Commit 8ebff41c authored by Anatoly Baksheev's avatar Anatoly Baksheev

more warnings fixed. +some warnings in examples

parent 927dccb4
...@@ -1929,8 +1929,8 @@ void cv::drawChessboardCorners( InputOutputArray _image, Size patternSize, ...@@ -1929,8 +1929,8 @@ void cv::drawChessboardCorners( InputOutputArray _image, Size patternSize,
bool cv::findCirclesGrid( const InputArray& _image, Size patternSize, bool cv::findCirclesGrid( const InputArray& _image, Size patternSize,
OutputArray _centers, int flags, const Ptr<FeatureDetector> &blobDetector ) OutputArray _centers, int flags, const Ptr<FeatureDetector> &blobDetector )
{ {
bool isAsymmetricGrid = (bool)(flags & CALIB_CB_ASYMMETRIC_GRID); bool isAsymmetricGrid = (flags & CALIB_CB_ASYMMETRIC_GRID) ? true : false;
bool isSymmetricGrid = (bool)(flags & CALIB_CB_SYMMETRIC_GRID); bool isSymmetricGrid = (flags & CALIB_CB_SYMMETRIC_GRID ) ? true : false;
CV_Assert(isAsymmetricGrid ^ isSymmetricGrid); CV_Assert(isAsymmetricGrid ^ isSymmetricGrid);
Mat image = _image.getMat(); Mat image = _image.getMat();
......
...@@ -2001,6 +2001,7 @@ float CvSVM::predict( const float* row_sample, int row_len, bool returnDFVal ) c ...@@ -2001,6 +2001,7 @@ float CvSVM::predict( const float* row_sample, int row_len, bool returnDFVal ) c
int var_count = get_var_count(); int var_count = get_var_count();
assert( row_len == var_count ); assert( row_len == var_count );
(void)row_len;
int class_count = class_labels ? class_labels->cols : int class_count = class_labels ? class_labels->cols :
params.svm_type == ONE_CLASS ? 1 : 0; params.svm_type == ONE_CLASS ? 1 : 0;
......
...@@ -180,7 +180,7 @@ bool ASDFrameSequencer::isOpen() ...@@ -180,7 +180,7 @@ bool ASDFrameSequencer::isOpen()
return false; return false;
}; };
void ASDFrameSequencer::getFrameCaption(char *caption) { void ASDFrameSequencer::getFrameCaption(char* /*caption*/) {
return; return;
}; };
......
...@@ -120,7 +120,7 @@ int main(int argc, char** argv) ...@@ -120,7 +120,7 @@ int main(int argc, char** argv)
for( i = 0; i < (int)pairs.size(); i += 2 ) for( i = 0; i < (int)pairs.size(); i += 2 )
{ {
line( correspond, objKeypoints[pairs[i]].pt, line( correspond, objKeypoints[pairs[i]].pt,
imgKeypoints[pairs[i+1]].pt + Point2f(0,object.rows), imgKeypoints[pairs[i+1]].pt + Point2f(0,(float)object.rows),
Scalar(0,255,0) ); Scalar(0,255,0) );
} }
......
...@@ -108,7 +108,7 @@ IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, ...@@ -108,7 +108,7 @@ IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1,
for (size_t i = 0; i < features2.size(); i++) for (size_t i = 0; i < features2.size(); i++)
{ {
CvPoint pt = cvPoint(features2[i].pt.x + img1->width, features2[i].pt.y); CvPoint pt = cvPoint((int)features2[i].pt.x + img1->width, (int)features2[i].pt.y);
cvCircle(img_corr, pt, 3, CV_RGB(255, 0, 0)); cvCircle(img_corr, pt, 3, CV_RGB(255, 0, 0));
cvLine(img_corr, features1[desc_idx[i]].pt, pt, CV_RGB(0, 255, 0)); cvLine(img_corr, features1[desc_idx[i]].pt, pt, CV_RGB(0, 255, 0));
} }
......
#include "opencv2/imgproc/imgproc.hpp" #include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp" #include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include <ctype.h> #include <ctype.h>
#include <stdio.h> #include <stdio.h>
......
#include "opencv2/imgproc/imgproc.hpp" #include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp" #include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include <stdio.h> #include <stdio.h>
void help() void help()
......
...@@ -855,7 +855,7 @@ void VocData::calcPrecRecall_impl(const vector<char>& ground_truth, const vector ...@@ -855,7 +855,7 @@ void VocData::calcPrecRecall_impl(const vector<char>& ground_truth, const vector
{ {
recall_norm = recall_normalization; recall_norm = recall_normalization;
} else { } else {
recall_norm = (int)std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to<bool>(),true)); recall_norm = (int)std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to<char>(),(char)1));
} }
ap = 0; ap = 0;
...@@ -985,7 +985,7 @@ void VocData::calcClassifierConfMatRow(const string& obj_class, const vector<Obd ...@@ -985,7 +985,7 @@ void VocData::calcClassifierConfMatRow(const string& obj_class, const vector<Obd
/* in order to calculate the total number of relevant images for normalization of recall /* in order to calculate the total number of relevant images for normalization of recall
it's necessary to extract the ground truth for the images under consideration */ it's necessary to extract the ground truth for the images under consideration */
getClassifierGroundTruth(obj_class, images, ground_truth); getClassifierGroundTruth(obj_class, images, ground_truth);
total_relevant = std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to<bool>(),true)); total_relevant = std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to<char>(),(char)1));
} }
/* iterate through images */ /* iterate through images */
...@@ -2292,8 +2292,8 @@ void removeBowImageDescriptorsByCount( vector<ObdImage>& images, vector<Mat> bow ...@@ -2292,8 +2292,8 @@ void removeBowImageDescriptorsByCount( vector<ObdImage>& images, vector<Mat> bow
const SVMTrainParamsExt& svmParamsExt, int descsToDelete ) const SVMTrainParamsExt& svmParamsExt, int descsToDelete )
{ {
RNG& rng = theRNG(); RNG& rng = theRNG();
int pos_ex = std::count( objectPresent.begin(), objectPresent.end(), true ); int pos_ex = std::count( objectPresent.begin(), objectPresent.end(), (char)1 );
int neg_ex = std::count( objectPresent.begin(), objectPresent.end(), false ); int neg_ex = std::count( objectPresent.begin(), objectPresent.end(), (char)0 );
while( descsToDelete != 0 ) while( descsToDelete != 0 )
{ {
......
...@@ -79,8 +79,8 @@ void colorizeDisparity( const Mat& gray, Mat& rgb, double maxDisp=-1.f, float S= ...@@ -79,8 +79,8 @@ void colorizeDisparity( const Mat& gray, Mat& rgb, double maxDisp=-1.f, float S=
float getMaxDisparity( VideoCapture& capture ) float getMaxDisparity( VideoCapture& capture )
{ {
const int minDistance = 400; // mm const int minDistance = 400; // mm
float b = capture.get( CV_CAP_OPENNI_DEPTH_GENERATOR_BASELINE ); // mm float b = (float)capture.get( CV_CAP_OPENNI_DEPTH_GENERATOR_BASELINE ); // mm
float F = capture.get( CV_CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH ); // pixels float F = (float)capture.get( CV_CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH ); // pixels
return b * F / minDistance; return b * F / minDistance;
} }
......
...@@ -495,8 +495,8 @@ int build_knearest_classifier( char* data_filename, int K ) ...@@ -495,8 +495,8 @@ int build_knearest_classifier( char* data_filename, int K )
int ok = read_num_class_data( data_filename, 16, &data, &responses ); int ok = read_num_class_data( data_filename, 16, &data, &responses );
int nsamples_all = 0, ntrain_samples = 0; int nsamples_all = 0, ntrain_samples = 0;
int i, j; //int i, j;
double train_hr = 0, test_hr = 0; //double /*train_hr = 0,*/ test_hr = 0;
CvANN_MLP mlp; CvANN_MLP mlp;
if( !ok ) if( !ok )
...@@ -572,8 +572,8 @@ int build_nbayes_classifier( char* data_filename ) ...@@ -572,8 +572,8 @@ int build_nbayes_classifier( char* data_filename )
int ok = read_num_class_data( data_filename, 16, &data, &responses ); int ok = read_num_class_data( data_filename, 16, &data, &responses );
int nsamples_all = 0, ntrain_samples = 0; int nsamples_all = 0, ntrain_samples = 0;
int i, j; //int i, j;
double train_hr = 0, test_hr = 0; //double /*train_hr = 0, */test_hr = 0;
CvANN_MLP mlp; CvANN_MLP mlp;
if( !ok ) if( !ok )
...@@ -612,7 +612,7 @@ int build_nbayes_classifier( char* data_filename ) ...@@ -612,7 +612,7 @@ int build_nbayes_classifier( char* data_filename )
CvMat *result = cvCreateMat(1, nsamples_all - ntrain_samples, CV_32FC1); CvMat *result = cvCreateMat(1, nsamples_all - ntrain_samples, CV_32FC1);
(int)nbayes.predict(&sample, result); (int)nbayes.predict(&sample, result);
int true_resp = 0; int true_resp = 0;
int accuracy = 0; //int accuracy = 0;
for (int i = 0; i < nsamples_all - ntrain_samples; i++) for (int i = 0; i < nsamples_all - ntrain_samples; i++)
{ {
if (result->data.fl[i] == true_results[i]) if (result->data.fl[i] == true_results[i])
......
...@@ -155,7 +155,7 @@ void DetectAndDraw( Mat& img, CascadeClassifier& cascade) ...@@ -155,7 +155,7 @@ void DetectAndDraw( Mat& img, CascadeClassifier& cascade)
int radius; int radius;
center.x = cvRound(r->x + r->width*0.5); center.x = cvRound(r->x + r->width*0.5);
center.y = cvRound(r->y + r->height*0.5); center.y = cvRound(r->y + r->height*0.5);
radius = cvRound(r->width + r->height)*0.25; radius = (int)(cvRound(r->width + r->height)*0.25);
circle( img, center, radius, color, 3, 8, 0 ); circle( img, center, radius, color, 3, 8, 0 );
} }
......
...@@ -493,7 +493,7 @@ int main() ...@@ -493,7 +493,7 @@ int main()
for(;;) for(;;)
{ {
uchar key = waitKey(); uchar key = (uchar)waitKey();
if( key == 27 ) break; if( key == 27 ) break;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment