Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
8d73bbb8
Commit
8d73bbb8
authored
Aug 02, 2012
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fixed 2228
parent
989631c5
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
469 additions
and
467 deletions
+469
-467
cascadeclassifier.cpp
modules/gpu/src/cascadeclassifier.cpp
+469
-467
No files found.
modules/gpu/src/cascadeclassifier.cpp
View file @
8d73bbb8
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <vector>
#include <iostream>
using
namespace
cv
;
using
namespace
cv
::
gpu
;
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <vector>
#include <iostream>
using
namespace
cv
;
using
namespace
cv
::
gpu
;
using
namespace
std
;
#if !defined (HAVE_CUDA)
...
...
@@ -94,219 +94,221 @@ public:
/*out*/
unsigned
int
&
numDetections
)
{
calculateMemReqsAndAllocate
(
src
.
size
());
NCVMemPtr
src_beg
;
src_beg
.
ptr
=
(
void
*
)
src
.
ptr
<
Ncv8u
>
();
src_beg
.
memtype
=
NCVMemoryTypeDevice
;
NCVMemSegment
src_seg
;
src_seg
.
begin
=
src_beg
;
src_seg
.
size
=
src
.
step
*
src
.
rows
;
NCVMatrixReuse
<
Ncv8u
>
d_src
(
src_seg
,
static_cast
<
int
>
(
devProp
.
textureAlignment
),
src
.
cols
,
src
.
rows
,
static_cast
<
int
>
(
src
.
step
),
true
);
ncvAssertReturn
(
d_src
.
isMemReused
(),
NCV_ALLOCATOR_BAD_REUSE
);
CV_Assert
(
objects
.
rows
==
1
);
NCVMemPtr
objects_beg
;
objects_beg
.
ptr
=
(
void
*
)
objects
.
ptr
<
NcvRect32u
>
();
objects_beg
.
memtype
=
NCVMemoryTypeDevice
;
NCVMemSegment
objects_seg
;
objects_seg
.
begin
=
objects_beg
;
objects_seg
.
size
=
objects
.
step
*
objects
.
rows
;
NCVVectorReuse
<
NcvRect32u
>
d_rects
(
objects_seg
,
objects
.
cols
);
ncvAssertReturn
(
d_rects
.
isMemReused
(),
NCV_ALLOCATOR_BAD_REUSE
);
NcvSize32u
roi
;
roi
.
width
=
d_src
.
width
();
roi
.
height
=
d_src
.
height
();
NCVMemPtr
src_beg
;
src_beg
.
ptr
=
(
void
*
)
src
.
ptr
<
Ncv8u
>
();
src_beg
.
memtype
=
NCVMemoryTypeDevice
;
NCVMemSegment
src_seg
;
src_seg
.
begin
=
src_beg
;
src_seg
.
size
=
src
.
step
*
src
.
rows
;
NCVMatrixReuse
<
Ncv8u
>
d_src
(
src_seg
,
static_cast
<
int
>
(
devProp
.
textureAlignment
),
src
.
cols
,
src
.
rows
,
static_cast
<
int
>
(
src
.
step
),
true
);
ncvAssertReturn
(
d_src
.
isMemReused
(),
NCV_ALLOCATOR_BAD_REUSE
);
CV_Assert
(
objects
.
rows
==
1
);
NCVMemPtr
objects_beg
;
objects_beg
.
ptr
=
(
void
*
)
objects
.
ptr
<
NcvRect32u
>
();
objects_beg
.
memtype
=
NCVMemoryTypeDevice
;
NCVMemSegment
objects_seg
;
objects_seg
.
begin
=
objects_beg
;
objects_seg
.
size
=
objects
.
step
*
objects
.
rows
;
NCVVectorReuse
<
NcvRect32u
>
d_rects
(
objects_seg
,
objects
.
cols
);
ncvAssertReturn
(
d_rects
.
isMemReused
(),
NCV_ALLOCATOR_BAD_REUSE
);
NcvSize32u
roi
;
roi
.
width
=
d_src
.
width
();
roi
.
height
=
d_src
.
height
();
NcvSize32u
winMinSize
(
ncvMinSize
.
width
,
ncvMinSize
.
height
);
Ncv32u
flags
=
0
;
flags
|=
findLargestObject
?
NCVPipeObjDet_FindLargestObject
:
0
;
flags
|=
visualizeInPlace
?
NCVPipeObjDet_VisualizeInPlace
:
0
;
ncvStat
=
ncvDetectObjectsMultiScale_device
(
d_src
,
roi
,
d_rects
,
numDetections
,
haar
,
*
h_haarStages
,
*
d_haarStages
,
*
d_haarNodes
,
*
d_haarFeatures
,
Ncv32u
flags
=
0
;
flags
|=
findLargestObject
?
NCVPipeObjDet_FindLargestObject
:
0
;
flags
|=
visualizeInPlace
?
NCVPipeObjDet_VisualizeInPlace
:
0
;
ncvStat
=
ncvDetectObjectsMultiScale_device
(
d_src
,
roi
,
d_rects
,
numDetections
,
haar
,
*
h_haarStages
,
*
d_haarStages
,
*
d_haarNodes
,
*
d_haarFeatures
,
winMinSize
,
minNeighbors
,
scaleStep
,
1
,
flags
,
*
gpuAllocator
,
*
cpuAllocator
,
devProp
,
0
);
ncvAssertReturnNcvStat
(
ncvStat
);
ncvAssertCUDAReturn
(
cudaStreamSynchronize
(
0
),
NCV_CUDA_ERROR
);
return
NCV_SUCCESS
;
}
minNeighbors
,
scaleStep
,
1
,
flags
,
*
gpuAllocator
,
*
cpuAllocator
,
devProp
,
0
);
ncvAssertReturnNcvStat
(
ncvStat
);
ncvAssertCUDAReturn
(
cudaStreamSynchronize
(
0
),
NCV_CUDA_ERROR
);
return
NCV_SUCCESS
;
}
unsigned
int
process
(
const
GpuMat
&
image
,
GpuMat
&
objectsBuf
,
float
scaleFactor
,
int
minNeighbors
,
bool
findLargestObject
,
bool
visualizeInPlace
,
cv
::
Size
minSize
,
cv
::
Size
maxObjectSize
)
{
CV_Assert
(
scaleFactor
>
1
&&
image
.
depth
()
==
CV_8U
);
const
int
defaultObjSearchNum
=
100
;
if
(
objectsBuf
.
empty
())
{
objectsBuf
.
create
(
1
,
defaultObjSearchNum
,
DataType
<
Rect
>::
type
);
}
cv
::
Size
ncvMinSize
=
this
->
getClassifierCvSize
();
if
(
ncvMinSize
.
width
<
(
unsigned
)
minSize
.
width
&&
ncvMinSize
.
height
<
(
unsigned
)
minSize
.
height
)
{
ncvMinSize
.
width
=
minSize
.
width
;
ncvMinSize
.
height
=
minSize
.
height
;
}
unsigned
int
numDetections
;
ncvSafeCall
(
this
->
process
(
image
,
objectsBuf
,
(
float
)
scaleFactor
,
minNeighbors
,
findLargestObject
,
visualizeInPlace
,
ncvMinSize
,
numDetections
));
return
numDetections
;
}
cv
::
Size
getClassifierCvSize
()
const
{
return
cv
::
Size
(
haar
.
ClassifierSize
.
width
,
haar
.
ClassifierSize
.
height
);
}
private
:
static
void
NCVDebugOutputHandler
(
const
std
::
string
&
msg
)
{
CV_Error
(
CV_GpuApiCallError
,
msg
.
c_str
());
}
NCVStatus
load
(
const
string
&
classifierFile
)
{
int
devId
=
cv
::
gpu
::
getDevice
();
ncvAssertCUDAReturn
(
cudaGetDeviceProperties
(
&
devProp
,
devId
),
NCV_CUDA_ERROR
);
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
gpuCascadeAllocator
=
new
NCVMemNativeAllocator
(
NCVMemoryTypeDevice
,
static_cast
<
int
>
(
devProp
.
textureAlignment
));
cpuCascadeAllocator
=
new
NCVMemNativeAllocator
(
NCVMemoryTypeHostPinned
,
static_cast
<
int
>
(
devProp
.
textureAlignment
));
ncvAssertPrintReturn
(
gpuCascadeAllocator
->
isInitialized
(),
"Error creating cascade GPU allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
cpuCascadeAllocator
->
isInitialized
(),
"Error creating cascade CPU allocator"
,
NCV_CUDA_ERROR
);
Ncv32u
haarNumStages
,
haarNumNodes
,
haarNumFeatures
;
ncvStat
=
ncvHaarGetClassifierSize
(
classifierFile
,
haarNumStages
,
haarNumNodes
,
haarNumFeatures
);
ncvAssertPrintReturn
(
ncvStat
==
NCV_SUCCESS
,
"Error reading classifier size (check the file)"
,
NCV_FILE_ERROR
);
h_haarStages
=
new
NCVVectorAlloc
<
HaarStage64
>
(
*
cpuCascadeAllocator
,
haarNumStages
);
h_haarNodes
=
new
NCVVectorAlloc
<
HaarClassifierNode128
>
(
*
cpuCascadeAllocator
,
haarNumNodes
);
h_haarFeatures
=
new
NCVVectorAlloc
<
HaarFeature64
>
(
*
cpuCascadeAllocator
,
haarNumFeatures
);
ncvAssertPrintReturn
(
h_haarStages
->
isMemAllocated
(),
"Error in cascade CPU allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
h_haarNodes
->
isMemAllocated
(),
"Error in cascade CPU allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
h_haarFeatures
->
isMemAllocated
(),
"Error in cascade CPU allocator"
,
NCV_CUDA_ERROR
);
ncvStat
=
ncvHaarLoadFromFile_host
(
classifierFile
,
haar
,
*
h_haarStages
,
*
h_haarNodes
,
*
h_haarFeatures
);
ncvAssertPrintReturn
(
ncvStat
==
NCV_SUCCESS
,
"Error loading classifier"
,
NCV_FILE_ERROR
);
d_haarStages
=
new
NCVVectorAlloc
<
HaarStage64
>
(
*
gpuCascadeAllocator
,
haarNumStages
);
d_haarNodes
=
new
NCVVectorAlloc
<
HaarClassifierNode128
>
(
*
gpuCascadeAllocator
,
haarNumNodes
);
d_haarFeatures
=
new
NCVVectorAlloc
<
HaarFeature64
>
(
*
gpuCascadeAllocator
,
haarNumFeatures
);
ncvAssertPrintReturn
(
d_haarStages
->
isMemAllocated
(),
"Error in cascade GPU allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
d_haarNodes
->
isMemAllocated
(),
"Error in cascade GPU allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
d_haarFeatures
->
isMemAllocated
(),
"Error in cascade GPU allocator"
,
NCV_CUDA_ERROR
);
ncvStat
=
h_haarStages
->
copySolid
(
*
d_haarStages
,
0
);
ncvAssertPrintReturn
(
ncvStat
==
NCV_SUCCESS
,
"Error copying cascade to GPU"
,
NCV_CUDA_ERROR
);
ncvStat
=
h_haarNodes
->
copySolid
(
*
d_haarNodes
,
0
);
ncvAssertPrintReturn
(
ncvStat
==
NCV_SUCCESS
,
"Error copying cascade to GPU"
,
NCV_CUDA_ERROR
);
ncvStat
=
h_haarFeatures
->
copySolid
(
*
d_haarFeatures
,
0
);
ncvAssertPrintReturn
(
ncvStat
==
NCV_SUCCESS
,
"Error copying cascade to GPU"
,
NCV_CUDA_ERROR
);
return
NCV_SUCCESS
;
}
NCVStatus
calculateMemReqsAndAllocate
(
const
Size
&
frameSize
)
{
if
(
lastAllocatedFrameSize
==
frameSize
)
{
return
NCV_SUCCESS
;
}
// Calculate memory requirements and create real allocators
NCVMemStackAllocator
gpuCounter
(
static_cast
<
int
>
(
devProp
.
textureAlignment
));
NCVMemStackAllocator
cpuCounter
(
static_cast
<
int
>
(
devProp
.
textureAlignment
));
ncvAssertPrintReturn
(
gpuCounter
.
isInitialized
(),
"Error creating GPU memory counter"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
cpuCounter
.
isInitialized
(),
"Error creating CPU memory counter"
,
NCV_CUDA_ERROR
);
NCVMatrixAlloc
<
Ncv8u
>
d_src
(
gpuCounter
,
frameSize
.
width
,
frameSize
.
height
);
NCVMatrixAlloc
<
Ncv8u
>
h_src
(
cpuCounter
,
frameSize
.
width
,
frameSize
.
height
);
ncvAssertReturn
(
d_src
.
isMemAllocated
(),
NCV_ALLOCATOR_BAD_ALLOC
);
ncvAssertReturn
(
h_src
.
isMemAllocated
(),
NCV_ALLOCATOR_BAD_ALLOC
);
NCVVectorAlloc
<
NcvRect32u
>
d_rects
(
gpuCounter
,
100
);
ncvAssertReturn
(
d_rects
.
isMemAllocated
(),
NCV_ALLOCATOR_BAD_ALLOC
);
NcvSize32u
roi
;
roi
.
width
=
d_src
.
width
();
roi
.
height
=
d_src
.
height
();
Ncv32u
numDetections
;
ncvStat
=
ncvDetectObjectsMultiScale_device
(
d_src
,
roi
,
d_rects
,
numDetections
,
haar
,
*
h_haarStages
,
*
d_haarStages
,
*
d_haarNodes
,
*
d_haarFeatures
,
haar
.
ClassifierSize
,
4
,
1.2
f
,
1
,
0
,
gpuCounter
,
cpuCounter
,
devProp
,
0
);
ncvAssertReturnNcvStat
(
ncvStat
);
ncvAssertCUDAReturn
(
cudaStreamSynchronize
(
0
),
NCV_CUDA_ERROR
);
gpuAllocator
=
new
NCVMemStackAllocator
(
NCVMemoryTypeDevice
,
gpuCounter
.
maxSize
(),
static_cast
<
int
>
(
devProp
.
textureAlignment
));
cpuAllocator
=
new
NCVMemStackAllocator
(
NCVMemoryTypeHostPinned
,
cpuCounter
.
maxSize
(),
static_cast
<
int
>
(
devProp
.
textureAlignment
));
ncvAssertPrintReturn
(
gpuAllocator
->
isInitialized
(),
"Error creating GPU memory allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
cpuAllocator
->
isInitialized
(),
"Error creating CPU memory allocator"
,
NCV_CUDA_ERROR
);
return
NCV_SUCCESS
;
}
cudaDeviceProp
devProp
;
NCVStatus
ncvStat
;
Ptr
<
NCVMemNativeAllocator
>
gpuCascadeAllocator
;
Ptr
<
NCVMemNativeAllocator
>
cpuCascadeAllocator
;
Ptr
<
NCVVectorAlloc
<
HaarStage64
>
>
h_haarStages
;
Ptr
<
NCVVectorAlloc
<
HaarClassifierNode128
>
>
h_haarNodes
;
Ptr
<
NCVVectorAlloc
<
HaarFeature64
>
>
h_haarFeatures
;
HaarClassifierCascadeDescriptor
haar
;
Ptr
<
NCVVectorAlloc
<
HaarStage64
>
>
d_haarStages
;
Ptr
<
NCVVectorAlloc
<
HaarClassifierNode128
>
>
d_haarNodes
;
Ptr
<
NCVVectorAlloc
<
HaarFeature64
>
>
d_haarFeatures
;
Size
lastAllocatedFrameSize
;
Ptr
<
NCVMemStackAllocator
>
gpuAllocator
;
Ptr
<
NCVMemStackAllocator
>
cpuAllocator
;
NCVStatus
load
(
const
string
&
classifierFile
)
{
int
devId
=
cv
::
gpu
::
getDevice
();
ncvAssertCUDAReturn
(
cudaGetDeviceProperties
(
&
devProp
,
devId
),
NCV_CUDA_ERROR
);
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
gpuCascadeAllocator
=
new
NCVMemNativeAllocator
(
NCVMemoryTypeDevice
,
static_cast
<
int
>
(
devProp
.
textureAlignment
));
cpuCascadeAllocator
=
new
NCVMemNativeAllocator
(
NCVMemoryTypeHostPinned
,
static_cast
<
int
>
(
devProp
.
textureAlignment
));
ncvAssertPrintReturn
(
gpuCascadeAllocator
->
isInitialized
(),
"Error creating cascade GPU allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
cpuCascadeAllocator
->
isInitialized
(),
"Error creating cascade CPU allocator"
,
NCV_CUDA_ERROR
);
Ncv32u
haarNumStages
,
haarNumNodes
,
haarNumFeatures
;
ncvStat
=
ncvHaarGetClassifierSize
(
classifierFile
,
haarNumStages
,
haarNumNodes
,
haarNumFeatures
);
ncvAssertPrintReturn
(
ncvStat
==
NCV_SUCCESS
,
"Error reading classifier size (check the file)"
,
NCV_FILE_ERROR
);
h_haarStages
=
new
NCVVectorAlloc
<
HaarStage64
>
(
*
cpuCascadeAllocator
,
haarNumStages
);
h_haarNodes
=
new
NCVVectorAlloc
<
HaarClassifierNode128
>
(
*
cpuCascadeAllocator
,
haarNumNodes
);
h_haarFeatures
=
new
NCVVectorAlloc
<
HaarFeature64
>
(
*
cpuCascadeAllocator
,
haarNumFeatures
);
ncvAssertPrintReturn
(
h_haarStages
->
isMemAllocated
(),
"Error in cascade CPU allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
h_haarNodes
->
isMemAllocated
(),
"Error in cascade CPU allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
h_haarFeatures
->
isMemAllocated
(),
"Error in cascade CPU allocator"
,
NCV_CUDA_ERROR
);
ncvStat
=
ncvHaarLoadFromFile_host
(
classifierFile
,
haar
,
*
h_haarStages
,
*
h_haarNodes
,
*
h_haarFeatures
);
ncvAssertPrintReturn
(
ncvStat
==
NCV_SUCCESS
,
"Error loading classifier"
,
NCV_FILE_ERROR
);
d_haarStages
=
new
NCVVectorAlloc
<
HaarStage64
>
(
*
gpuCascadeAllocator
,
haarNumStages
);
d_haarNodes
=
new
NCVVectorAlloc
<
HaarClassifierNode128
>
(
*
gpuCascadeAllocator
,
haarNumNodes
);
d_haarFeatures
=
new
NCVVectorAlloc
<
HaarFeature64
>
(
*
gpuCascadeAllocator
,
haarNumFeatures
);
ncvAssertPrintReturn
(
d_haarStages
->
isMemAllocated
(),
"Error in cascade GPU allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
d_haarNodes
->
isMemAllocated
(),
"Error in cascade GPU allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
d_haarFeatures
->
isMemAllocated
(),
"Error in cascade GPU allocator"
,
NCV_CUDA_ERROR
);
ncvStat
=
h_haarStages
->
copySolid
(
*
d_haarStages
,
0
);
ncvAssertPrintReturn
(
ncvStat
==
NCV_SUCCESS
,
"Error copying cascade to GPU"
,
NCV_CUDA_ERROR
);
ncvStat
=
h_haarNodes
->
copySolid
(
*
d_haarNodes
,
0
);
ncvAssertPrintReturn
(
ncvStat
==
NCV_SUCCESS
,
"Error copying cascade to GPU"
,
NCV_CUDA_ERROR
);
ncvStat
=
h_haarFeatures
->
copySolid
(
*
d_haarFeatures
,
0
);
ncvAssertPrintReturn
(
ncvStat
==
NCV_SUCCESS
,
"Error copying cascade to GPU"
,
NCV_CUDA_ERROR
);
return
NCV_SUCCESS
;
}
NCVStatus
calculateMemReqsAndAllocate
(
const
Size
&
frameSize
)
{
if
(
lastAllocatedFrameSize
==
frameSize
)
{
return
NCV_SUCCESS
;
}
// Calculate memory requirements and create real allocators
NCVMemStackAllocator
gpuCounter
(
static_cast
<
int
>
(
devProp
.
textureAlignment
));
NCVMemStackAllocator
cpuCounter
(
static_cast
<
int
>
(
devProp
.
textureAlignment
));
ncvAssertPrintReturn
(
gpuCounter
.
isInitialized
(),
"Error creating GPU memory counter"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
cpuCounter
.
isInitialized
(),
"Error creating CPU memory counter"
,
NCV_CUDA_ERROR
);
NCVMatrixAlloc
<
Ncv8u
>
d_src
(
gpuCounter
,
frameSize
.
width
,
frameSize
.
height
);
NCVMatrixAlloc
<
Ncv8u
>
h_src
(
cpuCounter
,
frameSize
.
width
,
frameSize
.
height
);
ncvAssertReturn
(
d_src
.
isMemAllocated
(),
NCV_ALLOCATOR_BAD_ALLOC
);
ncvAssertReturn
(
h_src
.
isMemAllocated
(),
NCV_ALLOCATOR_BAD_ALLOC
);
NCVVectorAlloc
<
NcvRect32u
>
d_rects
(
gpuCounter
,
100
);
ncvAssertReturn
(
d_rects
.
isMemAllocated
(),
NCV_ALLOCATOR_BAD_ALLOC
);
NcvSize32u
roi
;
roi
.
width
=
d_src
.
width
();
roi
.
height
=
d_src
.
height
();
Ncv32u
numDetections
;
ncvStat
=
ncvDetectObjectsMultiScale_device
(
d_src
,
roi
,
d_rects
,
numDetections
,
haar
,
*
h_haarStages
,
*
d_haarStages
,
*
d_haarNodes
,
*
d_haarFeatures
,
haar
.
ClassifierSize
,
4
,
1.2
f
,
1
,
0
,
gpuCounter
,
cpuCounter
,
devProp
,
0
);
ncvAssertReturnNcvStat
(
ncvStat
);
ncvAssertCUDAReturn
(
cudaStreamSynchronize
(
0
),
NCV_CUDA_ERROR
);
gpuAllocator
=
new
NCVMemStackAllocator
(
NCVMemoryTypeDevice
,
gpuCounter
.
maxSize
(),
static_cast
<
int
>
(
devProp
.
textureAlignment
));
cpuAllocator
=
new
NCVMemStackAllocator
(
NCVMemoryTypeHostPinned
,
cpuCounter
.
maxSize
(),
static_cast
<
int
>
(
devProp
.
textureAlignment
));
ncvAssertPrintReturn
(
gpuAllocator
->
isInitialized
(),
"Error creating GPU memory allocator"
,
NCV_CUDA_ERROR
);
ncvAssertPrintReturn
(
cpuAllocator
->
isInitialized
(),
"Error creating CPU memory allocator"
,
NCV_CUDA_ERROR
);
lastAllocatedFrameSize
=
frameSize
;
return
NCV_SUCCESS
;
}
cudaDeviceProp
devProp
;
NCVStatus
ncvStat
;
Ptr
<
NCVMemNativeAllocator
>
gpuCascadeAllocator
;
Ptr
<
NCVMemNativeAllocator
>
cpuCascadeAllocator
;
Ptr
<
NCVVectorAlloc
<
HaarStage64
>
>
h_haarStages
;
Ptr
<
NCVVectorAlloc
<
HaarClassifierNode128
>
>
h_haarNodes
;
Ptr
<
NCVVectorAlloc
<
HaarFeature64
>
>
h_haarFeatures
;
HaarClassifierCascadeDescriptor
haar
;
Ptr
<
NCVVectorAlloc
<
HaarStage64
>
>
d_haarStages
;
Ptr
<
NCVVectorAlloc
<
HaarClassifierNode128
>
>
d_haarNodes
;
Ptr
<
NCVVectorAlloc
<
HaarFeature64
>
>
d_haarFeatures
;
Size
lastAllocatedFrameSize
;
Ptr
<
NCVMemStackAllocator
>
gpuAllocator
;
Ptr
<
NCVMemStackAllocator
>
cpuAllocator
;
virtual
~
HaarCascade
(){}
};
};
cv
::
Size
operator
-
(
const
cv
::
Size
&
a
,
const
cv
::
Size
&
b
)
{
return
cv
::
Size
(
a
.
width
-
b
.
width
,
a
.
height
-
b
.
height
);
}
cv
::
Size
operator
+
(
const
cv
::
Size
&
a
,
const
int
&
i
)
{
return
cv
::
Size
(
a
.
width
+
i
,
a
.
height
+
i
);
}
cv
::
Size
operator
*
(
const
cv
::
Size
&
a
,
const
float
&
f
)
{
return
cv
::
Size
(
cvRound
(
a
.
width
*
f
),
cvRound
(
a
.
height
*
f
));
}
cv
::
Size
operator
/
(
const
cv
::
Size
&
a
,
const
float
&
f
)
{
{
return
cv
::
Size
(
cvRound
(
a
.
width
/
f
),
cvRound
(
a
.
height
/
f
));
}
bool
operator
<=
(
const
cv
::
Size
&
a
,
const
cv
::
Size
&
b
)
{
return
a
.
width
<=
b
.
width
&&
a
.
height
<=
b
.
width
;
}
}
struct
PyrLavel
{
PyrLavel
(
int
_order
,
float
_scale
,
cv
::
Size
frame
,
cv
::
Size
window
,
cv
::
Size
minObjectSize
)
...
...
@@ -669,18 +671,18 @@ cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); }
void
cv
::
gpu
::
CascadeClassifier_GPU
::
release
()
{
if
(
impl
)
{
delete
impl
;
impl
=
0
;
}
}
bool
cv
::
gpu
::
CascadeClassifier_GPU
::
empty
()
const
{
return
impl
==
0
;
}
Size
cv
::
gpu
::
CascadeClassifier_GPU
::
getClassifierSize
()
const
{
return
this
->
empty
()
?
Size
()
:
impl
->
getClassifierCvSize
();
}
int
cv
::
gpu
::
CascadeClassifier_GPU
::
detectMultiScale
(
const
GpuMat
&
image
,
GpuMat
&
objectsBuf
,
double
scaleFactor
,
int
minNeighbors
,
Size
minSize
)
{
CV_Assert
(
!
this
->
empty
());
Size
cv
::
gpu
::
CascadeClassifier_GPU
::
getClassifierSize
()
const
{
return
this
->
empty
()
?
Size
()
:
impl
->
getClassifierCvSize
();
}
int
cv
::
gpu
::
CascadeClassifier_GPU
::
detectMultiScale
(
const
GpuMat
&
image
,
GpuMat
&
objectsBuf
,
double
scaleFactor
,
int
minNeighbors
,
Size
minSize
)
{
CV_Assert
(
!
this
->
empty
());
return
impl
->
process
(
image
,
objectsBuf
,
(
float
)
scaleFactor
,
minNeighbors
,
findLargestObject
,
visualizeInPlace
,
minSize
,
cv
::
Size
());
}
int
cv
::
gpu
::
CascadeClassifier_GPU
::
detectMultiScale
(
const
GpuMat
&
image
,
GpuMat
&
objectsBuf
,
Size
maxObjectSize
,
Size
minSize
,
double
scaleFactor
,
int
minNeighbors
)
{
CV_Assert
(
!
this
->
empty
());
...
...
@@ -695,261 +697,261 @@ bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
std
::
transform
(
fext
.
begin
(),
fext
.
end
(),
fext
.
begin
(),
::
tolower
);
if
(
fext
==
"nvbin"
)
{
{
impl
=
new
HaarCascade
();
return
impl
->
read
(
filename
);
}
}
FileStorage
fs
(
filename
,
FileStorage
::
READ
);
if
(
!
fs
.
isOpened
())
{
{
impl
=
new
HaarCascade
();
return
impl
->
read
(
filename
);
}
}
const
char
*
GPU_CC_LBP
=
"LBP"
;
string
featureTypeStr
=
(
string
)
fs
.
getFirstTopLevelNode
()[
"featureType"
];
if
(
featureTypeStr
==
GPU_CC_LBP
)
impl
=
new
LbpCascade
();
else
impl
=
new
HaarCascade
();
impl
->
read
(
filename
);
return
!
this
->
empty
();
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
struct
RectConvert
{
Rect
operator
()(
const
NcvRect32u
&
nr
)
const
{
return
Rect
(
nr
.
x
,
nr
.
y
,
nr
.
width
,
nr
.
height
);
}
NcvRect32u
operator
()(
const
Rect
&
nr
)
const
{
NcvRect32u
rect
;
rect
.
x
=
nr
.
x
;
rect
.
y
=
nr
.
y
;
rect
.
width
=
nr
.
width
;
rect
.
height
=
nr
.
height
;
return
rect
;
}
};
void
groupRectangles
(
std
::
vector
<
NcvRect32u
>
&
hypotheses
,
int
groupThreshold
,
double
eps
,
std
::
vector
<
Ncv32u
>
*
weights
)
{
vector
<
Rect
>
rects
(
hypotheses
.
size
());
std
::
transform
(
hypotheses
.
begin
(),
hypotheses
.
end
(),
rects
.
begin
(),
RectConvert
());
if
(
weights
)
{
vector
<
int
>
weights_int
;
weights_int
.
assign
(
weights
->
begin
(),
weights
->
end
());
cv
::
groupRectangles
(
rects
,
weights_int
,
groupThreshold
,
eps
);
}
else
{
cv
::
groupRectangles
(
rects
,
groupThreshold
,
eps
);
}
std
::
transform
(
rects
.
begin
(),
rects
.
end
(),
hypotheses
.
begin
(),
RectConvert
());
hypotheses
.
resize
(
rects
.
size
());
}
NCVStatus
loadFromXML
(
const
std
::
string
&
filename
,
HaarClassifierCascadeDescriptor
&
haar
,
std
::
vector
<
HaarStage64
>
&
haarStages
,
std
::
vector
<
HaarClassifierNode128
>
&
haarClassifierNodes
,
std
::
vector
<
HaarFeature64
>
&
haarFeatures
)
{
NCVStatus
ncvStat
;
haar
.
NumStages
=
0
;
haar
.
NumClassifierRootNodes
=
0
;
haar
.
NumClassifierTotalNodes
=
0
;
haar
.
NumFeatures
=
0
;
haar
.
ClassifierSize
.
width
=
0
;
haar
.
ClassifierSize
.
height
=
0
;
haar
.
bHasStumpsOnly
=
true
;
haar
.
bNeedsTiltedII
=
false
;
Ncv32u
curMaxTreeDepth
;
std
::
vector
<
char
>
xmlFileCont
;
std
::
vector
<
HaarClassifierNode128
>
h_TmpClassifierNotRootNodes
;
haarStages
.
resize
(
0
);
haarClassifierNodes
.
resize
(
0
);
haarFeatures
.
resize
(
0
);
Ptr
<
CvHaarClassifierCascade
>
oldCascade
=
(
CvHaarClassifierCascade
*
)
cvLoad
(
filename
.
c_str
(),
0
,
0
,
0
);
if
(
oldCascade
.
empty
())
{
return
NCV_HAAR_XML_LOADING_EXCEPTION
;
}
haar
.
ClassifierSize
.
width
=
oldCascade
->
orig_window_size
.
width
;
haar
.
ClassifierSize
.
height
=
oldCascade
->
orig_window_size
.
height
;
int
stagesCound
=
oldCascade
->
count
;
for
(
int
s
=
0
;
s
<
stagesCound
;
++
s
)
// by stages
{
HaarStage64
curStage
;
curStage
.
setStartClassifierRootNodeOffset
(
static_cast
<
Ncv32u
>
(
haarClassifierNodes
.
size
()));
curStage
.
setStageThreshold
(
oldCascade
->
stage_classifier
[
s
].
threshold
);
int
treesCount
=
oldCascade
->
stage_classifier
[
s
].
count
;
for
(
int
t
=
0
;
t
<
treesCount
;
++
t
)
// by trees
{
Ncv32u
nodeId
=
0
;
CvHaarClassifier
*
tree
=
&
oldCascade
->
stage_classifier
[
s
].
classifier
[
t
];
int
nodesCount
=
tree
->
count
;
for
(
int
n
=
0
;
n
<
nodesCount
;
++
n
)
//by features
{
CvHaarFeature
*
feature
=
&
tree
->
haar_feature
[
n
];
HaarClassifierNode128
curNode
;
curNode
.
setThreshold
(
tree
->
threshold
[
n
]);
NcvBool
bIsLeftNodeLeaf
=
false
;
NcvBool
bIsRightNodeLeaf
=
false
;
HaarClassifierNodeDescriptor32
nodeLeft
;
if
(
tree
->
left
[
n
]
<=
0
)
{
Ncv32f
leftVal
=
tree
->
alpha
[
-
tree
->
left
[
n
]];
ncvStat
=
nodeLeft
.
create
(
leftVal
);
ncvAssertReturn
(
ncvStat
==
NCV_SUCCESS
,
ncvStat
);
bIsLeftNodeLeaf
=
true
;
}
else
{
Ncv32u
leftNodeOffset
=
tree
->
left
[
n
];
nodeLeft
.
create
((
Ncv32u
)(
h_TmpClassifierNotRootNodes
.
size
()
+
leftNodeOffset
-
1
));
haar
.
bHasStumpsOnly
=
false
;
}
curNode
.
setLeftNodeDesc
(
nodeLeft
);
HaarClassifierNodeDescriptor32
nodeRight
;
if
(
tree
->
right
[
n
]
<=
0
)
{
Ncv32f
rightVal
=
tree
->
alpha
[
-
tree
->
right
[
n
]];
ncvStat
=
nodeRight
.
create
(
rightVal
);
ncvAssertReturn
(
ncvStat
==
NCV_SUCCESS
,
ncvStat
);
bIsRightNodeLeaf
=
true
;
}
else
{
Ncv32u
rightNodeOffset
=
tree
->
right
[
n
];
nodeRight
.
create
((
Ncv32u
)(
h_TmpClassifierNotRootNodes
.
size
()
+
rightNodeOffset
-
1
));
haar
.
bHasStumpsOnly
=
false
;
}
curNode
.
setRightNodeDesc
(
nodeRight
);
Ncv32u
tiltedVal
=
feature
->
tilted
;
haar
.
bNeedsTiltedII
=
(
tiltedVal
!=
0
);
Ncv32u
featureId
=
0
;
for
(
int
l
=
0
;
l
<
CV_HAAR_FEATURE_MAX
;
++
l
)
//by rects
{
Ncv32u
rectX
=
feature
->
rect
[
l
].
r
.
x
;
Ncv32u
rectY
=
feature
->
rect
[
l
].
r
.
y
;
Ncv32u
rectWidth
=
feature
->
rect
[
l
].
r
.
width
;
Ncv32u
rectHeight
=
feature
->
rect
[
l
].
r
.
height
;
Ncv32f
rectWeight
=
feature
->
rect
[
l
].
weight
;
if
(
rectWeight
==
0
/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/
)
break
;
HaarFeature64
curFeature
;
ncvStat
=
curFeature
.
setRect
(
rectX
,
rectY
,
rectWidth
,
rectHeight
,
haar
.
ClassifierSize
.
width
,
haar
.
ClassifierSize
.
height
);
curFeature
.
setWeight
(
rectWeight
);
ncvAssertReturn
(
NCV_SUCCESS
==
ncvStat
,
ncvStat
);
haarFeatures
.
push_back
(
curFeature
);
featureId
++
;
}
HaarFeatureDescriptor32
tmpFeatureDesc
;
ncvStat
=
tmpFeatureDesc
.
create
(
haar
.
bNeedsTiltedII
,
bIsLeftNodeLeaf
,
bIsRightNodeLeaf
,
featureId
,
static_cast
<
Ncv32u
>
(
haarFeatures
.
size
())
-
featureId
);
ncvAssertReturn
(
NCV_SUCCESS
==
ncvStat
,
ncvStat
);
curNode
.
setFeatureDesc
(
tmpFeatureDesc
);
if
(
!
nodeId
)
{
//root node
haarClassifierNodes
.
push_back
(
curNode
);
curMaxTreeDepth
=
1
;
}
else
{
//other node
h_TmpClassifierNotRootNodes
.
push_back
(
curNode
);
curMaxTreeDepth
++
;
}
nodeId
++
;
}
}
curStage
.
setNumClassifierRootNodes
(
treesCount
);
haarStages
.
push_back
(
curStage
);
}
//fill in cascade stats
haar
.
NumStages
=
static_cast
<
Ncv32u
>
(
haarStages
.
size
());
haar
.
NumClassifierRootNodes
=
static_cast
<
Ncv32u
>
(
haarClassifierNodes
.
size
());
haar
.
NumClassifierTotalNodes
=
static_cast
<
Ncv32u
>
(
haar
.
NumClassifierRootNodes
+
h_TmpClassifierNotRootNodes
.
size
());
haar
.
NumFeatures
=
static_cast
<
Ncv32u
>
(
haarFeatures
.
size
());
//merge root and leaf nodes in one classifiers array
Ncv32u
offsetRoot
=
static_cast
<
Ncv32u
>
(
haarClassifierNodes
.
size
());
for
(
Ncv32u
i
=
0
;
i
<
haarClassifierNodes
.
size
();
i
++
)
{
HaarFeatureDescriptor32
featureDesc
=
haarClassifierNodes
[
i
].
getFeatureDesc
();
HaarClassifierNodeDescriptor32
nodeLeft
=
haarClassifierNodes
[
i
].
getLeftNodeDesc
();
if
(
!
featureDesc
.
isLeftNodeLeaf
())
{
Ncv32u
newOffset
=
nodeLeft
.
getNextNodeOffset
()
+
offsetRoot
;
nodeLeft
.
create
(
newOffset
);
}
haarClassifierNodes
[
i
].
setLeftNodeDesc
(
nodeLeft
);
HaarClassifierNodeDescriptor32
nodeRight
=
haarClassifierNodes
[
i
].
getRightNodeDesc
();
if
(
!
featureDesc
.
isRightNodeLeaf
())
{
Ncv32u
newOffset
=
nodeRight
.
getNextNodeOffset
()
+
offsetRoot
;
nodeRight
.
create
(
newOffset
);
}
haarClassifierNodes
[
i
].
setRightNodeDesc
(
nodeRight
);
}
for
(
Ncv32u
i
=
0
;
i
<
h_TmpClassifierNotRootNodes
.
size
();
i
++
)
{
HaarFeatureDescriptor32
featureDesc
=
h_TmpClassifierNotRootNodes
[
i
].
getFeatureDesc
();
HaarClassifierNodeDescriptor32
nodeLeft
=
h_TmpClassifierNotRootNodes
[
i
].
getLeftNodeDesc
();
if
(
!
featureDesc
.
isLeftNodeLeaf
())
{
Ncv32u
newOffset
=
nodeLeft
.
getNextNodeOffset
()
+
offsetRoot
;
nodeLeft
.
create
(
newOffset
);
}
h_TmpClassifierNotRootNodes
[
i
].
setLeftNodeDesc
(
nodeLeft
);
HaarClassifierNodeDescriptor32
nodeRight
=
h_TmpClassifierNotRootNodes
[
i
].
getRightNodeDesc
();
if
(
!
featureDesc
.
isRightNodeLeaf
())
{
Ncv32u
newOffset
=
nodeRight
.
getNextNodeOffset
()
+
offsetRoot
;
nodeRight
.
create
(
newOffset
);
}
h_TmpClassifierNotRootNodes
[
i
].
setRightNodeDesc
(
nodeRight
);
haarClassifierNodes
.
push_back
(
h_TmpClassifierNotRootNodes
[
i
]);
}
return
NCV_SUCCESS
;
}
#endif
/* HAVE_CUDA */
struct
RectConvert
{
Rect
operator
()(
const
NcvRect32u
&
nr
)
const
{
return
Rect
(
nr
.
x
,
nr
.
y
,
nr
.
width
,
nr
.
height
);
}
NcvRect32u
operator
()(
const
Rect
&
nr
)
const
{
NcvRect32u
rect
;
rect
.
x
=
nr
.
x
;
rect
.
y
=
nr
.
y
;
rect
.
width
=
nr
.
width
;
rect
.
height
=
nr
.
height
;
return
rect
;
}
};
void
groupRectangles
(
std
::
vector
<
NcvRect32u
>
&
hypotheses
,
int
groupThreshold
,
double
eps
,
std
::
vector
<
Ncv32u
>
*
weights
)
{
vector
<
Rect
>
rects
(
hypotheses
.
size
());
std
::
transform
(
hypotheses
.
begin
(),
hypotheses
.
end
(),
rects
.
begin
(),
RectConvert
());
if
(
weights
)
{
vector
<
int
>
weights_int
;
weights_int
.
assign
(
weights
->
begin
(),
weights
->
end
());
cv
::
groupRectangles
(
rects
,
weights_int
,
groupThreshold
,
eps
);
}
else
{
cv
::
groupRectangles
(
rects
,
groupThreshold
,
eps
);
}
std
::
transform
(
rects
.
begin
(),
rects
.
end
(),
hypotheses
.
begin
(),
RectConvert
());
hypotheses
.
resize
(
rects
.
size
());
}
NCVStatus
loadFromXML
(
const
std
::
string
&
filename
,
HaarClassifierCascadeDescriptor
&
haar
,
std
::
vector
<
HaarStage64
>
&
haarStages
,
std
::
vector
<
HaarClassifierNode128
>
&
haarClassifierNodes
,
std
::
vector
<
HaarFeature64
>
&
haarFeatures
)
{
NCVStatus
ncvStat
;
haar
.
NumStages
=
0
;
haar
.
NumClassifierRootNodes
=
0
;
haar
.
NumClassifierTotalNodes
=
0
;
haar
.
NumFeatures
=
0
;
haar
.
ClassifierSize
.
width
=
0
;
haar
.
ClassifierSize
.
height
=
0
;
haar
.
bHasStumpsOnly
=
true
;
haar
.
bNeedsTiltedII
=
false
;
Ncv32u
curMaxTreeDepth
;
std
::
vector
<
char
>
xmlFileCont
;
std
::
vector
<
HaarClassifierNode128
>
h_TmpClassifierNotRootNodes
;
haarStages
.
resize
(
0
);
haarClassifierNodes
.
resize
(
0
);
haarFeatures
.
resize
(
0
);
Ptr
<
CvHaarClassifierCascade
>
oldCascade
=
(
CvHaarClassifierCascade
*
)
cvLoad
(
filename
.
c_str
(),
0
,
0
,
0
);
if
(
oldCascade
.
empty
())
{
return
NCV_HAAR_XML_LOADING_EXCEPTION
;
}
haar
.
ClassifierSize
.
width
=
oldCascade
->
orig_window_size
.
width
;
haar
.
ClassifierSize
.
height
=
oldCascade
->
orig_window_size
.
height
;
int
stagesCound
=
oldCascade
->
count
;
for
(
int
s
=
0
;
s
<
stagesCound
;
++
s
)
// by stages
{
HaarStage64
curStage
;
curStage
.
setStartClassifierRootNodeOffset
(
static_cast
<
Ncv32u
>
(
haarClassifierNodes
.
size
()));
curStage
.
setStageThreshold
(
oldCascade
->
stage_classifier
[
s
].
threshold
);
int
treesCount
=
oldCascade
->
stage_classifier
[
s
].
count
;
for
(
int
t
=
0
;
t
<
treesCount
;
++
t
)
// by trees
{
Ncv32u
nodeId
=
0
;
CvHaarClassifier
*
tree
=
&
oldCascade
->
stage_classifier
[
s
].
classifier
[
t
];
int
nodesCount
=
tree
->
count
;
for
(
int
n
=
0
;
n
<
nodesCount
;
++
n
)
//by features
{
CvHaarFeature
*
feature
=
&
tree
->
haar_feature
[
n
];
HaarClassifierNode128
curNode
;
curNode
.
setThreshold
(
tree
->
threshold
[
n
]);
NcvBool
bIsLeftNodeLeaf
=
false
;
NcvBool
bIsRightNodeLeaf
=
false
;
HaarClassifierNodeDescriptor32
nodeLeft
;
if
(
tree
->
left
[
n
]
<=
0
)
{
Ncv32f
leftVal
=
tree
->
alpha
[
-
tree
->
left
[
n
]];
ncvStat
=
nodeLeft
.
create
(
leftVal
);
ncvAssertReturn
(
ncvStat
==
NCV_SUCCESS
,
ncvStat
);
bIsLeftNodeLeaf
=
true
;
}
else
{
Ncv32u
leftNodeOffset
=
tree
->
left
[
n
];
nodeLeft
.
create
((
Ncv32u
)(
h_TmpClassifierNotRootNodes
.
size
()
+
leftNodeOffset
-
1
));
haar
.
bHasStumpsOnly
=
false
;
}
curNode
.
setLeftNodeDesc
(
nodeLeft
);
HaarClassifierNodeDescriptor32
nodeRight
;
if
(
tree
->
right
[
n
]
<=
0
)
{
Ncv32f
rightVal
=
tree
->
alpha
[
-
tree
->
right
[
n
]];
ncvStat
=
nodeRight
.
create
(
rightVal
);
ncvAssertReturn
(
ncvStat
==
NCV_SUCCESS
,
ncvStat
);
bIsRightNodeLeaf
=
true
;
}
else
{
Ncv32u
rightNodeOffset
=
tree
->
right
[
n
];
nodeRight
.
create
((
Ncv32u
)(
h_TmpClassifierNotRootNodes
.
size
()
+
rightNodeOffset
-
1
));
haar
.
bHasStumpsOnly
=
false
;
}
curNode
.
setRightNodeDesc
(
nodeRight
);
Ncv32u
tiltedVal
=
feature
->
tilted
;
haar
.
bNeedsTiltedII
=
(
tiltedVal
!=
0
);
Ncv32u
featureId
=
0
;
for
(
int
l
=
0
;
l
<
CV_HAAR_FEATURE_MAX
;
++
l
)
//by rects
{
Ncv32u
rectX
=
feature
->
rect
[
l
].
r
.
x
;
Ncv32u
rectY
=
feature
->
rect
[
l
].
r
.
y
;
Ncv32u
rectWidth
=
feature
->
rect
[
l
].
r
.
width
;
Ncv32u
rectHeight
=
feature
->
rect
[
l
].
r
.
height
;
Ncv32f
rectWeight
=
feature
->
rect
[
l
].
weight
;
if
(
rectWeight
==
0
/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/
)
break
;
HaarFeature64
curFeature
;
ncvStat
=
curFeature
.
setRect
(
rectX
,
rectY
,
rectWidth
,
rectHeight
,
haar
.
ClassifierSize
.
width
,
haar
.
ClassifierSize
.
height
);
curFeature
.
setWeight
(
rectWeight
);
ncvAssertReturn
(
NCV_SUCCESS
==
ncvStat
,
ncvStat
);
haarFeatures
.
push_back
(
curFeature
);
featureId
++
;
}
HaarFeatureDescriptor32
tmpFeatureDesc
;
ncvStat
=
tmpFeatureDesc
.
create
(
haar
.
bNeedsTiltedII
,
bIsLeftNodeLeaf
,
bIsRightNodeLeaf
,
featureId
,
static_cast
<
Ncv32u
>
(
haarFeatures
.
size
())
-
featureId
);
ncvAssertReturn
(
NCV_SUCCESS
==
ncvStat
,
ncvStat
);
curNode
.
setFeatureDesc
(
tmpFeatureDesc
);
if
(
!
nodeId
)
{
//root node
haarClassifierNodes
.
push_back
(
curNode
);
curMaxTreeDepth
=
1
;
}
else
{
//other node
h_TmpClassifierNotRootNodes
.
push_back
(
curNode
);
curMaxTreeDepth
++
;
}
nodeId
++
;
}
}
curStage
.
setNumClassifierRootNodes
(
treesCount
);
haarStages
.
push_back
(
curStage
);
}
//fill in cascade stats
haar
.
NumStages
=
static_cast
<
Ncv32u
>
(
haarStages
.
size
());
haar
.
NumClassifierRootNodes
=
static_cast
<
Ncv32u
>
(
haarClassifierNodes
.
size
());
haar
.
NumClassifierTotalNodes
=
static_cast
<
Ncv32u
>
(
haar
.
NumClassifierRootNodes
+
h_TmpClassifierNotRootNodes
.
size
());
haar
.
NumFeatures
=
static_cast
<
Ncv32u
>
(
haarFeatures
.
size
());
//merge root and leaf nodes in one classifiers array
Ncv32u
offsetRoot
=
static_cast
<
Ncv32u
>
(
haarClassifierNodes
.
size
());
for
(
Ncv32u
i
=
0
;
i
<
haarClassifierNodes
.
size
();
i
++
)
{
HaarFeatureDescriptor32
featureDesc
=
haarClassifierNodes
[
i
].
getFeatureDesc
();
HaarClassifierNodeDescriptor32
nodeLeft
=
haarClassifierNodes
[
i
].
getLeftNodeDesc
();
if
(
!
featureDesc
.
isLeftNodeLeaf
())
{
Ncv32u
newOffset
=
nodeLeft
.
getNextNodeOffset
()
+
offsetRoot
;
nodeLeft
.
create
(
newOffset
);
}
haarClassifierNodes
[
i
].
setLeftNodeDesc
(
nodeLeft
);
HaarClassifierNodeDescriptor32
nodeRight
=
haarClassifierNodes
[
i
].
getRightNodeDesc
();
if
(
!
featureDesc
.
isRightNodeLeaf
())
{
Ncv32u
newOffset
=
nodeRight
.
getNextNodeOffset
()
+
offsetRoot
;
nodeRight
.
create
(
newOffset
);
}
haarClassifierNodes
[
i
].
setRightNodeDesc
(
nodeRight
);
}
for
(
Ncv32u
i
=
0
;
i
<
h_TmpClassifierNotRootNodes
.
size
();
i
++
)
{
HaarFeatureDescriptor32
featureDesc
=
h_TmpClassifierNotRootNodes
[
i
].
getFeatureDesc
();
HaarClassifierNodeDescriptor32
nodeLeft
=
h_TmpClassifierNotRootNodes
[
i
].
getLeftNodeDesc
();
if
(
!
featureDesc
.
isLeftNodeLeaf
())
{
Ncv32u
newOffset
=
nodeLeft
.
getNextNodeOffset
()
+
offsetRoot
;
nodeLeft
.
create
(
newOffset
);
}
h_TmpClassifierNotRootNodes
[
i
].
setLeftNodeDesc
(
nodeLeft
);
HaarClassifierNodeDescriptor32
nodeRight
=
h_TmpClassifierNotRootNodes
[
i
].
getRightNodeDesc
();
if
(
!
featureDesc
.
isRightNodeLeaf
())
{
Ncv32u
newOffset
=
nodeRight
.
getNextNodeOffset
()
+
offsetRoot
;
nodeRight
.
create
(
newOffset
);
}
h_TmpClassifierNotRootNodes
[
i
].
setRightNodeDesc
(
nodeRight
);
haarClassifierNodes
.
push_back
(
h_TmpClassifierNotRootNodes
[
i
]);
}
return
NCV_SUCCESS
;
}
#endif
/* HAVE_CUDA */
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment