Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
8cedc052
Commit
8cedc052
authored
Feb 19, 2019
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #13841 from dkurt:dnn_ie_future_3
parents
6e34d277
ca5976e3
Show whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
113 additions
and
48 deletions
+113
-48
dnn.cpp
modules/dnn/src/dnn.cpp
+5
-15
batch_norm_layer.cpp
modules/dnn/src/layers/batch_norm_layer.cpp
+3
-4
blank_layer.cpp
modules/dnn/src/layers/blank_layer.cpp
+3
-1
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+7
-8
elementwise_layers.cpp
modules/dnn/src/layers/elementwise_layers.cpp
+3
-3
fully_connected_layer.cpp
modules/dnn/src/layers/fully_connected_layer.cpp
+4
-3
normalize_bbox_layer.cpp
modules/dnn/src/layers/normalize_bbox_layer.cpp
+1
-1
prior_box_layer.cpp
modules/dnn/src/layers/prior_box_layer.cpp
+3
-3
scale_layer.cpp
modules/dnn/src/layers/scale_layer.cpp
+5
-5
op_inf_engine.cpp
modules/dnn/src/op_inf_engine.cpp
+72
-3
op_inf_engine.hpp
modules/dnn/src/op_inf_engine.hpp
+5
-1
test_halide_layers.cpp
modules/dnn/test/test_halide_layers.cpp
+2
-1
No files found.
modules/dnn/src/dnn.cpp
View file @
8cedc052
...
...
@@ -730,9 +730,9 @@ struct DataLayer : public Layer
biases
->
set
(
biasesVec
);
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InferenceEngine
::
Builder
::
ScaleShiftLayer
ie
Layer
(
name
);
ieLayer
.
setWeights
(
weights
);
ieLayer
.
setBiases
(
biases
);
InferenceEngine
::
Builder
::
Layer
ieLayer
=
InferenceEngine
::
Builder
::
ScaleShift
Layer
(
name
);
addConstantData
(
"weights"
,
weights
,
ieLayer
);
addConstantData
(
"biases"
,
biases
,
ieLayer
);
#else
InferenceEngine
::
LayerParams
lp
;
lp
.
name
=
name
;
...
...
@@ -1638,25 +1638,15 @@ struct Net::Impl
preferableTarget
==
DNN_TARGET_FPGA
)
&&
!
fused
)
{
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
bool
hasWeights
=
false
;
for
(
const
std
::
string
&
name
:
{
"weights"
,
"biases"
})
{
auto
it
=
ieNode
->
layer
.
getParameters
().
find
(
name
);
if
(
it
!=
ieNode
->
layer
.
getParameters
().
end
())
{
InferenceEngine
::
Blob
::
CPtr
bp
=
it
->
second
.
as
<
InferenceEngine
::
Blob
::
CPtr
>
();
it
->
second
=
(
InferenceEngine
::
Blob
::
CPtr
)
convertFp16
(
std
::
const_pointer_cast
<
InferenceEngine
::
Blob
>
(
bp
));
hasWeights
=
true
;
InferenceEngine
::
Blob
::
Ptr
bp
=
it
->
second
.
as
<
InferenceEngine
::
Blob
::
Ptr
>
();
it
->
second
=
convertFp16
(
std
::
const_pointer_cast
<
InferenceEngine
::
Blob
>
(
bp
));
}
}
if
(
!
hasWeights
)
{
InferenceEngine
::
Blob
::
Ptr
blob
=
InferenceEngine
::
make_shared_blob
<
int16_t
>
(
InferenceEngine
::
Precision
::
FP16
,
InferenceEngine
::
Layout
::
C
,
{
1
});
blob
->
allocate
();
ieNode
->
layer
.
getParameters
()[
"weights"
]
=
(
InferenceEngine
::
Blob
::
CPtr
)
blob
;
}
#else
auto
&
blobs
=
ieNode
->
layer
.
getConstantData
();
if
(
blobs
.
empty
())
...
...
modules/dnn/src/layers/batch_norm_layer.cpp
View file @
8cedc052
...
...
@@ -350,11 +350,10 @@ public:
{
#ifdef HAVE_INF_ENGINE
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InferenceEngine
::
Builder
::
ScaleShiftLayer
ieLayer
(
name
);
InferenceEngine
::
Builder
::
Layer
ieLayer
=
InferenceEngine
::
Builder
::
ScaleShiftLayer
(
name
);
const
size_t
numChannels
=
weights_
.
total
();
ieLayer
.
setWeights
(
wrapToInfEngineBlob
(
weights_
,
{
numChannels
},
InferenceEngine
::
Layout
::
C
)
);
ieLayer
.
setBiases
(
wrapToInfEngineBlob
(
bias_
,
{
numChannels
},
InferenceEngine
::
Layout
::
C
)
);
addConstantData
(
"weights"
,
wrapToInfEngineBlob
(
weights_
,
{
numChannels
},
InferenceEngine
::
Layout
::
C
),
ieLayer
);
addConstantData
(
"biases"
,
wrapToInfEngineBlob
(
bias_
,
{
numChannels
},
InferenceEngine
::
Layout
::
C
),
ieLayer
);
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
ieLayer
));
#else
InferenceEngine
::
LayerParams
lp
;
...
...
modules/dnn/src/layers/blank_layer.cpp
View file @
8cedc052
...
...
@@ -125,7 +125,9 @@ public:
ieLayer
.
getParameters
()[
"axis"
]
=
input
->
dims
.
size
()
-
1
;
ieLayer
.
getParameters
()[
"out_sizes"
]
=
input
->
dims
[
0
];
}
ieLayer
.
setInputPorts
(
std
::
vector
<
InferenceEngine
::
Port
>
(
1
));
std
::
vector
<
size_t
>
shape
(
input
->
dims
);
std
::
reverse
(
shape
.
begin
(),
shape
.
end
());
ieLayer
.
setInputPorts
({
InferenceEngine
::
Port
(
shape
)});
ieLayer
.
setOutputPorts
(
std
::
vector
<
InferenceEngine
::
Port
>
(
1
));
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
ieLayer
));
#else
...
...
modules/dnn/src/layers/convolution_layer.cpp
View file @
8cedc052
...
...
@@ -493,11 +493,11 @@ public:
ieLayer
.
setGroup
((
size_t
)
group
);
ieLayer
.
setOutDepth
((
size_t
)
outCn
);
ieLayer
.
setWeights
(
ieWeights
);
InferenceEngine
::
Builder
::
Layer
l
=
ieLayer
;
addConstantData
(
"weights"
,
ieWeights
,
l
);
if
(
ieBiases
)
ieLayer
.
setBiases
(
ieBiases
);
addConstantData
(
"biases"
,
ieBiases
,
l
);
InferenceEngine
::
Builder
::
Layer
l
=
ieLayer
;
if
(
!
padMode
.
empty
())
l
.
getParameters
()[
"auto_pad"
]
=
padMode
==
"VALID"
?
std
::
string
(
"valid"
)
:
std
::
string
(
"same_upper"
);
...
...
@@ -1725,12 +1725,11 @@ public:
ieLayer
.
setGroup
((
size_t
)
group
);
ieLayer
.
setOutDepth
((
size_t
)
numOutput
);
ieLayer
.
setWeights
(
wrapToInfEngineBlob
(
blobs
[
0
],
InferenceEngine
::
Layout
::
OIHW
));
InferenceEngine
::
Builder
::
Layer
l
=
ieLayer
;
addConstantData
(
"weights"
,
wrapToInfEngineBlob
(
blobs
[
0
],
InferenceEngine
::
Layout
::
OIHW
),
l
);
if
(
hasBias
())
{
ieLayer
.
setBiases
(
wrapToInfEngineBlob
(
blobs
[
1
],
{(
size_t
)
numOutput
},
InferenceEngine
::
Layout
::
C
));
}
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
ieLayer
));
addConstantData
(
"biases"
,
wrapToInfEngineBlob
(
blobs
[
1
],
{(
size_t
)
numOutput
},
InferenceEngine
::
Layout
::
C
),
l
);
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
l
));
#else
const
int
outGroupCn
=
blobs
[
0
].
size
[
1
];
// Weights are in IOHW layout
const
int
group
=
numOutput
/
outGroupCn
;
...
...
modules/dnn/src/layers/elementwise_layers.cpp
View file @
8cedc052
...
...
@@ -1134,10 +1134,10 @@ struct ChannelsPReLUFunctor
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InferenceEngine
::
Builder
::
Layer
initInfEngineBuilderAPI
()
{
InferenceEngine
::
Builder
::
PReLULayer
ie
Layer
(
""
);
InferenceEngine
::
Builder
::
Layer
l
=
InferenceEngine
::
Builder
::
PReLU
Layer
(
""
);
const
size_t
numChannels
=
scale
.
total
();
ieLayer
.
setWeights
(
wrapToInfEngineBlob
(
scale
,
{
numChannels
},
InferenceEngine
::
Layout
::
C
)
);
return
ieLayer
;
addConstantData
(
"weights"
,
wrapToInfEngineBlob
(
scale
,
{
numChannels
},
InferenceEngine
::
Layout
::
C
),
l
);
return
l
;
}
#else
InferenceEngine
::
CNNLayerPtr
initInfEngine
(
InferenceEngine
::
LayerParams
&
lp
)
...
...
modules/dnn/src/layers/fully_connected_layer.cpp
View file @
8cedc052
...
...
@@ -448,11 +448,12 @@ public:
const
int
outNum
=
blobs
[
0
].
size
[
0
];
ieLayer
.
setOutputNum
(
outNum
);
ieLayer
.
setWeights
(
wrapToInfEngineBlob
(
blobs
[
0
],
{(
size_t
)
blobs
[
0
].
size
[
0
],
(
size_t
)
blobs
[
0
].
size
[
1
],
1
,
1
},
InferenceEngine
::
Layout
::
OIHW
));
InferenceEngine
::
Builder
::
Layer
l
=
ieLayer
;
addConstantData
(
"weights"
,
wrapToInfEngineBlob
(
blobs
[
0
],
{(
size_t
)
blobs
[
0
].
size
[
0
],
(
size_t
)
blobs
[
0
].
size
[
1
],
1
,
1
},
InferenceEngine
::
Layout
::
OIHW
),
l
);
if
(
blobs
.
size
()
>
1
)
ieLayer
.
setBiases
(
wrapToInfEngineBlob
(
blobs
[
1
],
{(
size_t
)
outNum
},
InferenceEngine
::
Layout
::
C
)
);
addConstantData
(
"biases"
,
wrapToInfEngineBlob
(
blobs
[
1
],
{(
size_t
)
outNum
},
InferenceEngine
::
Layout
::
C
),
l
);
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
ieLayer
));
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
l
));
#else
InferenceEngine
::
LayerParams
lp
;
lp
.
name
=
name
;
...
...
modules/dnn/src/layers/normalize_bbox_layer.cpp
View file @
8cedc052
...
...
@@ -291,7 +291,7 @@ public:
l
.
getParameters
()[
"channel_shared"
]
=
blobs
[
0
].
total
()
==
1
;
}
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
l
.
getParameters
()[
"weights"
]
=
(
InferenceEngine
::
Blob
::
CPtr
)
weights
;
l
.
getParameters
()[
"weights"
]
=
weights
;
#else
l
.
addConstantData
(
"weights"
,
weights
);
#endif
...
...
modules/dnn/src/layers/prior_box_layer.cpp
View file @
8cedc052
...
...
@@ -524,12 +524,12 @@ public:
if
(
_stepX
==
_stepY
)
{
l
.
getParameters
()[
"step"
]
=
_stepX
;
l
.
getParameters
()[
"step_h"
]
=
0.0
;
l
.
getParameters
()[
"step_w"
]
=
0.0
;
l
.
getParameters
()[
"step_h"
]
=
0.0
f
;
l
.
getParameters
()[
"step_w"
]
=
0.0
f
;
}
else
{
l
.
getParameters
()[
"step"
]
=
0.0
;
l
.
getParameters
()[
"step"
]
=
0.0
f
;
l
.
getParameters
()[
"step_h"
]
=
_stepY
;
l
.
getParameters
()[
"step_w"
]
=
_stepX
;
}
...
...
modules/dnn/src/layers/scale_layer.cpp
View file @
8cedc052
...
...
@@ -198,13 +198,13 @@ public:
{
#ifdef HAVE_INF_ENGINE
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InferenceEngine
::
Builder
::
ScaleShiftLayer
ie
Layer
(
name
);
InferenceEngine
::
Builder
::
Layer
l
=
InferenceEngine
::
Builder
::
ScaleShift
Layer
(
name
);
CV_Assert
(
!
blobs
.
empty
());
const
size_t
numChannels
=
blobs
[
0
].
total
();
if
(
hasWeights
)
{
ieLayer
.
setWeights
(
wrapToInfEngineBlob
(
blobs
[
0
],
{
numChannels
},
InferenceEngine
::
Layout
::
C
)
);
addConstantData
(
"weights"
,
wrapToInfEngineBlob
(
blobs
[
0
],
{
numChannels
},
InferenceEngine
::
Layout
::
C
),
l
);
}
else
{
...
...
@@ -214,11 +214,11 @@ public:
std
::
vector
<
float
>
ones
(
numChannels
,
1
);
weights
->
set
(
ones
);
ieLayer
.
setWeights
(
weights
);
addConstantData
(
"weights"
,
weights
,
l
);
}
if
(
hasBias
)
ieLayer
.
setBiases
(
wrapToInfEngineBlob
(
blobs
.
back
(),
{
numChannels
},
InferenceEngine
::
Layout
::
C
)
);
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
ieLayer
));
addConstantData
(
"biases"
,
wrapToInfEngineBlob
(
blobs
.
back
(),
{
numChannels
},
InferenceEngine
::
Layout
::
C
),
l
);
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
l
));
#else
InferenceEngine
::
LayerParams
lp
;
lp
.
name
=
name
;
...
...
modules/dnn/src/op_inf_engine.cpp
View file @
8cedc052
...
...
@@ -18,6 +18,11 @@ namespace cv { namespace dnn {
#ifdef HAVE_INF_ENGINE
// For networks with input layer which has an empty name, IE generates a name id[some_number].
// OpenCV lets users use an empty input name and to prevent unexpected naming,
// we can use some predefined name.
static
std
::
string
kDefaultInpLayerName
=
"empty_inp_layer_name"
;
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InfEngineBackendNode
::
InfEngineBackendNode
(
const
InferenceEngine
::
Builder
::
Layer
&
_layer
)
:
BackendNode
(
DNN_BACKEND_INFERENCE_ENGINE
),
layer
(
_layer
)
{}
...
...
@@ -90,7 +95,7 @@ void InfEngineBackendNet::connect(const std::vector<Ptr<BackendWrapper> >& input
it
=
layers
.
find
(
inpName
);
if
(
it
==
layers
.
end
())
{
InferenceEngine
::
Builder
::
InputLayer
inpLayer
(
inp
Name
);
InferenceEngine
::
Builder
::
InputLayer
inpLayer
(
!
inpName
.
empty
()
?
inpName
:
kDefaultInpLayer
Name
);
std
::
vector
<
size_t
>
shape
(
inp
->
blob
->
dims
());
std
::
reverse
(
shape
.
begin
(),
shape
.
end
());
...
...
@@ -119,6 +124,14 @@ void InfEngineBackendNet::init(int targetId)
for
(
int
id
:
unconnectedLayersIds
)
{
InferenceEngine
::
Builder
::
OutputLayer
outLayer
(
"myconv1"
);
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
// Inference Engine determines network precision by ports.
InferenceEngine
::
Precision
p
=
(
targetId
==
DNN_TARGET_MYRIAD
||
targetId
==
DNN_TARGET_OPENCL_FP16
)
?
InferenceEngine
::
Precision
::
FP16
:
InferenceEngine
::
Precision
::
FP32
;
outLayer
.
setPort
(
InferenceEngine
::
Port
({},
p
));
#endif
netBuilder
.
addLayer
({
InferenceEngine
::
PortInfo
(
id
)},
outLayer
);
}
cnn
=
InferenceEngine
::
CNNNetwork
(
InferenceEngine
::
Builder
::
convertToICNNNetwork
(
netBuilder
.
build
()));
...
...
@@ -167,12 +180,56 @@ void InfEngineBackendNet::init(int targetId)
initPlugin
(
cnn
);
}
void
InfEngineBackendNet
::
addLayer
(
const
InferenceEngine
::
Builder
::
Layer
&
layer
)
void
InfEngineBackendNet
::
addLayer
(
InferenceEngine
::
Builder
::
Layer
&
layer
)
{
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
// Add weights to network and connect them after input blobs.
std
::
map
<
std
::
string
,
InferenceEngine
::
Parameter
>&
params
=
layer
.
getParameters
();
std
::
vector
<
int
>
blobsIds
;
std
::
vector
<
int
>
portIds
;
for
(
const
std
::
string
&
name
:
{
"weights"
,
"biases"
})
{
bool
asInput
=
false
;
int
portId
=
0
;
for
(
int
i
=
0
;
i
<
layer
.
getInputPorts
().
size
();
++
i
)
{
const
auto
&
port
=
layer
.
getInputPorts
()[
i
];
auto
it
=
port
.
getParameters
().
find
(
"type"
);
if
(
it
!=
port
.
getParameters
().
end
()
&&
it
->
second
==
name
)
{
portId
=
i
;
asInput
=
true
;
break
;
}
}
if
(
!
asInput
)
continue
;
auto
it
=
params
.
find
(
name
);
if
(
it
!=
params
.
end
())
{
InferenceEngine
::
Blob
::
Ptr
blob
=
it
->
second
.
as
<
InferenceEngine
::
Blob
::
Ptr
>
();
params
.
erase
(
it
);
int
blobId
=
netBuilder
.
addLayer
(
InferenceEngine
::
Builder
::
ConstLayer
(
name
).
setData
(
blob
));
blobsIds
.
push_back
(
blobId
);
portIds
.
push_back
(
portId
);
}
}
#endif
int
id
=
netBuilder
.
addLayer
(
layer
);
const
std
::
string
&
layerName
=
layer
.
getName
();
CV_Assert
(
layers
.
insert
({
layerName
,
id
}).
second
);
unconnectedLayersIds
.
insert
(
id
);
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
// By default, all the weights are connected to last ports ids.
for
(
int
i
=
0
;
i
<
blobsIds
.
size
();
++
i
)
{
netBuilder
.
connect
((
size_t
)
blobsIds
[
i
],
{(
size_t
)
id
,
portIds
[
i
]});
}
#endif
}
void
InfEngineBackendNet
::
addOutput
(
const
std
::
string
&
name
)
...
...
@@ -705,7 +762,7 @@ void InfEngineBackendNet::addBlobs(const std::vector<Ptr<BackendWrapper> >& ptrs
{
std
::
string
name
=
wrapper
->
dataPtr
->
name
;
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
name
=
name
.
empty
()
?
"id1"
:
name
;
// TODO: drop the magic input name.
name
=
name
.
empty
()
?
kDefaultInpLayerName
:
name
;
#endif
allBlobs
.
insert
({
name
,
wrapper
->
blob
});
}
...
...
@@ -776,6 +833,18 @@ InferenceEngine::Blob::Ptr convertFp16(const InferenceEngine::Blob::Ptr& blob)
return
halfs
;
}
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
void
addConstantData
(
const
std
::
string
&
name
,
InferenceEngine
::
Blob
::
Ptr
data
,
InferenceEngine
::
Builder
::
Layer
&
l
)
{
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
l
.
getParameters
()[
name
]
=
data
;
#else
l
.
addConstantData
(
name
,
data
);
#endif
}
#endif
#endif // HAVE_INF_ENGINE
bool
haveInfEngine
()
...
...
modules/dnn/src/op_inf_engine.hpp
View file @
8cedc052
...
...
@@ -162,7 +162,7 @@ public:
InfEngineBackendNet
(
InferenceEngine
::
CNNNetwork
&
net
);
void
addLayer
(
const
InferenceEngine
::
Builder
::
Layer
&
layer
);
void
addLayer
(
InferenceEngine
::
Builder
::
Layer
&
layer
);
void
addOutput
(
const
std
::
string
&
name
);
...
...
@@ -255,6 +255,10 @@ Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob);
// Allocates memory for a new blob.
InferenceEngine
::
Blob
::
Ptr
convertFp16
(
const
InferenceEngine
::
Blob
::
Ptr
&
blob
);
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
void
addConstantData
(
const
std
::
string
&
name
,
InferenceEngine
::
Blob
::
Ptr
data
,
InferenceEngine
::
Builder
::
Layer
&
l
);
#endif
// This is a fake class to run networks from Model Optimizer. Objects of that
// class simulate responses of layers are imported by OpenCV and supported by
// Inference Engine. The main difference is that they do not perform forward pass.
...
...
modules/dnn/test/test_halide_layers.cpp
View file @
8cedc052
...
...
@@ -695,7 +695,8 @@ TEST_P(Eltwise, Accuracy)
Target
targetId
=
get
<
1
>
(
get
<
4
>
(
GetParam
()));
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE > 2018050000
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
targetId
==
DNN_TARGET_OPENCL
)
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
(
targetId
==
DNN_TARGET_OPENCL
||
targetId
==
DNN_TARGET_OPENCL_FP16
))
throw
SkipTestException
(
""
);
#endif
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment