Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
9457bf10
Commit
9457bf10
authored
Feb 21, 2018
by
Dmitry Kurtaev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fuse batch normalization and flatten TensorFlow subgraphs in runtime
parent
5b868ccd
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
87 additions
and
125 deletions
+87
-125
tf_graph_editor.cpp
modules/dnn/src/tensorflow/tf_graph_editor.cpp
+0
-0
tf_graph_editor.hpp
modules/dnn/src/tensorflow/tf_graph_editor.hpp
+30
-0
tf_importer.cpp
modules/dnn/src/tensorflow/tf_importer.cpp
+52
-125
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+5
-0
No files found.
modules/dnn/src/tensorflow/tf_graph_editor.cpp
0 → 100644
View file @
9457bf10
This diff is collapsed.
Click to expand it.
modules/dnn/src/tensorflow/tf_graph_editor.hpp
0 → 100644
View file @
9457bf10
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_DNN_TF_SIMPLIFIER_HPP__
#define __OPENCV_DNN_TF_SIMPLIFIER_HPP__
#include "../precomp.hpp"
#ifdef HAVE_PROTOBUF
#include "tf_io.hpp"
namespace
cv
{
namespace
dnn
{
CV__DNN_EXPERIMENTAL_NS_BEGIN
void
RemoveIdentityOps
(
tensorflow
::
GraphDef
&
net
);
void
simplifySubgraphs
(
tensorflow
::
GraphDef
&
net
);
Mat
getTensorContent
(
const
tensorflow
::
TensorProto
&
tensor
);
CV__DNN_EXPERIMENTAL_NS_END
}}
// namespace dnn, namespace cv
#endif // HAVE_PROTOBUF
#endif // __OPENCV_DNN_TF_SIMPLIFIER_HPP__
modules/dnn/src/tensorflow/tf_importer.cpp
View file @
9457bf10
...
...
@@ -22,6 +22,7 @@ Implementation of Tensorflow models parser
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include "tf_io.hpp"
#include "tf_graph_editor.hpp"
#endif
namespace
cv
{
...
...
@@ -87,77 +88,6 @@ void blobShapeFromTensor(const tensorflow::TensorProto &tensor, MatShape& shape)
}
}
static
Mat
getTensorContent
(
const
tensorflow
::
TensorProto
&
tensor
)
{
std
::
string
content
=
tensor
.
tensor_content
();
switch
(
tensor
.
dtype
())
{
case
tensorflow
:
:
DT_FLOAT
:
{
if
(
!
content
.
empty
())
return
Mat
(
1
,
content
.
size
()
/
sizeof
(
float
),
CV_32FC1
,
(
void
*
)
content
.
c_str
()).
clone
();
else
{
const
RepeatedField
<
float
>&
field
=
tensor
.
float_val
();
CV_Assert
(
!
field
.
empty
());
return
Mat
(
1
,
field
.
size
(),
CV_32FC1
,
(
void
*
)
field
.
data
()).
clone
();
}
}
case
tensorflow
:
:
DT_DOUBLE
:
{
if
(
!
content
.
empty
())
return
Mat
(
1
,
content
.
size
()
/
sizeof
(
double
),
CV_64FC1
,
(
void
*
)
content
.
c_str
()).
clone
();
else
{
const
RepeatedField
<
double
>&
field
=
tensor
.
double_val
();
CV_Assert
(
!
field
.
empty
());
return
Mat
(
1
,
field
.
size
(),
CV_64FC1
,
(
void
*
)
field
.
data
()).
clone
();
}
}
case
tensorflow
:
:
DT_INT32
:
{
if
(
!
content
.
empty
())
return
Mat
(
1
,
content
.
size
()
/
sizeof
(
int32_t
),
CV_32SC1
,
(
void
*
)
content
.
c_str
()).
clone
();
else
{
const
RepeatedField
<
int32_t
>&
field
=
tensor
.
int_val
();
CV_Assert
(
!
field
.
empty
());
return
Mat
(
1
,
field
.
size
(),
CV_32SC1
,
(
void
*
)
field
.
data
()).
clone
();
}
}
case
tensorflow
:
:
DT_HALF
:
{
Mat
halfs
;
if
(
!
content
.
empty
())
{
static
const
int
kHalfSize
=
2
;
halfs
=
Mat
(
1
,
content
.
size
()
/
kHalfSize
,
CV_16UC1
,
(
void
*
)
content
.
c_str
());
}
else
{
const
RepeatedField
<
int32_t
>&
field
=
tensor
.
half_val
();
CV_Assert
(
!
field
.
empty
());
Mat
ints
(
1
,
field
.
size
(),
CV_32SC1
,
(
void
*
)
field
.
data
());
ints
.
convertTo
(
halfs
,
CV_16UC1
);
}
// Reinterpret as a signed shorts just for a convertFp16 call.
Mat
halfsSigned
(
halfs
.
size
(),
CV_16SC1
,
halfs
.
data
);
Mat
floats
(
halfs
.
size
(),
CV_32FC1
);
convertFp16
(
halfsSigned
,
floats
);
return
floats
;
}
case
tensorflow
:
:
DT_QUINT8
:
{
CV_Assert
(
!
content
.
empty
());
return
Mat
(
1
,
content
.
size
(),
CV_8UC1
,
(
void
*
)
content
.
c_str
()).
clone
();
}
default:
CV_Error
(
Error
::
StsError
,
"Tensor's data type is not supported"
);
break
;
}
return
Mat
();
}
template
<
typename
T
>
void
parseTensor
(
const
tensorflow
::
TensorProto
&
tensor
,
Mat
&
dstBlob
)
{
...
...
@@ -364,47 +294,6 @@ void setPadding(LayerParams &layerParams, const tensorflow::NodeDef &layer)
layerParams
.
set
(
"pad_mode"
,
getLayerAttr
(
layer
,
"padding"
).
s
());
}
void
RemoveIdentityOps
(
tensorflow
::
GraphDef
&
net
)
{
typedef
std
::
map
<
String
,
String
>
IdentityOpsMap
;
IdentityOpsMap
identity_ops
;
std
::
vector
<
int
>
identity_ops_idx
;
int
layersCount
=
net
.
node_size
();
for
(
int
li
=
0
;
li
<
layersCount
;
li
++
)
{
const
tensorflow
::
NodeDef
&
layer
=
net
.
node
(
li
);
String
type
=
layer
.
op
();
if
(
type
==
"Identity"
||
type
==
"Dropout"
)
{
identity_ops_idx
.
push_back
(
li
);
identity_ops
[
layer
.
name
()]
=
layer
.
input
(
0
);
}
}
for
(
int
li
=
0
;
li
<
layersCount
;
li
++
)
{
tensorflow
::
NodeDef
*
layer
=
net
.
mutable_node
(
li
);
for
(
int
input_id
=
0
;
input_id
<
layer
->
input_size
();
input_id
++
)
{
String
input_op_name
=
layer
->
input
(
input_id
);
IdentityOpsMap
::
iterator
it
=
identity_ops
.
find
(
input_op_name
);
if
(
it
!=
identity_ops
.
end
())
{
layer
->
set_input
(
input_id
,
it
->
second
);
}
}
}
std
::
sort
(
identity_ops_idx
.
begin
(),
identity_ops_idx
.
end
());
int
removed_nodes
=
0
;
for
(
size_t
i
=
0
;
i
<
identity_ops_idx
.
size
();
i
++
)
{
int
start_id
=
identity_ops_idx
[
i
]
-
removed_nodes
;
net
.
mutable_node
()
->
DeleteSubrange
(
start_id
,
1
);
removed_nodes
++
;
}
}
Pin
parsePin
(
const
std
::
string
&
name
)
{
Pin
pin
(
name
);
...
...
@@ -697,6 +586,9 @@ void TFImporter::populateNet(Net dstNet)
RemoveIdentityOps
(
netBin
);
RemoveIdentityOps
(
netTxt
);
if
(
!
netTxt
.
ByteSize
())
simplifySubgraphs
(
netBin
);
std
::
set
<
String
>
layers_to_ignore
;
tensorflow
::
GraphDef
&
net
=
netTxt
.
ByteSize
()
!=
0
?
netTxt
:
netBin
;
...
...
@@ -936,10 +828,28 @@ void TFImporter::populateNet(Net dstNet)
connect
(
layer_id
,
dstNet
,
inpId
,
id
,
0
);
data_layouts
[
name
]
=
DATA_LAYOUT_UNKNOWN
;
}
else
if
(
type
==
"Flatten"
)
else
if
(
type
==
"Flatten"
||
type
==
"Squeeze"
)
{
Pin
inpId
=
parsePin
(
layer
.
input
(
0
));
if
(
data_layouts
[
layer
.
input
(
0
)]
==
DATA_LAYOUT_NHWC
)
int
inpLayout
=
data_layouts
[
layer
.
input
(
0
)];
if
(
type
==
"Squeeze"
)
{
CV_Assert
(
hasLayerAttr
(
layer
,
"squeeze_dims"
));
const
tensorflow
::
AttrValue
&
dims
=
getLayerAttr
(
layer
,
"squeeze_dims"
);
if
(
inpLayout
==
DATA_LAYOUT_NHWC
)
{
if
(
dims
.
list
().
i_size
()
!=
2
||
dims
.
list
().
i
(
0
)
!=
1
||
dims
.
list
().
i
(
1
)
!=
2
)
CV_Error
(
Error
::
StsNotImplemented
,
"Unsupported squeeze configuration"
);
}
else
if
(
inpLayout
==
DATA_LAYOUT_NCHW
)
{
if
(
dims
.
list
().
i_size
()
!=
2
||
dims
.
list
().
i
(
0
)
!=
2
||
dims
.
list
().
i
(
1
)
!=
3
)
CV_Error
(
Error
::
StsNotImplemented
,
"Unsupported squeeze configuration"
);
}
else
CV_Error
(
Error
::
StsNotImplemented
,
"Unsupported squeeze configuration"
);
}
if
(
inpLayout
==
DATA_LAYOUT_NHWC
)
{
LayerParams
permLP
;
int
order
[]
=
{
0
,
2
,
3
,
1
};
// From OpenCV's NCHW to NHWC.
...
...
@@ -1274,14 +1184,36 @@ void TFImporter::populateNet(Net dstNet)
bool
isTraining
=
hasLayerAttr
(
layer
,
"is_training"
)
&&
getLayerAttr
(
layer
,
"is_training"
).
b
();
layerParams
.
blobs
.
resize
(
4
);
Mat
gamma
,
beta
,
mean
,
std
;
blobFromTensor
(
getConstBlob
(
layer
,
value_id
,
1
),
gamma
);
blobFromTensor
(
getConstBlob
(
layer
,
value_id
,
2
),
beta
);
layerParams
.
blobs
.
resize
(
2
);
const
tensorflow
::
TensorProto
&
gammaTensor
=
getConstBlob
(
layer
,
value_id
,
1
);
if
(
!
gammaTensor
.
tensor_content
().
empty
())
{
layerParams
.
blobs
.
resize
(
layerParams
.
blobs
.
size
()
+
1
);
layerParams
.
set
(
"has_weight"
,
true
);
blobFromTensor
(
gammaTensor
,
layerParams
.
blobs
.
back
());
}
else
layerParams
.
set
(
"has_weight"
,
false
);
const
tensorflow
::
TensorProto
&
betaTensor
=
getConstBlob
(
layer
,
value_id
,
2
);
if
(
!
betaTensor
.
tensor_content
().
empty
())
{
layerParams
.
blobs
.
resize
(
layerParams
.
blobs
.
size
()
+
1
);
layerParams
.
set
(
"has_bias"
,
true
);
blobFromTensor
(
betaTensor
,
layerParams
.
blobs
.
back
());
}
else
layerParams
.
set
(
"has_bias"
,
false
);
Mat
mean
,
std
;
if
(
isTraining
)
{
mean
=
Mat
::
zeros
(
1
,
beta
.
total
(),
CV_32F
);
std
=
Mat
::
ones
(
1
,
beta
.
total
(),
CV_32F
);
if
(
layerParams
.
blobs
.
size
()
==
2
)
CV_Error
(
Error
::
StsNotImplemented
,
"Cannot determine number "
"of parameters for batch normalization layer."
);
mean
=
Mat
::
zeros
(
1
,
layerParams
.
blobs
[
3
].
total
(),
CV_32F
);
std
=
Mat
::
ones
(
1
,
layerParams
.
blobs
[
3
].
total
(),
CV_32F
);
// Add an extra layer: Mean-Variance normalization
LayerParams
mvnParams
;
...
...
@@ -1299,15 +1231,10 @@ void TFImporter::populateNet(Net dstNet)
}
layerParams
.
blobs
[
0
]
=
mean
;
layerParams
.
blobs
[
1
]
=
std
;
layerParams
.
blobs
[
2
]
=
gamma
;
layerParams
.
blobs
[
3
]
=
beta
;
if
(
hasLayerAttr
(
layer
,
"epsilon"
))
layerParams
.
set
(
"eps"
,
getLayerAttr
(
layer
,
"epsilon"
).
f
());
layerParams
.
set
(
"has_weight"
,
true
);
layerParams
.
set
(
"has_bias"
,
true
);
int
id
=
dstNet
.
addLayer
(
name
,
"BatchNorm"
,
layerParams
);
layer_id
[
name
]
=
id
;
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
9457bf10
...
...
@@ -150,6 +150,9 @@ TEST_P(Test_TensorFlow_layers, batch_norm)
runTensorFlowNet
(
"batch_norm_text"
,
targetId
,
true
);
runTensorFlowNet
(
"mvn_batch_norm"
,
targetId
);
runTensorFlowNet
(
"mvn_batch_norm_1x1"
,
targetId
);
runTensorFlowNet
(
"unfused_batch_norm"
,
targetId
);
runTensorFlowNet
(
"fused_batch_norm_no_gamma"
,
targetId
);
runTensorFlowNet
(
"unfused_batch_norm_no_gamma"
,
targetId
);
}
TEST_P
(
Test_TensorFlow_layers
,
pooling
)
...
...
@@ -185,6 +188,8 @@ TEST_P(Test_TensorFlow_layers, reshape)
runTensorFlowNet
(
"shift_reshape_no_reorder"
,
targetId
);
runTensorFlowNet
(
"reshape_reduce"
,
targetId
);
runTensorFlowNet
(
"flatten"
,
targetId
,
true
);
runTensorFlowNet
(
"unfused_flatten"
,
targetId
);
runTensorFlowNet
(
"unfused_flatten_unknown_batch"
,
targetId
);
}
INSTANTIATE_TEST_CASE_P
(
/**/
,
Test_TensorFlow_layers
,
availableDnnTargets
());
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment