
index
)
#
define
store
(
vec,
dst,
index
)
vstore8
(
vec,
0
,
dst
+
index
)
#
define
vec_type
Dtype8
#
define
SLICE
slice8
#
elif
NUM
==
4
#
define
load
(
src,
index
)
vload4
(
0
,
src
+
index
)
#
define
store
(
vec,
dst,
index
)
vstore4
(
vec,
0
,
dst
+
index
)
#
define
vec_type
Dtype4
#
define
SLICE
slice4
#
elif
NUM
==
1
#
define
load
(
src,
index
)
src[index]
#
define
store
(
vec,
dst,
index
)
dst[index]
=
vec
#
define
vec_type
Dtype
#
define
SLICE
slice1
#
endif
__kernel
void
SLICE
(
__global
const
Dtype*
src,
const
int
src_plane_size,
const
int
src_cols,
const
int
channels,
const
int
dst_plane_size,
const
int
dst_cols,
const
int
row_offset,
const
int
col_offset,
__global
Dtype*
dst
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
*
NUM
;
if
((
x
>=
channels
)
||
(
y
>=
dst_plane_size
))
return
;
int
row
=
y
/
dst_cols
+
row_offset
;
int
col
=
y
%
dst_cols
+
col_offset
;
int
src_index
=
x
*
src_plane_size
+
row
*
src_cols
+
col
;
int
dst_index
=
x
*
dst_plane_size
+
y
;
vec_type
val
=
load
(
src,
src_index
)
;
store
(
val,
dst,
dst_index
)
;
}
modules/dnn/test/test_layers.cpp
View file @
9698b93d
...
...
@@ -367,11 +367,14 @@ OCL_TEST(Layer_Test_PReLU, Accuracy)
// );
//}
static
void
test_Reshape_Split_Slice_layers
()
static
void
test_Reshape_Split_Slice_layers
(
int
targetId
)
{
Net
net
=
readNetFromCaffe
(
_tf
(
"reshape_and_slice_routines.prototxt"
));
ASSERT_FALSE
(
net
.
empty
());
net
.
setPreferableBackend
(
DNN_BACKEND_DEFAULT
);
net
.
setPreferableTarget
(
targetId
);
Mat
input
(
6
,
12
,
CV_32F
);
RNG
rng
(
0
);
rng
.
fill
(
input
,
RNG
::
UNIFORM
,
-
1
,
1
);
...
...
@@ -384,7 +387,12 @@ static void test_Reshape_Split_Slice_layers()
TEST
(
Layer_Test_Reshape_Split_Slice
,
Accuracy
)
{
test_Reshape_Split_Slice_layers
();
test_Reshape_Split_Slice_layers
(
DNN_TARGET_CPU
);
}
OCL_TEST
(
Layer_Test_Reshape_Split_Slice
,
Accuracy
)
{
test_Reshape_Split_Slice_layers
(
DNN_TARGET_OPENCL
);
}
TEST
(
Layer_Conv_Elu
,
Accuracy
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment