Commit 8b5f061d authored by Dmitry Kurtaev's avatar Dmitry Kurtaev

Replace std::vector<char> to std::vector<uchar> for Java bindings of dnn importers

parent d57e5406
...@@ -649,8 +649,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN ...@@ -649,8 +649,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
* @param bufferModel A buffer contains a content of .weights file with learned network. * @param bufferModel A buffer contains a content of .weights file with learned network.
* @returns Net object. * @returns Net object.
*/ */
CV_EXPORTS_W Net readNetFromDarknet(const std::vector<char>& bufferCfg, CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg,
const std::vector<char>& bufferModel = std::vector<char>()); const std::vector<uchar>& bufferModel = std::vector<uchar>());
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
...@@ -674,8 +674,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN ...@@ -674,8 +674,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
* @param bufferModel buffer containing the content of the .caffemodel file * @param bufferModel buffer containing the content of the .caffemodel file
* @returns Net object. * @returns Net object.
*/ */
CV_EXPORTS_W Net readNetFromCaffe(const std::vector<char>& bufferProto, CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto,
const std::vector<char>& bufferModel = std::vector<char>()); const std::vector<uchar>& bufferModel = std::vector<uchar>());
/** @brief Reads a network model stored in Caffe model in memory. /** @brief Reads a network model stored in Caffe model in memory.
* @details This is an overloaded member function, provided for convenience. * @details This is an overloaded member function, provided for convenience.
...@@ -703,8 +703,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN ...@@ -703,8 +703,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
* @param bufferConfig buffer containing the content of the pbtxt file * @param bufferConfig buffer containing the content of the pbtxt file
* @returns Net object. * @returns Net object.
*/ */
CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<char>& bufferModel, CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel,
const std::vector<char>& bufferConfig = std::vector<char>()); const std::vector<uchar>& bufferConfig = std::vector<uchar>());
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
* @details This is an overloaded member function, provided for convenience. * @details This is an overloaded member function, provided for convenience.
...@@ -778,8 +778,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN ...@@ -778,8 +778,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
* @param[in] bufferConfig A buffer with a content of text file contains network configuration. * @param[in] bufferConfig A buffer with a content of text file contains network configuration.
* @returns Net object. * @returns Net object.
*/ */
CV_EXPORTS_W Net readNet(const String& framework, const std::vector<char>& bufferModel, CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel,
const std::vector<char>& bufferConfig = std::vector<char>()); const std::vector<uchar>& bufferConfig = std::vector<uchar>());
/** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework. /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
* @warning This function has the same limitations as readNetFromTorch(). * @warning This function has the same limitations as readNetFromTorch().
......
package org.opencv.test.dnn; package org.opencv.test.dnn;
import java.io.File; import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList; import java.util.ArrayList;
import java.util.List; import java.util.List;
import org.opencv.core.Core; import org.opencv.core.Core;
import org.opencv.core.Mat; import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfByte;
import org.opencv.core.Scalar; import org.opencv.core.Scalar;
import org.opencv.core.Size; import org.opencv.core.Size;
import org.opencv.dnn.DictValue; import org.opencv.dnn.DictValue;
...@@ -26,6 +30,15 @@ public class DnnTensorFlowTest extends OpenCVTestCase { ...@@ -26,6 +30,15 @@ public class DnnTensorFlowTest extends OpenCVTestCase {
Net net; Net net;
private static void normAssert(Mat ref, Mat test) {
final double l1 = 1e-5;
final double lInf = 1e-4;
double normL1 = Core.norm(ref, test, Core.NORM_L1) / ref.total();
double normLInf = Core.norm(ref, test, Core.NORM_INF) / ref.total();
assertTrue(normL1 < l1);
assertTrue(normLInf < lInf);
}
@Override @Override
protected void setUp() throws Exception { protected void setUp() throws Exception {
super.setUp(); super.setUp();
...@@ -46,7 +59,7 @@ public class DnnTensorFlowTest extends OpenCVTestCase { ...@@ -46,7 +59,7 @@ public class DnnTensorFlowTest extends OpenCVTestCase {
File testDataPath = new File(envTestDataPath); File testDataPath = new File(envTestDataPath);
File f = new File(testDataPath, "dnn/space_shuttle.jpg"); File f = new File(testDataPath, "dnn/grace_hopper_227.png");
sourceImageFile = f.toString(); sourceImageFile = f.toString();
if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile); if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile);
...@@ -77,31 +90,55 @@ public class DnnTensorFlowTest extends OpenCVTestCase { ...@@ -77,31 +90,55 @@ public class DnnTensorFlowTest extends OpenCVTestCase {
} }
public void testTestNetForward() { public void checkInceptionNet(Net net)
Mat rawImage = Imgcodecs.imread(sourceImageFile); {
Mat image = Imgcodecs.imread(sourceImageFile);
assertNotNull("Loading image from file failed!", rawImage); assertNotNull("Loading image from file failed!", image);
Mat image = new Mat(); Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true);
Imgproc.resize(rawImage, image, new Size(224,224));
Mat inputBlob = Dnn.blobFromImage(image);
assertNotNull("Converting image to blob failed!", inputBlob); assertNotNull("Converting image to blob failed!", inputBlob);
Mat inputBlobP = new Mat(); net.setInput(inputBlob, "input");
Core.subtract(inputBlob, new Scalar(117.0), inputBlobP);
net.setInput(inputBlobP, "input" );
Mat result = net.forward();
Mat result = new Mat();
try {
net.setPreferableBackend(Dnn.DNN_BACKEND_OPENCV);
result = net.forward("softmax2");
}
catch (Exception e) {
fail("DNN forward failed: " + e.getMessage());
}
assertNotNull("Net returned no result!", result); assertNotNull("Net returned no result!", result);
Core.MinMaxLocResult minmax = Core.minMaxLoc(result.reshape(1, 1)); result = result.reshape(1, 1);
Core.MinMaxLocResult minmax = Core.minMaxLoc(result);
assertEquals("Wrong prediction", (int)minmax.maxLoc.x, 866);
Mat top5RefScores = new MatOfFloat(new float[] {
0.63032645f, 0.2561979f, 0.032181446f, 0.015721032f, 0.014785315f
}).reshape(1, 1);
assertTrue("No image recognized!", minmax.maxVal > 0.9); Core.sort(result, result, Core.SORT_DESCENDING);
normAssert(result.colRange(0, 5), top5RefScores);
}
public void testTestNetForward() {
checkInceptionNet(net);
} }
public void testReadFromBuffer() {
File modelFile = new File(modelFileName);
byte[] modelBuffer = new byte[ (int)modelFile.length() ];
try {
FileInputStream fis = new FileInputStream(modelFile);
fis.read(modelBuffer);
fis.close();
} catch (IOException e) {
fail("Failed to read a model: " + e.getMessage());
}
net = Dnn.readNetFromTensorflow(new MatOfByte(modelBuffer));
checkInceptionNet(net);
}
} }
...@@ -453,10 +453,13 @@ Net readNetFromCaffe(const char *bufferProto, size_t lenProto, ...@@ -453,10 +453,13 @@ Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
return net; return net;
} }
Net readNetFromCaffe(const std::vector<char>& bufferProto, const std::vector<char>& bufferModel) Net readNetFromCaffe(const std::vector<uchar>& bufferProto, const std::vector<uchar>& bufferModel)
{ {
return readNetFromCaffe(&bufferProto[0], bufferProto.size(), const char* bufferProtoPtr = reinterpret_cast<const char*>(&bufferProto[0]);
bufferModel.empty() ? NULL : &bufferModel[0], bufferModel.size()); const char* bufferModelPtr = bufferModel.empty() ? NULL :
reinterpret_cast<const char*>(&bufferModel[0]);
return readNetFromCaffe(bufferProtoPtr, bufferProto.size(),
bufferModelPtr, bufferModel.size());
} }
#endif //HAVE_PROTOBUF #endif //HAVE_PROTOBUF
......
...@@ -242,10 +242,13 @@ Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg, const char *bufferM ...@@ -242,10 +242,13 @@ Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg, const char *bufferM
return readNetFromDarknet(cfgStream); return readNetFromDarknet(cfgStream);
} }
Net readNetFromDarknet(const std::vector<char>& bufferCfg, const std::vector<char>& bufferModel) Net readNetFromDarknet(const std::vector<uchar>& bufferCfg, const std::vector<uchar>& bufferModel)
{ {
return readNetFromDarknet(&bufferCfg[0], bufferCfg.size(), const char* bufferCfgPtr = reinterpret_cast<const char*>(&bufferCfg[0]);
bufferModel.empty() ? NULL : &bufferModel[0], bufferModel.size()); const char* bufferModelPtr = bufferModel.empty() ? NULL :
reinterpret_cast<const char*>(&bufferModel[0]);
return readNetFromDarknet(bufferCfgPtr, bufferCfg.size(),
bufferModelPtr, bufferModel.size());
} }
CV__DNN_EXPERIMENTAL_NS_END CV__DNN_EXPERIMENTAL_NS_END
......
...@@ -3047,8 +3047,8 @@ Net readNet(const String& _model, const String& _config, const String& _framewor ...@@ -3047,8 +3047,8 @@ Net readNet(const String& _model, const String& _config, const String& _framewor
model + (config.empty() ? "" : ", " + config)); model + (config.empty() ? "" : ", " + config));
} }
Net readNet(const String& _framework, const std::vector<char>& bufferModel, Net readNet(const String& _framework, const std::vector<uchar>& bufferModel,
const std::vector<char>& bufferConfig) const std::vector<uchar>& bufferConfig)
{ {
String framework = _framework.toLowerCase(); String framework = _framework.toLowerCase();
if (framework == "caffe") if (framework == "caffe")
......
...@@ -1856,10 +1856,13 @@ Net readNetFromTensorflow(const char* bufferModel, size_t lenModel, ...@@ -1856,10 +1856,13 @@ Net readNetFromTensorflow(const char* bufferModel, size_t lenModel,
return net; return net;
} }
Net readNetFromTensorflow(const std::vector<char>& bufferModel, const std::vector<char>& bufferConfig) Net readNetFromTensorflow(const std::vector<uchar>& bufferModel, const std::vector<uchar>& bufferConfig)
{ {
return readNetFromCaffe(&bufferModel[0], bufferModel.size(), const char* bufferModelPtr = reinterpret_cast<const char*>(&bufferModel[0]);
bufferConfig.empty() ? NULL : &bufferConfig[0], bufferConfig.size()); const char* bufferConfigPtr = bufferConfig.empty() ? NULL :
reinterpret_cast<const char*>(&bufferConfig[0]);
return readNetFromTensorflow(bufferModelPtr, bufferModel.size(),
bufferConfigPtr, bufferConfig.size());
} }
CV__DNN_EXPERIMENTAL_NS_END CV__DNN_EXPERIMENTAL_NS_END
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment