Commit 8f3273bf authored by Andrey Kamaev's avatar Andrey Kamaev

Refactored per-computed pyramid handling in calcOpticalFlowPyrLK #1321

parent 00c30681
...@@ -48,7 +48,7 @@ ...@@ -48,7 +48,7 @@
#define __OPENCV_TRACKING_HPP__ #define __OPENCV_TRACKING_HPP__
#include "opencv2/core/core.hpp" #include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc_c.h" #include "opencv2/imgproc/imgproc.hpp"
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
...@@ -303,16 +303,19 @@ enum ...@@ -303,16 +303,19 @@ enum
OPTFLOW_FARNEBACK_GAUSSIAN = 256 OPTFLOW_FARNEBACK_GAUSSIAN = 256
}; };
//! constructs a pyramid which can be used as input for calcOpticalFlowPyrLK
CV_EXPORTS_W int buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid,
Size winSize, int maxLevel, bool withDerivatives = true,
int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT,
bool tryReuseInputImage = true);
//! computes sparse optical flow using multi-scale Lucas-Kanade algorithm //! computes sparse optical flow using multi-scale Lucas-Kanade algorithm
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg, CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
InputArray prevPts, CV_OUT InputOutputArray nextPts, InputArray prevPts, CV_OUT InputOutputArray nextPts,
OutputArray status, OutputArray err, OutputArray status, OutputArray err,
Size winSize=Size(21,21), int maxLevel=3, Size winSize=Size(21,21), int maxLevel=3,
TermCriteria criteria=TermCriteria( TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
TermCriteria::COUNT+TermCriteria::EPS, int flags=0, double minEigThreshold=1e-4);
30, 0.01),
int flags=0,
double minEigThreshold=1e-4);
//! computes dense optical flow using Farneback algorithm //! computes dense optical flow using Farneback algorithm
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next,
......
...@@ -493,9 +493,9 @@ struct LKTrackerInvoker ...@@ -493,9 +493,9 @@ struct LKTrackerInvoker
} }
namespace cv {
int buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives,
int pyrBorder = BORDER_REFLECT_101, int derivBorder=BORDER_CONSTANT, bool tryReuseInputImage = true) int pyrBorder, int derivBorder, bool tryReuseInputImage)
{ {
Mat img = _img.getMat(); Mat img = _img.getMat();
CV_Assert(img.depth() == CV_8U && winSize.width > 2 && winSize.height > 2 ); CV_Assert(img.depth() == CV_8U && winSize.width > 2 && winSize.height > 2 );
...@@ -503,7 +503,6 @@ int buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size w ...@@ -503,7 +503,6 @@ int buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size w
pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true, 0); pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true, 0);
//int cn = img.channels();
int derivType = CV_MAKETYPE(DataType<deriv_type>::depth, img.channels() * 2); int derivType = CV_MAKETYPE(DataType<deriv_type>::depth, img.channels() * 2);
//level 0 //level 0
...@@ -589,8 +588,6 @@ int buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size w ...@@ -589,8 +588,6 @@ int buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size w
} }
return maxLevel; return maxLevel;
}
} }
void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg, void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
...@@ -604,14 +601,12 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg, ...@@ -604,14 +601,12 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
if (tegra::calcOpticalFlowPyrLK(_prevImg, _nextImg, _prevPts, _nextPts, _status, _err, winSize, maxLevel, criteria, flags, minEigThreshold)) if (tegra::calcOpticalFlowPyrLK(_prevImg, _nextImg, _prevPts, _nextPts, _status, _err, winSize, maxLevel, criteria, flags, minEigThreshold))
return; return;
#endif #endif
Mat /*prevImg = _prevImg.getMat(), nextImg = _nextImg.getMat(),*/ prevPtsMat = _prevPts.getMat(); Mat prevPtsMat = _prevPts.getMat();
const int derivDepth = DataType<deriv_type>::depth; const int derivDepth = DataType<deriv_type>::depth;
CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 ); CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 );
//CV_Assert( prevImg.size() == nextImg.size() &&
// prevImg.type() == nextImg.type() );
int level=0, i, npoints;//, cn = prevImg.channels(), cn2 = cn*2; int level=0, i, npoints;
CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0 ); CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0 );
if( npoints == 0 ) if( npoints == 0 )
...@@ -649,42 +644,68 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg, ...@@ -649,42 +644,68 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
} }
vector<Mat> prevPyr, nextPyr; vector<Mat> prevPyr, nextPyr;
int levels1 = 0; int levels1 = -1;
int lvlStep1 = 1; int lvlStep1 = 1;
int levels2 = 0; int levels2 = -1;
int lvlStep2 = 1; int lvlStep2 = 1;
if(_prevImg.kind() == _InputArray::STD_VECTOR_MAT) if(_prevImg.kind() == _InputArray::STD_VECTOR_MAT)
{ {
_prevImg.getMatVector(prevPyr); _prevImg.getMatVector(prevPyr);
levels1 = (int)prevPyr.size(); levels1 = int(prevPyr.size()) - 1;
if (levels1 % 2 == 0 && levels1 > 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth) CV_Assert(levels1 >= 0);
if (levels1 % 2 == 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth)
{ {
lvlStep1 = 2; lvlStep1 = 2;
levels1 /= 2; levels1 /= 2;
} }
// ensure that pyramid has reqired padding
if(levels1 > 0)
{
Size fullSize;
Point ofs;
prevPyr[lvlStep1].locateROI(fullSize, ofs);
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
&& ofs.x + prevPyr[lvlStep1].cols + winSize.width <= fullSize.width
&& ofs.y + prevPyr[lvlStep1].rows + winSize.height <= fullSize.height);
}
} }
if(_nextImg.kind() == _InputArray::STD_VECTOR_MAT) if(_nextImg.kind() == _InputArray::STD_VECTOR_MAT)
{ {
_nextImg.getMatVector(nextPyr); _nextImg.getMatVector(nextPyr);
levels2 = (int)nextPyr.size(); levels2 = int(nextPyr.size()) - 1;
if (levels2 % 2 == 0 && levels2 > 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth) CV_Assert(levels2 >= 0);
if (levels2 % 2 == 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth)
{ {
lvlStep2 = 2; lvlStep2 = 2;
levels2 /= 2; levels2 /= 2;
} }
// ensure that pyramid has reqired padding
if(levels2 > 0)
{
Size fullSize;
Point ofs;
nextPyr[lvlStep2].locateROI(fullSize, ofs);
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
&& ofs.x + nextPyr[lvlStep2].cols + winSize.width <= fullSize.width
&& ofs.y + nextPyr[lvlStep2].rows + winSize.height <= fullSize.height);
}
} }
if(levels1 != 0 || levels2 != 0) if(levels1 >= 0 || levels2 >= 0)
maxLevel = std::max(levels1, levels2); maxLevel = std::max(levels1, levels2);
if (levels1 == 0) if (levels1 < 0)
maxLevel = levels1 = buildOpticalFlowPyramid(_prevImg, prevPyr, winSize, maxLevel, false); maxLevel = levels1 = buildOpticalFlowPyramid(_prevImg, prevPyr, winSize, maxLevel, false);
if (levels2 == 0) if (levels2 < 0)
levels2 = buildOpticalFlowPyramid(_nextImg, nextPyr, winSize, maxLevel, false); levels2 = buildOpticalFlowPyramid(_nextImg, nextPyr, winSize, maxLevel, false);
CV_Assert(levels1 == levels2); CV_Assert(levels1 == levels2);
...@@ -700,43 +721,34 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg, ...@@ -700,43 +721,34 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.); criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.);
criteria.epsilon *= criteria.epsilon; criteria.epsilon *= criteria.epsilon;
// dI/dx ~ Ix, dI/dy ~ Iy
Mat derivIBuf;
if(lvlStep1 == 1) if(lvlStep1 == 1)
{ derivIBuf.create(prevPyr[0].rows + winSize.height*2, prevPyr[0].cols + winSize.width*2, CV_MAKETYPE(derivDepth, prevPyr[0].channels() * 2));
// dI/dx ~ Ix, dI/dy ~ Iy
Mat derivIBuf((prevPyr[0].rows + winSize.height*2),
(prevPyr[0].cols + winSize.width*2),
CV_MAKETYPE(derivDepth, prevPyr[0].channels() * 2));
for( level = maxLevel; level >= 0; level-- ) for( level = maxLevel; level >= 0; level-- )
{
Mat derivI;
if(lvlStep1 == 1)
{ {
Size imgSize = prevPyr[level * lvlStep1].size(); Size imgSize = prevPyr[level * lvlStep1].size();
Mat _derivI( imgSize.height + winSize.height*2, Mat _derivI( imgSize.height + winSize.height*2,
imgSize.width + winSize.width*2, derivIBuf.type(), derivIBuf.data ); imgSize.width + winSize.width*2, derivIBuf.type(), derivIBuf.data );
Mat derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height)); derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
calcSharrDeriv(prevPyr[level * lvlStep1], derivI); calcSharrDeriv(prevPyr[level * lvlStep1], derivI);
copyMakeBorder(derivI, _derivI, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_CONSTANT|BORDER_ISOLATED); copyMakeBorder(derivI, _derivI, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_CONSTANT|BORDER_ISOLATED);
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());
parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
nextPyr[level * lvlStep2], prevPts, nextPts,
status, err,
winSize, criteria, level, maxLevel,
flags, (float)minEigThreshold));
}
}
else
{
for( level = levels1; level >= 0; level-- )
{
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());
parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], prevPyr[level * lvlStep1 + 1],
nextPyr[level * lvlStep2], prevPts, nextPts,
status, err,
winSize, criteria, level, maxLevel,
flags, (float)minEigThreshold));
} }
else
derivI = prevPyr[level * lvlStep1 + 1];
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());
parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
nextPyr[level * lvlStep2], prevPts, nextPts,
status, err,
winSize, criteria, level, maxLevel,
flags, (float)minEigThreshold));
} }
} }
......
...@@ -53,7 +53,7 @@ ...@@ -53,7 +53,7 @@
#include "opencv2/video/tracking.hpp" #include "opencv2/video/tracking.hpp"
#include "opencv2/video/background_segm.hpp" #include "opencv2/video/background_segm.hpp"
#include "opencv2/imgproc/imgproc.hpp" #include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/core/internal.hpp" #include "opencv2/core/internal.hpp"
#ifdef HAVE_TEGRA_OPTIMIZATION #ifdef HAVE_TEGRA_OPTIMIZATION
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment