Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
8de08e04
Commit
8de08e04
authored
Jul 24, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #12021 from dkurt:dnn_ie_tf_ssd
parents
236f3839
c213a382
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
49 additions
and
20 deletions
+49
-20
tf_importer.cpp
modules/dnn/src/tensorflow/tf_importer.cpp
+39
-6
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+1
-1
tf_text_graph_ssd.py
samples/dnn/tf_text_graph_ssd.py
+9
-13
No files found.
modules/dnn/src/tensorflow/tf_importer.cpp
View file @
8de08e04
...
...
@@ -771,6 +771,13 @@ void TFImporter::populateNet(Net dstNet)
type
=
layer
.
op
();
}
// For the object detection networks, TensorFlow Object Detection API
// predicts deltas for bounding boxes in yxYX (ymin, xmin, ymax, xmax)
// order. We can manage it at DetectionOutput layer parsing predictions
// or shuffle last convolution's weights.
bool
locPredTransposed
=
hasLayerAttr
(
layer
,
"loc_pred_transposed"
)
&&
getLayerAttr
(
layer
,
"loc_pred_transposed"
).
b
();
layerParams
.
set
(
"bias_term"
,
false
);
layerParams
.
blobs
.
resize
(
1
);
...
...
@@ -784,18 +791,32 @@ void TFImporter::populateNet(Net dstNet)
blobFromTensor
(
getConstBlob
(
net
.
node
(
weights_layer_index
),
value_id
),
layerParams
.
blobs
[
1
]);
ExcludeLayer
(
net
,
weights_layer_index
,
0
,
false
);
layers_to_ignore
.
insert
(
next_layers
[
0
].
first
);
// Shuffle bias from yxYX to xyXY.
if
(
locPredTransposed
)
{
const
int
numWeights
=
layerParams
.
blobs
[
1
].
total
();
float
*
biasData
=
reinterpret_cast
<
float
*>
(
layerParams
.
blobs
[
1
].
data
);
CV_Assert
(
numWeights
%
4
==
0
);
for
(
int
i
=
0
;
i
<
numWeights
;
i
+=
2
)
{
std
::
swap
(
biasData
[
i
],
biasData
[
i
+
1
]);
}
}
}
const
tensorflow
::
TensorProto
&
kernelTensor
=
getConstBlob
(
layer
,
value_id
);
kernelFromTensor
(
kernelTensor
,
layerParams
.
blobs
[
0
]);
releaseTensor
(
const_cast
<
tensorflow
::
TensorProto
*>
(
&
kernelTensor
));
int
*
kshape
=
layerParams
.
blobs
[
0
].
size
.
p
;
const
int
outCh
=
kshape
[
0
];
const
int
inCh
=
kshape
[
1
];
const
int
height
=
kshape
[
2
];
const
int
width
=
kshape
[
3
];
if
(
type
==
"DepthwiseConv2dNative"
)
{
CV_Assert
(
!
locPredTransposed
);
const
int
chMultiplier
=
kshape
[
0
];
const
int
inCh
=
kshape
[
1
];
const
int
height
=
kshape
[
2
];
const
int
width
=
kshape
[
3
];
Mat
copy
=
layerParams
.
blobs
[
0
].
clone
();
float
*
src
=
(
float
*
)
copy
.
data
;
...
...
@@ -814,9 +835,21 @@ void TFImporter::populateNet(Net dstNet)
size_t
*
kstep
=
layerParams
.
blobs
[
0
].
step
.
p
;
kstep
[
0
]
=
kstep
[
1
];
// fix steps too
}
layerParams
.
set
(
"kernel_h"
,
kshape
[
2
]);
layerParams
.
set
(
"kernel_w"
,
kshape
[
3
]);
layerParams
.
set
(
"num_output"
,
kshape
[
0
]);
layerParams
.
set
(
"kernel_h"
,
height
);
layerParams
.
set
(
"kernel_w"
,
width
);
layerParams
.
set
(
"num_output"
,
outCh
);
// Shuffle output channels from yxYX to xyXY.
if
(
locPredTransposed
)
{
const
int
slice
=
height
*
width
*
inCh
;
for
(
int
i
=
0
;
i
<
outCh
;
i
+=
2
)
{
cv
::
Mat
src
(
1
,
slice
,
CV_32F
,
layerParams
.
blobs
[
0
].
ptr
<
float
>
(
i
));
cv
::
Mat
dst
(
1
,
slice
,
CV_32F
,
layerParams
.
blobs
[
0
].
ptr
<
float
>
(
i
+
1
));
std
::
swap_ranges
(
src
.
begin
<
float
>
(),
src
.
end
<
float
>
(),
dst
.
begin
<
float
>
());
}
}
setStrides
(
layerParams
,
layer
);
setPadding
(
layerParams
,
layer
);
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
8de08e04
...
...
@@ -309,7 +309,7 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
0
,
10
,
0.95932811
,
0.38349164
,
0.32528657
,
0.40387636
,
0.39165527
,
0
,
10
,
0.93973452
,
0.66561931
,
0.37841269
,
0.68074018
,
0.42907384
);
double
scoreDiff
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
5e-3
:
default_l1
;
double
iouDiff
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
0.0
25
:
default_lInf
;
double
iouDiff
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
0.0
9
:
default_lInf
;
normAssertDetections
(
ref
,
out
,
""
,
0.5
,
scoreDiff
,
iouDiff
);
}
...
...
samples/dnn/tf_text_graph_ssd.py
View file @
8de08e04
...
...
@@ -208,12 +208,18 @@ for label in ['ClassPredictor', 'BoxEncodingPredictor']:
graph_def
.
node
.
extend
([
flatten
])
addConcatNode
(
'
%
s/concat'
%
label
,
concatInputs
,
'concat/axis_flatten'
)
idx
=
0
for
node
in
graph_def
.
node
:
if
node
.
name
==
(
'BoxPredictor_
%
d/BoxEncodingPredictor/Conv2D'
%
idx
):
text_format
.
Merge
(
'b: true'
,
node
.
attr
[
"loc_pred_transposed"
])
idx
+=
1
assert
(
idx
==
args
.
num_layers
)
# Add layers that generate anchors (bounding boxes proposals).
scales
=
[
args
.
min_scale
+
(
args
.
max_scale
-
args
.
min_scale
)
*
i
/
(
args
.
num_layers
-
1
)
for
i
in
range
(
args
.
num_layers
)]
+
[
1.0
]
priorBoxes
=
[]
addConstNode
(
'reshape_prior_boxes_to_4d'
,
[
1
,
2
,
-
1
,
1
])
for
i
in
range
(
args
.
num_layers
):
priorBox
=
NodeDef
()
priorBox
.
name
=
'PriorBox_
%
d'
%
i
...
...
@@ -240,18 +246,9 @@ for i in range(args.num_layers):
text_format
.
Merge
(
tensorMsg
([
0.1
,
0.1
,
0.2
,
0.2
]),
priorBox
.
attr
[
"variance"
])
graph_def
.
node
.
extend
([
priorBox
])
priorBoxes
.
append
(
priorBox
.
name
)
# Reshape from 1x2xN to 1x2xNx1
reshape
=
NodeDef
()
reshape
.
name
=
priorBox
.
name
+
'/4d'
reshape
.
op
=
'Reshape'
reshape
.
input
.
append
(
priorBox
.
name
)
reshape
.
input
.
append
(
'reshape_prior_boxes_to_4d'
)
graph_def
.
node
.
extend
([
reshape
])
priorBoxes
.
append
(
reshape
.
name
)
addConcatNode
(
'PriorBox/concat'
,
priorBoxes
,
'PriorBox/concat/axis'
)
addConcatNode
(
'PriorBox/concat'
,
priorBoxes
,
'concat/axis_flatten'
)
# Sigmoid for classes predictions and DetectionOutput layer
sigmoid
=
NodeDef
()
...
...
@@ -276,7 +273,6 @@ text_format.Merge('i: 100', detectionOut.attr['top_k'])
text_format
.
Merge
(
's: "CENTER_SIZE"'
,
detectionOut
.
attr
[
'code_type'
])
text_format
.
Merge
(
'i: 100'
,
detectionOut
.
attr
[
'keep_top_k'
])
text_format
.
Merge
(
'f: 0.01'
,
detectionOut
.
attr
[
'confidence_threshold'
])
text_format
.
Merge
(
'b: true'
,
detectionOut
.
attr
[
'loc_pred_transposed'
])
graph_def
.
node
.
extend
([
detectionOut
])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment