Commit 8b294c6c authored by Andrey Kamaev's avatar Andrey Kamaev

Remove documentation for old python wrapper

parent f886651c
......@@ -310,21 +310,6 @@ dl.pyfunction > dt:first-child {
margin-bottom: 7px;
}
dl.pyoldfunction > dt:first-child {
margin-bottom: 7px;
color: #8080B0;
}
dl.pyoldfunction > dt:first-child tt.descname
{
color: #8080B0;
}
dl.pyoldfunction > dt:first-child tt.descclassname
{
color: #8080B0;
}
dl.jfunction > dt:first-child {
margin-bottom: 7px;
}
......
......@@ -267,10 +267,6 @@ class OCVPyModulelevel(OCVPyObject):
else:
return ''
class OCVPyOldModulelevel(OCVPyModulelevel):
directive_prefix = 'pyold'
pass
class OCVPyXRefRole(XRefRole):
def process_link(self, env, refnode, has_explicit_title, title, target):
refnode['ocv:module'] = env.temp_data.get('ocv:module')
......@@ -1491,7 +1487,6 @@ class OCVDomain(Domain):
'cfunction': ObjType(l_('cfunction'), 'cfunc', 'cfuncx'),
'jfunction': ObjType(l_('jfunction'), 'jfunc', 'jfuncx'),
'pyfunction': ObjType(l_('pyfunction'), 'pyfunc'),
'pyoldfunction': ObjType(l_('pyoldfunction'), 'pyoldfunc'),
'member': ObjType(l_('member'), 'member'),
'emember': ObjType(l_('emember'), 'emember'),
'type': ObjType(l_('type'), 'type'),
......@@ -1505,7 +1500,6 @@ class OCVDomain(Domain):
'cfunction': OCVCFunctionObject,
'jfunction': OCVJavaFunctionObject,
'pyfunction': OCVPyModulelevel,
'pyoldfunction': OCVPyOldModulelevel,
'member': OCVMemberObject,
'emember': OCVEnumMemberObject,
'type': OCVTypeObject,
......@@ -1522,7 +1516,6 @@ class OCVDomain(Domain):
'jfunc' : OCVXRefRole(fix_parens=True),
'jfuncx' : OCVXRefRole(),
'pyfunc' : OCVPyXRefRole(),
'pyoldfunc' : OCVPyXRefRole(),
'member': OCVXRefRole(),
'emember': OCVXRefRole(),
'type': OCVXRefRole(),
......@@ -1612,7 +1605,6 @@ class OCVDomain(Domain):
'cfunction': _('C function'),
'jfunction': _('Java method'),
'pyfunction': _('Python function'),
'pyoldfunction': _('Legacy Python function'),
'member': _('C++ member'),
'emember': _('enum member'),
'type': _('C/C++ type'),
......
......@@ -13,8 +13,6 @@ Finds centers of clusters and groups input samples around the clusters.
.. ocv:cfunction:: int cvKMeans2( const CvArr* samples, int cluster_count, CvArr* labels, CvTermCriteria termcrit, int attempts=1, CvRNG* rng=0, int flags=0, CvArr* _centers=0, double* compactness=0 )
.. ocv:pyoldfunction:: cv.KMeans2(samples, nclusters, labels, termcrit, attempts=1, flags=0, centers=None) -> float
:param samples: Floating-point matrix of input samples, one row per sample.
:param cluster_count: Number of clusters to split the set by.
......
......@@ -36,8 +36,6 @@ Draws a circle.
.. ocv:cfunction:: void cvCircle( CvArr* img, CvPoint center, int radius, CvScalar color, int thickness=1, int line_type=8, int shift=0 )
.. ocv:pyoldfunction:: cv.Circle(img, center, radius, color, thickness=1, lineType=8, shift=0)-> None
:param img: Image where the circle is drawn.
:param center: Center of the circle.
......@@ -66,8 +64,6 @@ Clips the line against the image rectangle.
.. ocv:cfunction:: int cvClipLine( CvSize img_size, CvPoint* pt1, CvPoint* pt2 )
.. ocv:pyoldfunction:: cv.ClipLine(imgSize, pt1, pt2) -> (point1, point2)
:param imgSize: Image size. The image rectangle is ``Rect(0, 0, imgSize.width, imgSize.height)`` .
:param imgRect: Image rectangle.
......@@ -93,12 +89,8 @@ Draws a simple or thick elliptic arc or fills an ellipse sector.
.. ocv:cfunction:: void cvEllipse( CvArr* img, CvPoint center, CvSize axes, double angle, double start_angle, double end_angle, CvScalar color, int thickness=1, int line_type=8, int shift=0 )
.. ocv:pyoldfunction:: cv.Ellipse(img, center, axes, angle, start_angle, end_angle, color, thickness=1, lineType=8, shift=0)-> None
.. ocv:cfunction:: void cvEllipseBox( CvArr* img, CvBox2D box, CvScalar color, int thickness=1, int line_type=8, int shift=0 )
.. ocv:pyoldfunction:: cv.EllipseBox(img, box, color, thickness=1, lineType=8, shift=0)-> None
:param img: Image.
:param center: Center of the ellipse.
......@@ -170,8 +162,6 @@ Fills a convex polygon.
.. ocv:cfunction:: void cvFillConvexPoly( CvArr* img, const CvPoint* pts, int npts, CvScalar color, int line_type=8, int shift=0 )
.. ocv:pyoldfunction:: cv.FillConvexPoly(img, pn, color, lineType=8, shift=0)-> None
:param img: Image.
:param pts: Polygon vertices.
......@@ -202,8 +192,6 @@ Fills the area bounded by one or more polygons.
.. ocv:cfunction:: void cvFillPoly( CvArr* img, CvPoint** pts, const int* npts, int contours, CvScalar color, int line_type=8, int shift=0 )
.. ocv:pyoldfunction:: cv.FillPoly(img, polys, color, lineType=8, shift=0)-> None
:param img: Image.
:param pts: Array of polygons where each polygon is represented as an array of points.
......@@ -235,8 +223,6 @@ Calculates the width and height of a text string.
.. ocv:cfunction:: void cvGetTextSize( const char* text_string, const CvFont* font, CvSize* text_size, int* baseline )
.. ocv:pyoldfunction:: cv.GetTextSize(textString, font)-> (textSize, baseline)
:param text: Input text string.
:param fontFace: Font to use. See the :ocv:func:`putText` for details.
......@@ -340,8 +326,6 @@ Draws a line segment connecting two points.
.. ocv:cfunction:: void cvLine( CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color, int thickness=1, int line_type=8, int shift=0 )
.. ocv:pyoldfunction:: cv.Line(img, pt1, pt2, color, thickness=1, lineType=8, shift=0)-> None
:param img: Image.
:param pt1: First point of the line segment.
......@@ -430,8 +414,6 @@ Draws a simple, thick, or filled up-right rectangle.
.. ocv:cfunction:: void cvRectangle( CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color, int thickness=1, int line_type=8, int shift=0 )
.. ocv:pyoldfunction:: cv.Rectangle(img, pt1, pt2, color, thickness=1, lineType=8, shift=0)-> None
:param img: Image.
:param pt1: Vertex of the rectangle.
......@@ -464,8 +446,6 @@ Draws several polygonal curves.
.. ocv:cfunction:: void cvPolyLine( CvArr* img, CvPoint** pts, const int* npts, int contours, int is_closed, CvScalar color, int thickness=1, int line_type=8, int shift=0 )
.. ocv:pyoldfunction:: cv.PolyLine(img, polys, is_closed, color, thickness=1, lineType=8, shift=0) -> None
:param img: Image.
:param pts: Array of polygonal curves.
......@@ -497,8 +477,6 @@ Draws contours outlines or filled contours.
.. ocv:cfunction:: void cvDrawContours( CvArr * img, CvSeq* contour, CvScalar external_color, CvScalar hole_color, int max_level, int thickness=1, int line_type=8, CvPoint offset=cvPoint(0,0) )
.. ocv:pyoldfunction:: cv.DrawContours(img, contour, external_color, hole_color, max_level, thickness=1, lineType=8, offset=(0, 0))-> None
:param image: Destination image.
:param contours: All the input contours. Each contour is stored as a point vector.
......@@ -580,8 +558,6 @@ Draws a text string.
.. ocv:cfunction:: void cvPutText( CvArr* img, const char* text, CvPoint org, const CvFont* font, CvScalar color )
.. ocv:pyoldfunction:: cv.PutText(img, text, org, font, color)-> None
:param img: Image.
:param text: Text string to be drawn.
......
......@@ -279,7 +279,6 @@ CloneSeq
Creates a copy of a sequence.
.. ocv:cfunction:: CvSeq* cvCloneSeq( const CvSeq* seq, CvMemStorage* storage=NULL )
.. ocv:pyoldfunction:: cv.CloneSeq(seq, storage)-> None
:param seq: Sequence
......@@ -388,9 +387,6 @@ Creates memory storage.
.. ocv:cfunction:: CvMemStorage* cvCreateMemStorage( int block_size=0 )
.. ocv:pyoldfunction:: cv.CreateMemStorage(blockSize=0) -> memstorage
:param block_size: Size of the storage blocks in bytes. If it is 0, the block size is set to a default value - currently it is about 64K.
The function creates an empty memory storage. See
......
This diff is collapsed.
......@@ -327,8 +327,6 @@ Loads an object from a file.
.. ocv:cfunction:: void* cvLoad( const char* filename, CvMemStorage* memstorage=NULL, const char* name=NULL, const char** real_name=NULL )
.. ocv:pyoldfunction:: cv.Load(filename, storage=None, name=None)-> generic
:param filename: File name
:param memstorage: Memory storage for dynamic structures, such as :ocv:struct:`CvSeq` or :ocv:struct:`CvGraph` . It is not used for matrices or images.
......@@ -596,8 +594,6 @@ Saves an object to a file.
.. ocv:cfunction:: void cvSave( const char* filename, const void* struct_ptr, const char* name=NULL, const char* comment=NULL, CvAttrList attributes=cvAttrList() )
.. ocv:pyoldfunction:: cv.Save(filename, structPtr, name=None, comment=None)-> None
:param filename: File name
:param struct_ptr: Object to save
......
This diff is collapsed.
......@@ -76,7 +76,6 @@ Calculates the angle of a 2D vector in degrees.
.. ocv:pyfunction:: cv2.fastAtan2(y, x) -> retval
.. ocv:cfunction:: float cvFastArctan(float y, float x)
.. ocv:pyoldfunction:: cv.FastArctan(y, x)-> float
:param x: x-coordinate of the vector.
......@@ -95,8 +94,6 @@ Computes the cube root of an argument.
.. ocv:cfunction:: float cvCbrt( float value )
.. ocv:pyoldfunction:: cv.Cbrt(value)-> float
:param val: A function argument.
The function ``cubeRoot`` computes :math:`\sqrt[3]{\texttt{val}}`. Negative arguments are handled correctly. NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for single-precision data.
......@@ -107,7 +104,6 @@ Ceil
Rounds floating-point number to the nearest integer not smaller than the original.
.. ocv:cfunction:: int cvCeil(double value)
.. ocv:pyoldfunction:: cv.Ceil(value) -> int
:param value: floating-point number. If the value is outside of ``INT_MIN`` ... ``INT_MAX`` range, the result is not defined.
......@@ -123,7 +119,6 @@ Floor
Rounds floating-point number to the nearest integer not larger than the original.
.. ocv:cfunction:: int cvFloor(double value)
.. ocv:pyoldfunction:: cv.Floor(value) -> int
:param value: floating-point number. If the value is outside of ``INT_MIN`` ... ``INT_MAX`` range, the result is not defined.
......@@ -139,7 +134,6 @@ Round
Rounds floating-point number to the nearest integer
.. ocv:cfunction:: int cvRound(double value)
.. ocv:pyoldfunction:: cv.Round(value) -> int
:param value: floating-point number. If the value is outside of ``INT_MIN`` ... ``INT_MAX`` range, the result is not defined.
......@@ -149,7 +143,6 @@ IsInf
Determines if the argument is Infinity.
.. ocv:cfunction:: int cvIsInf(double value)
.. ocv:pyoldfunction:: cv.IsInf(value)-> int
:param value: The input floating-point value
......@@ -160,7 +153,6 @@ IsNaN
Determines if the argument is Not A Number.
.. ocv:cfunction:: int cvIsNaN(double value)
.. ocv:pyoldfunction:: cv.IsNaN(value)-> int
:param value: The input floating-point value
......
......@@ -67,10 +67,6 @@ Loads an image from a file.
.. ocv:cfunction:: CvMat* cvLoadImageM( const char* filename, int iscolor=CV_LOAD_IMAGE_COLOR )
.. ocv:pyoldfunction:: cv.LoadImage(filename, iscolor=CV_LOAD_IMAGE_COLOR) -> None
.. ocv:pyoldfunction:: cv.LoadImageM(filename, iscolor=CV_LOAD_IMAGE_COLOR) -> None
:param filename: Name of file to be loaded.
:param flags: Flags specifying the color type of a loaded image:
......@@ -126,8 +122,6 @@ Saves an image to a specified file.
.. ocv:cfunction:: int cvSaveImage( const char* filename, const CvArr* image, const int* params=0 )
.. ocv:pyoldfunction:: cv.SaveImage(filename, image)-> None
:param filename: Name of the file.
:param image: Image to be saved.
......@@ -245,9 +239,7 @@ VideoCapture constructors.
.. ocv:pyfunction:: cv2.VideoCapture(device) -> <VideoCapture object>
.. ocv:cfunction:: CvCapture* cvCaptureFromCAM( int device )
.. ocv:pyoldfunction:: cv.CaptureFromCAM(index) -> CvCapture
.. ocv:cfunction:: CvCapture* cvCaptureFromFile( const char* filename )
.. ocv:pyoldfunction:: cv.CaptureFromFile(filename) -> CvCapture
:param filename: name of the opened video file
......@@ -308,8 +300,6 @@ Grabs the next frame from video file or capturing device.
.. ocv:cfunction:: int cvGrabFrame(CvCapture* capture)
.. ocv:pyoldfunction:: cv.GrabFrame(capture) -> int
The methods/functions grab the next frame from video file or camera and return true (non-zero) in the case of success.
The primary use of the function is in multi-camera environments, especially when the cameras do not have hardware synchronization. That is, you call ``VideoCapture::grab()`` for each camera and after that call the slower method ``VideoCapture::retrieve()`` to decode and get frame from each camera. This way the overhead on demosaicing or motion jpeg decompression etc. is eliminated and the retrieved frames from different cameras will be closer in time.
......@@ -327,8 +317,6 @@ Decodes and returns the grabbed video frame.
.. ocv:cfunction:: IplImage* cvRetrieveFrame( CvCapture* capture, int streamIdx=0 )
.. ocv:pyoldfunction:: cv.RetrieveFrame(capture) -> image
The methods/functions decode and return the just grabbed frame. If no frames has been grabbed (camera has been disconnected, or there are no more frames in video file), the methods return false and the functions return NULL pointer.
.. note:: OpenCV 1.x functions ``cvRetrieveFrame`` and ``cv.RetrieveFrame`` return image stored inside the video capturing structure. It is not allowed to modify or release the image! You can copy the frame using :ocv:cfunc:`cvCloneImage` and then do whatever you want with the copy.
......@@ -346,8 +334,6 @@ Grabs, decodes and returns the next video frame.
.. ocv:cfunction:: IplImage* cvQueryFrame(CvCapture* capture)
.. ocv:pyoldfunction:: cv.QueryFrame(capture) -> image
The methods/functions combine :ocv:func:`VideoCapture::grab` and :ocv:func:`VideoCapture::retrieve` in one call. This is the most convenient method for reading video files or capturing data from decode and return the just grabbed frame. If no frames has been grabbed (camera has been disconnected, or there are no more frames in video file), the methods return false and the functions return NULL pointer.
.. note:: OpenCV 1.x functions ``cvRetrieveFrame`` and ``cv.RetrieveFrame`` return image stored inside the video capturing structure. It is not allowed to modify or release the image! You can copy the frame using :ocv:cfunc:`cvCloneImage` and then do whatever you want with the copy.
......@@ -363,9 +349,6 @@ Returns the specified ``VideoCapture`` property
.. ocv:cfunction:: double cvGetCaptureProperty( CvCapture* capture, int property_id )
.. ocv:pyoldfunction:: cv.GetCaptureProperty(capture, property_id) -> float
:param propId: Property identifier. It can be one of the following:
* **CV_CAP_PROP_POS_MSEC** Current position of the video file in milliseconds or video capture timestamp.
......@@ -419,8 +402,6 @@ Sets a property in the ``VideoCapture``.
.. ocv:cfunction:: int cvSetCaptureProperty( CvCapture* capture, int property_id, double value )
.. ocv:pyoldfunction:: cv.SetCaptureProperty(capture, property_id, value) -> retval
:param propId: Property identifier. It can be one of the following:
* **CV_CAP_PROP_POS_MSEC** Current position of the video file in milliseconds.
......@@ -484,7 +465,6 @@ VideoWriter constructors
.. ocv:pyfunction:: cv2.VideoWriter([filename, fourcc, fps, frameSize[, isColor]]) -> <VideoWriter object>
.. ocv:cfunction:: CvVideoWriter* cvCreateVideoWriter( const char* filename, int fourcc, double fps, CvSize frame_size, int is_color=1 )
.. ocv:pyoldfunction:: cv.CreateVideoWriter(filename, fourcc, fps, frame_size, is_color=true) -> CvVideoWriter
.. ocv:pyfunction:: cv2.VideoWriter.isOpened() -> retval
.. ocv:pyfunction:: cv2.VideoWriter.open(filename, fourcc, fps, frameSize[, isColor]) -> retval
......@@ -544,7 +524,6 @@ Writes the next video frame
.. ocv:pyfunction:: cv2.VideoWriter.write(image) -> None
.. ocv:cfunction:: int cvWriteFrame( CvVideoWriter* writer, const IplImage* image )
.. ocv:pyoldfunction:: cv.WriteFrame(writer, image)->int
:param writer: Video writer structure (OpenCV 1.x API)
......
......@@ -11,8 +11,6 @@ Creates a trackbar and attaches it to the specified window.
.. ocv:cfunction:: int cvCreateTrackbar( const char* trackbar_name, const char* window_name, int* value, int count, CvTrackbarCallback on_change=NULL )
.. ocv:pyoldfunction:: cv.CreateTrackbar(trackbarName, windowName, value, count, onChange) -> None
:param trackbarname: Name of the created trackbar.
:param winname: Name of the window that will be used as a parent of the created trackbar.
......@@ -43,8 +41,6 @@ Returns the trackbar position.
.. ocv:cfunction:: int cvGetTrackbarPos( const char* trackbar_name, const char* window_name )
.. ocv:pyoldfunction:: cv.GetTrackbarPos(trackbarName, windowName) -> retval
:param trackbarname: Name of the trackbar.
:param winname: Name of the window that is the parent of the trackbar.
......@@ -65,8 +61,6 @@ Displays an image in the specified window.
.. ocv:cfunction:: void cvShowImage( const char* name, const CvArr* image )
.. ocv:pyoldfunction:: cv.ShowImage(name, image) -> None
:param winname: Name of the window.
:param image: Image to be shown.
......@@ -90,8 +84,6 @@ Creates a window.
.. ocv:cfunction:: int cvNamedWindow( const char* name, int flags=CV_WINDOW_AUTOSIZE )
.. ocv:pyoldfunction:: cv.NamedWindow(name, flags=CV_WINDOW_AUTOSIZE)-> None
:param name: Name of the window in the window caption that may be used as a window identifier.
:param flags: Flags of the window. Currently the only supported flag is ``CV_WINDOW_AUTOSIZE`` . If this is set, the window size is automatically adjusted to fit the displayed image (see :ocv:func:`imshow` ), and you cannot change the window size manually.
......@@ -125,8 +117,6 @@ Destroys a window.
.. ocv:cfunction:: void cvDestroyWindow( const char* name )
.. ocv:pyoldfunction:: cv.DestroyWindow(name)-> None
:param winname: Name of the window to be destroyed.
The function ``destroyWindow`` destroys the window with the given name.
......@@ -142,8 +132,6 @@ Destroys all of the HighGUI windows.
.. ocv:cfunction:: void cvDestroyAllWindows()
.. ocv:pyoldfunction:: cv.DestroyAllWindows()-> None
The function ``destroyAllWindows`` destroys all of the opened HighGUI windows.
......@@ -157,8 +145,6 @@ Moves window to the specified position
.. ocv:cfunction:: void cvMoveWindow( const char* name, int x, int y )
.. ocv:pyoldfunction:: cv.MoveWindow(name, x, y)-> None
:param winname: Window name
:param x: The new x-coordinate of the window
......@@ -176,8 +162,6 @@ Resizes window to the specified size
.. ocv:cfunction:: void cvResizeWindow( const char* name, int width, int height )
.. ocv:pyoldfunction:: cv.ResizeWindow(name, width, height)-> None
:param winname: Window name
:param width: The new window width
......@@ -199,8 +183,6 @@ Sets mouse handler for the specified window
.. ocv:cfunction:: void cvSetMouseCallback( const char* window_name, CvMouseCallback on_mouse, void* param=NULL )
.. ocv:pyoldfunction:: cv.SetMouseCallback(windowName, onMouse, param=None) -> None
:param winname: Window name
:param onMouse: Mouse callback. See OpenCV samples, such as http://code.opencv.org/projects/opencv/repository/revisions/master/entry/samples/cpp/ffilldemo.cpp, on how to specify and use the callback.
......@@ -218,8 +200,6 @@ Sets the trackbar position.
.. ocv:cfunction:: void cvSetTrackbarPos( const char* trackbar_name, const char* window_name, int pos )
.. ocv:pyoldfunction:: cv.SetTrackbarPos(trackbarName, windowName, pos)-> None
:param trackbarname: Name of the trackbar.
:param winname: Name of the window that is the parent of trackbar.
......@@ -242,8 +222,6 @@ Waits for a pressed key.
.. ocv:cfunction:: int cvWaitKey( int delay=0 )
.. ocv:pyoldfunction:: cv.WaitKey(delay=0)-> int
:param delay: Delay in milliseconds. 0 is the special value that means "forever".
The function ``waitKey`` waits for a key event infinitely (when
......
......@@ -15,8 +15,6 @@ Finds edges in an image using the [Canny86]_ algorithm.
.. ocv:cfunction:: void cvCanny( const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aperture_size=3 )
.. ocv:pyoldfunction:: cv.Canny(image, edges, threshold1, threshold2, aperture_size=3) -> None
:param image: single-channel 8-bit input image.
:param edges: output edge map; it has the same size and type as ``image`` .
......@@ -44,8 +42,6 @@ Calculates eigenvalues and eigenvectors of image blocks for corner detection.
.. ocv:cfunction:: void cvCornerEigenValsAndVecs( const CvArr* image, CvArr* eigenvv, int block_size, int aperture_size=3 )
.. ocv:pyoldfunction:: cv.CornerEigenValsAndVecs(image, eigenvv, blockSize, aperture_size=3) -> None
:param src: Input single-channel 8-bit or floating-point image.
:param dst: Image to store the results. It has the same size as ``src`` and the type ``CV_32FC(6)`` .
......@@ -97,8 +93,6 @@ Harris edge detector.
.. ocv:cfunction:: void cvCornerHarris( const CvArr* image, CvArr* harris_responce, int block_size, int aperture_size=3, double k=0.04 )
.. ocv:pyoldfunction:: cv.CornerHarris(image, harris_dst, blockSize, aperture_size=3, k=0.04) -> None
:param src: Input single-channel 8-bit or floating-point image.
:param dst: Image to store the Harris detector responses. It has the type ``CV_32FC1`` and the same size as ``src`` .
......@@ -137,8 +131,6 @@ Calculates the minimal eigenvalue of gradient matrices for corner detection.
.. ocv:cfunction:: void cvCornerMinEigenVal( const CvArr* image, CvArr* eigenval, int block_size, int aperture_size=3 )
.. ocv:pyoldfunction:: cv.CornerMinEigenVal(image, eigenval, blockSize, aperture_size=3) -> None
:param src: Input single-channel 8-bit or floating-point image.
:param dst: Image to store the minimal eigenvalues. It has the type ``CV_32FC1`` and the same size as ``src`` .
......@@ -166,8 +158,6 @@ Refines the corner locations.
.. ocv:cfunction:: void cvFindCornerSubPix( const CvArr* image, CvPoint2D32f* corners, int count, CvSize win, CvSize zero_zone, CvTermCriteria criteria )
.. ocv:pyoldfunction:: cv.FindCornerSubPix(image, corners, win, zero_zone, criteria) -> corners
:param image: Input image.
:param corners: Initial coordinates of the input corners and refined coordinates provided for output.
......@@ -228,8 +218,6 @@ Determines strong corners on an image.
.. ocv:cfunction:: void cvGoodFeaturesToTrack( const CvArr* image, CvArr* eig_image, CvArr* temp_image, CvPoint2D32f* corners, int* corner_count, double quality_level, double min_distance, const CvArr* mask=NULL, int block_size=3, int use_harris=0, double k=0.04 )
.. ocv:pyoldfunction:: cv.GoodFeaturesToTrack(image, eigImage, tempImage, cornerCount, qualityLevel, minDistance, mask=None, blockSize=3, useHarris=0, k=0.04) -> cornerCount
:param image: Input 8-bit or floating-point 32-bit, single-channel image.
:param eig_image: The parameter is ignored.
......@@ -367,8 +355,6 @@ Finds lines in a binary image using the standard Hough transform.
.. ocv:cfunction:: CvSeq* cvHoughLines2( CvArr* image, void* line_storage, int method, double rho, double theta, int threshold, double param1=0, double param2=0 )
.. ocv:pyoldfunction:: cv.HoughLines2(image, storage, method, rho, theta, threshold, param1=0, param2=0)-> lines
:param image: 8-bit, single-channel binary source image. The image may be modified by the function.
:param lines: Output vector of lines. Each line is represented by a two-element vector :math:`(\rho, \theta)` . :math:`\rho` is the distance from the coordinate origin :math:`(0,0)` (top-left corner of the image). :math:`\theta` is the line rotation angle in radians ( :math:`0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}` ).
......@@ -510,8 +496,6 @@ Calculates a feature map for corner detection.
.. ocv:cfunction:: void cvPreCornerDetect( const CvArr* image, CvArr* corners, int aperture_size=3 )
.. ocv:pyoldfunction:: cv.PreCornerDetect(image, corners, apertureSize=3)-> None
:param src: Source single-channel 8-bit of floating-point image.
:param dst: Output image that has the type ``CV_32F`` and the same size as ``src`` .
......
......@@ -750,7 +750,6 @@ Dilates an image by using a specific structuring element.
.. ocv:pyfunction:: cv2.dilate(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
.. ocv:cfunction:: void cvDilate( const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1 )
.. ocv:pyoldfunction:: cv.Dilate(src, dst, element=None, iterations=1)-> None
:param src: input image; the number of channels can be arbitrary, but the depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F` or ``CV_64F``.
......@@ -790,7 +789,6 @@ Erodes an image by using a specific structuring element.
.. ocv:pyfunction:: cv2.erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
.. ocv:cfunction:: void cvErode( const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1)
.. ocv:pyoldfunction:: cv.Erode(src, dst, element=None, iterations=1)-> None
:param src: input image; the number of channels can be arbitrary, but the depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F` or ``CV_64F``.
......@@ -832,8 +830,6 @@ Convolves an image with the kernel.
.. ocv:cfunction:: void cvFilter2D( const CvArr* src, CvArr* dst, const CvMat* kernel, CvPoint anchor=cvPoint(-1,-1) )
.. ocv:pyoldfunction:: cv.Filter2D(src, dst, kernel, anchor=(-1, -1))-> None
:param src: input image.
:param dst: output image of the same size and the same number of channels as ``src``.
......@@ -1013,8 +1009,6 @@ Returns a structuring element of the specified size and shape for morphological
.. ocv:cfunction:: IplConvKernel* cvCreateStructuringElementEx( int cols, int rows, int anchor_x, int anchor_y, int shape, int* values=NULL )
.. ocv:pyoldfunction:: cv.CreateStructuringElementEx(cols, rows, anchorX, anchorY, shape, values=None)-> kernel
:param shape: Element shape that could be one of the following:
* **MORPH_RECT** - a rectangular structuring element:
......@@ -1091,7 +1085,6 @@ Performs advanced morphological transformations.
.. ocv:pyfunction:: cv2.morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
.. ocv:cfunction:: void cvMorphologyEx( const CvArr* src, CvArr* dst, CvArr* temp, IplConvKernel* element, int operation, int iterations=1 )
.. ocv:pyoldfunction:: cv.MorphologyEx(src, dst, temp, element, operation, iterations=1)-> None
:param src: Source image. The number of channels can be arbitrary. The depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F` or ``CV_64F``.
......@@ -1168,8 +1161,6 @@ Calculates the Laplacian of an image.
.. ocv:cfunction:: void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 )
.. ocv:pyoldfunction:: cv.Laplace(src, dst, apertureSize=3) -> None
:param src: Source image.
:param dst: Destination image of the same size and the same number of channels as ``src`` .
......@@ -1214,8 +1205,6 @@ Blurs an image and downsamples it.
.. ocv:cfunction:: void cvPyrDown( const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5 )
.. ocv:pyoldfunction:: cv.PyrDown(src, dst, filter=CV_GAUSSIAN_5X5) -> None
:param src: input image.
:param dst: output image; it has the specified size and the same type as ``src``.
......@@ -1247,8 +1236,6 @@ Upsamples an image and then blurs it.
.. ocv:cfunction:: cvPyrUp( const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5 )
.. ocv:pyoldfunction:: cv.PyrUp(src, dst, filter=CV_GAUSSIAN_5X5) -> None
:param src: input image.
:param dst: output image. It has the specified size and the same type as ``src`` .
......@@ -1274,8 +1261,6 @@ Performs initial step of meanshift segmentation of an image.
.. ocv:cfunction:: void cvPyrMeanShiftFiltering( const CvArr* src, CvArr* dst, double sp, double sr, int max_level=1, CvTermCriteria termcrit= cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,5,1))
.. ocv:pyoldfunction:: cv.PyrMeanShiftFiltering(src, dst, sp, sr, max_level=1, termcrit=(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 5, 1)) -> None
:param src: The source 8-bit, 3-channel image.
:param dst: The destination image of the same format and the same size as the source.
......@@ -1361,8 +1346,6 @@ Smooths the image in one of several ways.
.. ocv:cfunction:: void cvSmooth( const CvArr* src, CvArr* dst, int smoothtype=CV_GAUSSIAN, int size1=3, int size2=0, double sigma1=0, double sigma2=0 )
.. ocv:pyoldfunction:: cv.Smooth(src, dst, smoothtype=CV_GAUSSIAN, param1=3, param2=0, param3=0, param4=0)-> None
:param src: The source image
:param dst: The destination image
......@@ -1417,8 +1400,6 @@ Calculates the first, second, third, or mixed image derivatives using an extende
.. ocv:cfunction:: void cvSobel( const CvArr* src, CvArr* dst, int xorder, int yorder, int aperture_size=3 )
.. ocv:pyoldfunction:: cv.Sobel(src, dst, xorder, yorder, apertureSize=3)-> None
:param src: input image.
:param dst: output image of the same size and the same number of channels as ``src`` .
......
......@@ -85,8 +85,6 @@ Calculates an affine transform from three pairs of the corresponding points.
.. ocv:cfunction:: CvMat* cvGetAffineTransform( const CvPoint2D32f * src, const CvPoint2D32f * dst, CvMat * map_matrix )
.. ocv:pyoldfunction:: cv.GetAffineTransform(src, dst, mapMatrix)-> None
:param src: Coordinates of triangle vertices in the source image.
:param dst: Coordinates of the corresponding triangle vertices in the destination image.
......@@ -124,8 +122,6 @@ Calculates a perspective transform from four pairs of the corresponding points.
.. ocv:cfunction:: CvMat* cvGetPerspectiveTransform( const CvPoint2D32f* src, const CvPoint2D32f* dst, CvMat* map_matrix )
.. ocv:pyoldfunction:: cv.GetPerspectiveTransform(src, dst, mapMatrix)-> None
:param src: Coordinates of quadrangle vertices in the source image.
:param dst: Coordinates of the corresponding quadrangle vertices in the destination image.
......@@ -160,7 +156,6 @@ Retrieves a pixel rectangle from an image with sub-pixel accuracy.
.. ocv:pyfunction:: cv2.getRectSubPix(image, patchSize, center[, patch[, patchType]]) -> patch
.. ocv:cfunction:: void cvGetRectSubPix( const CvArr* src, CvArr* dst, CvPoint2D32f center )
.. ocv:pyoldfunction:: cv.GetRectSubPix(src, dst, center)-> None
:param src: Source image.
......@@ -202,8 +197,6 @@ Calculates an affine matrix of 2D rotation.
.. ocv:cfunction:: CvMat* cv2DRotationMatrix( CvPoint2D32f center, double angle, double scale, CvMat* map_matrix )
.. ocv:pyoldfunction:: cv.GetRotationMatrix2D(center, angle, scale, mapMatrix)-> None
:param center: Center of the rotation in the source image.
:param angle: Rotation angle in degrees. Positive values mean counter-clockwise rotation (the coordinate origin is assumed to be the top-left corner).
......@@ -264,8 +257,6 @@ Remaps an image to log-polar space.
.. ocv:cfunction:: void cvLogPolar( const CvArr* src, CvArr* dst, CvPoint2D32f center, double M, int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS )
.. ocv:pyoldfunction:: cv.LogPolar(src, dst, center, M, flags=CV_INNER_LINEAR+CV_WARP_FILL_OUTLIERS)-> None
:param src: Source image
:param dst: Destination image
......@@ -317,7 +308,6 @@ Applies a generic geometrical transformation to an image.
.. ocv:pyfunction:: cv2.remap(src, map1, map2, interpolation[, dst[, borderMode[, borderValue]]]) -> dst
.. ocv:cfunction:: void cvRemap( const CvArr* src, CvArr* dst, const CvArr* mapx, const CvArr* mapy, int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, CvScalar fillval=cvScalarAll(0) )
.. ocv:pyoldfunction:: cv.Remap(src, dst, mapx, mapy, flags=CV_INNER_LINEAR+CV_WARP_FILL_OUTLIERS, fillval=(0, 0, 0, 0))-> None
:param src: Source image.
......@@ -364,7 +354,6 @@ Resizes an image.
.. ocv:pyfunction:: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) -> dst
.. ocv:cfunction:: void cvResize( const CvArr* src, CvArr* dst, int interpolation=CV_INTER_LINEAR )
.. ocv:pyoldfunction:: cv.Resize(src, dst, interpolation=CV_INTER_LINEAR)-> None
:param src: input image.
......@@ -434,12 +423,8 @@ Applies an affine transformation to an image.
.. ocv:cfunction:: void cvWarpAffine( const CvArr* src, CvArr* dst, const CvMat* map_matrix, int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, CvScalar fillval=cvScalarAll(0) )
.. ocv:pyoldfunction:: cv.WarpAffine(src, dst, mapMatrix, flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, fillval=(0, 0, 0, 0))-> None
.. ocv:cfunction:: void cvGetQuadrangleSubPix( const CvArr* src, CvArr* dst, const CvMat* map_matrix )
.. ocv:pyoldfunction:: cv.GetQuadrangleSubPix(src, dst, mapMatrix)-> None
:param src: input image.
:param dst: output image that has the size ``dsize`` and the same type as ``src`` .
......@@ -485,8 +470,6 @@ Applies a perspective transformation to an image.
.. ocv:cfunction:: void cvWarpPerspective( const CvArr* src, CvArr* dst, const CvMat* map_matrix, int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, CvScalar fillval=cvScalarAll(0) )
.. ocv:pyoldfunction:: cv.WarpPerspective(src, dst, mapMatrix, flags=CV_INNER_LINEAR+CV_WARP_FILL_OUTLIERS, fillval=(0, 0, 0, 0))-> None
:param src: input image.
:param dst: output image that has the size ``dsize`` and the same type as ``src`` .
......@@ -534,9 +517,6 @@ Computes the undistortion and rectification transformation map.
.. ocv:cfunction:: void cvInitUndistortRectifyMap( const CvMat* camera_matrix, const CvMat* dist_coeffs, const CvMat * R, const CvMat* new_camera_matrix, CvArr* mapx, CvArr* mapy )
.. ocv:cfunction:: void cvInitUndistortMap( const CvMat* camera_matrix, const CvMat* distortion_coeffs, CvArr* mapx, CvArr* mapy )
.. ocv:pyoldfunction:: cv.InitUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, map1, map2)-> None
.. ocv:pyoldfunction:: cv.InitUndistortMap(cameraMatrix, distCoeffs, map1, map2)-> None
:param cameraMatrix: Input camera matrix :math:`A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}` .
:param distCoeffs: Input vector of distortion coefficients :math:`(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6]])` of 4, 5, or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
......@@ -630,8 +610,6 @@ Transforms an image to compensate for lens distortion.
.. ocv:cfunction:: void cvUndistort2( const CvArr* src, CvArr* dst, const CvMat* camera_matrix, const CvMat* distortion_coeffs, const CvMat* new_camera_matrix=0 )
.. ocv:pyoldfunction:: cv.Undistort2(src, dst, cameraMatrix, distCoeffs)-> None
:param src: Input (distorted) image.
:param dst: Output (corrected) image that has the same size and type as ``src`` .
......@@ -668,7 +646,6 @@ Computes the ideal point coordinates from the observed point coordinates.
.. ocv:function:: void undistortPoints( InputArray src, OutputArray dst, InputArray cameraMatrix, InputArray distCoeffs, InputArray R=noArray(), InputArray P=noArray())
.. ocv:cfunction:: void cvUndistortPoints( const CvMat* src, CvMat* dst, const CvMat* camera_matrix, const CvMat* dist_coeffs, const CvMat* R=0, const CvMat* P=0 )
.. ocv:pyoldfunction:: cv.UndistortPoints(src, dst, cameraMatrix, distCoeffs, R=None, P=None)-> None
:param src: Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or CV_64FC2).
......
......@@ -16,7 +16,6 @@ Calculates a histogram of a set of arrays.
.. ocv:pyfunction:: cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) -> hist
.. ocv:cfunction:: void cvCalcHist( IplImage** image, CvHistogram* hist, int accumulate=0, const CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.CalcHist(image, hist, accumulate=0, mask=None)-> None
:param images: Source arrays. They all should have the same depth, ``CV_8U`` or ``CV_32F`` , and the same size. Each of them can have an arbitrary number of channels.
......@@ -113,7 +112,6 @@ Calculates the back projection of a histogram.
.. ocv:pyfunction:: cv2.calcBackProject(images, channels, hist, ranges, scale[, dst]) -> dst
.. ocv:cfunction:: void cvCalcBackProject( IplImage** image, CvArr* backProject, const CvHistogram* hist )
.. ocv:pyoldfunction:: cv.CalcBackProject(image, back_project, hist) -> None
:param images: Source arrays. They all should have the same depth, ``CV_8U`` or ``CV_32F`` , and the same size. Each of them can have an arbitrary number of channels.
......@@ -159,7 +157,6 @@ Compares two histograms.
.. ocv:pyfunction:: cv2.compareHist(H1, H2, method) -> retval
.. ocv:cfunction:: double cvCompareHist( const CvHistogram* hist1, const CvHistogram* hist2, int method )
.. ocv:pyoldfunction:: cv.CompareHist(hist1, hist2, method)->float
:param H1: First compared histogram.
......@@ -229,8 +226,6 @@ Computes the "minimal work" distance between two weighted point configurations.
.. ocv:cfunction:: float cvCalcEMD2( const CvArr* signature1, const CvArr* signature2, int distance_type, CvDistanceFunction distance_func=NULL, const CvArr* cost_matrix=NULL, CvArr* flow=NULL, float* lower_bound=NULL, void* userdata=NULL )
.. ocv:pyoldfunction:: cv.CalcEMD2(signature1, signature2, distance_type, distance_func=None, cost_matrix=None, flow=None, lower_bound=None, userdata=None) -> float
:param signature1: First signature, a :math:`\texttt{size1}\times \texttt{dims}+1` floating-point matrix. Each row stores the point weight followed by the point coordinates. The matrix is allowed to have a single column (weights only) if the user-defined cost matrix is used.
:param signature2: Second signature of the same format as ``signature1`` , though the number of rows may be different. The total weights may be different. In this case an extra "dummy" point is added to either ``signature1`` or ``signature2`` .
......@@ -304,8 +299,6 @@ Locates a template within an image by using a histogram comparison.
.. ocv:cfunction:: void cvCalcBackProjectPatch( IplImage** images, CvArr* dst, CvSize patch_size, CvHistogram* hist, int method, double factor )
.. ocv:pyoldfunction:: cv.CalcBackProjectPatch(images, dst, patch_size, hist, method, factor)-> None
:param images: Source images (though, you may pass CvMat** as well).
:param dst: Destination image.
......@@ -329,8 +322,6 @@ Divides one histogram by another.
.. ocv:cfunction:: void cvCalcProbDensity( const CvHistogram* hist1, const CvHistogram* hist2, CvHistogram* dst_hist, double scale=255 )
.. ocv:pyoldfunction:: cv.CalcProbDensity(hist1, hist2, dst_hist, scale=255) -> None
:param hist1: First histogram (the divisor).
:param hist2: Second histogram.
......@@ -351,7 +342,6 @@ ClearHist
Clears the histogram.
.. ocv:cfunction:: void cvClearHist( CvHistogram* hist )
.. ocv:pyoldfunction:: cv.ClearHist(hist)-> None
:param hist: Histogram.
......@@ -378,8 +368,6 @@ Creates a histogram.
.. ocv:cfunction:: CvHistogram* cvCreateHist( int dims, int* sizes, int type, float** ranges=NULL, int uniform=1 )
.. ocv:pyoldfunction:: cv.CreateHist(dims, type, ranges=None, uniform=1) -> hist
:param dims: Number of histogram dimensions.
:param sizes: Array of the histogram dimension sizes.
......@@ -414,8 +402,6 @@ Finds the minimum and maximum histogram bins.
.. ocv:cfunction:: void cvGetMinMaxHistValue( const CvHistogram* hist, float* min_value, float* max_value, int* min_idx=NULL, int* max_idx=NULL )
.. ocv:pyoldfunction:: cv.GetMinMaxHistValue(hist)-> (min_value, max_value, min_idx, max_idx)
:param hist: Histogram.
:param min_value: Pointer to the minimum value of the histogram.
......@@ -454,7 +440,6 @@ NormalizeHist
Normalizes the histogram.
.. ocv:cfunction:: void cvNormalizeHist( CvHistogram* hist, double factor )
.. ocv:pyoldfunction:: cv.NormalizeHist(hist, factor)-> None
:param hist: Pointer to the histogram.
......@@ -494,7 +479,6 @@ ThreshHist
Thresholds the histogram.
.. ocv:cfunction:: void cvThreshHist( CvHistogram* hist, double threshold )
.. ocv:pyoldfunction:: cv.ThreshHist(hist, threshold) -> None
:param hist: Pointer to the histogram.
......
......@@ -14,8 +14,6 @@ Applies an adaptive threshold to an array.
.. ocv:cfunction:: void cvAdaptiveThreshold( const CvArr* src, CvArr* dst, double max_value, int adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C, int threshold_type=CV_THRESH_BINARY, int block_size=3, double param1=5 )
.. ocv:pyoldfunction:: cv.AdaptiveThreshold(src, dst, maxValue, adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C, thresholdType=CV_THRESH_BINARY, blockSize=3, param1=5)-> None
:param src: Source 8-bit single-channel image.
:param dst: Destination image of the same size and the same type as ``src`` .
......@@ -79,7 +77,6 @@ Converts an image from one color space to another.
.. ocv:pyfunction:: cv2.cvtColor(src, code[, dst[, dstCn]]) -> dst
.. ocv:cfunction:: void cvCvtColor( const CvArr* src, CvArr* dst, int code )
.. ocv:pyoldfunction:: cv.CvtColor(src, dst, code)-> None
:param src: input image: 8-bit unsigned, 16-bit unsigned ( ``CV_16UC...`` ), or single-precision floating-point.
......@@ -419,8 +416,6 @@ Calculates the distance to the closest zero pixel for each pixel of the source i
.. ocv:cfunction:: void cvDistTransform( const CvArr* src, CvArr* dst, int distance_type=CV_DIST_L2, int mask_size=3, const float* mask=NULL, CvArr* labels=NULL, int labelType=CV_DIST_LABEL_CCOMP )
.. ocv:pyoldfunction:: cv.DistTransform(src, dst, distance_type=CV_DIST_L2, mask_size=3, mask=None, labels=None) -> None
:param src: 8-bit, single-channel (binary) source image.
:param dst: Output image with calculated distances. It is a 32-bit floating-point, single-channel image of the same size as ``src`` .
......@@ -491,7 +486,6 @@ Fills a connected component with the given color.
.. ocv:pyfunction:: cv2.floodFill(image, mask, seedPoint, newVal[, loDiff[, upDiff[, flags]]]) -> retval, image, mask, rect
.. ocv:cfunction:: void cvFloodFill( CvArr* image, CvPoint seed_point, CvScalar new_val, CvScalar lo_diff=cvScalarAll(0), CvScalar up_diff=cvScalarAll(0), CvConnectedComp* comp=NULL, int flags=4, CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.FloodFill(image, seed_point, new_val, lo_diff=(0, 0, 0, 0), up_diff=(0, 0, 0, 0), flags=4, mask=None)-> comp
:param image: Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the function unless the ``FLOODFILL_MASK_ONLY`` flag is set in the second variant of the function. See the details below.
......@@ -603,8 +597,6 @@ Calculates the integral of an image.
.. ocv:cfunction:: void cvIntegral( const CvArr* image, CvArr* sum, CvArr* sqsum=NULL, CvArr* tilted_sum=NULL )
.. ocv:pyoldfunction:: cv.Integral(image, sum, sqsum=None, tiltedSum=None)-> None
:param image: input image as :math:`W \times H`, 8-bit or floating-point (32f or 64f).
:param sum: integral image as :math:`(W+1)\times (H+1)` , 32-bit integer or floating-point (32f or 64f).
......@@ -655,8 +647,6 @@ Applies a fixed-level threshold to each array element.
.. ocv:cfunction:: double cvThreshold( const CvArr* src, CvArr* dst, double threshold, double max_value, int threshold_type )
.. ocv:pyoldfunction:: cv.Threshold(src, dst, threshold, maxValue, thresholdType)-> None
:param src: input array (single-channel, 8-bit or 32-bit floating point).
:param dst: output array of the same size and type as ``src``.
......
......@@ -13,8 +13,6 @@ Adds an image to the accumulator.
.. ocv:cfunction:: void cvAcc( const CvArr* image, CvArr* sum, const CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.Acc(image, sum, mask=None) -> None
:param src: Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
:param dst: Accumulator image with the same number of channels as input image, 32-bit or 64-bit floating-point.
......@@ -49,8 +47,6 @@ Adds the square of a source image to the accumulator.
.. ocv:cfunction:: void cvSquareAcc( const CvArr* image, CvArr* sqsum, const CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.SquareAcc(image, sqsum, mask=None) -> None
:param src: Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
:param dst: Accumulator image with the same number of channels as input image, 32-bit or 64-bit floating-point.
......@@ -83,8 +79,6 @@ Adds the per-element product of two input images to the accumulator.
.. ocv:cfunction:: void cvMultiplyAcc( const CvArr* image1, const CvArr* image2, CvArr* acc, const CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.MultiplyAcc(image1, image2, acc, mask=None)-> None
:param src1: First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
:param src2: Second input image of the same type and the same size as ``src1`` .
......@@ -118,7 +112,6 @@ Updates a running average.
.. ocv:pyfunction:: cv2.accumulateWeighted(src, dst, alpha[, mask]) -> dst
.. ocv:cfunction:: void cvRunningAvg( const CvArr* image, CvArr* acc, double alpha, const CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.RunningAvg(image, acc, alpha, mask=None)-> None
:param src: Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
......
......@@ -12,7 +12,6 @@ Compares a template against overlapped image regions.
.. ocv:pyfunction:: cv2.matchTemplate(image, templ, method[, result]) -> result
.. ocv:cfunction:: void cvMatchTemplate( const CvArr* image, const CvArr* templ, CvArr* result, int method )
.. ocv:pyoldfunction:: cv.MatchTemplate(image, templ, result, method)-> None
:param image: Image where the search is running. It must be 8-bit or 32-bit floating-point.
......
......@@ -13,8 +13,6 @@ Calculates all of the moments up to the third order of a polygon or rasterized s
.. ocv:cfunction:: void cvMoments( const CvArr* arr, CvMoments* moments, int binary=0 )
.. ocv:pyoldfunction:: cv.Moments(arr, binary=0) -> moments
:param array: Raster image (single-channel, 8-bit or floating-point 2D array) or an array ( :math:`1 \times N` or :math:`N \times 1` ) of 2D points (``Point`` or ``Point2f`` ).
:param binaryImage: If it is true, all non-zero image pixels are treated as 1's. The parameter is used for images only.
......@@ -98,8 +96,6 @@ Calculates seven Hu invariants.
.. ocv:cfunction:: void cvGetHuMoments( CvMoments* moments, CvHuMoments* hu_moments )
.. ocv:pyoldfunction:: cv.GetHuMoments(moments) -> hu
:param moments: Input moments computed with :ocv:func:`moments` .
:param hu: Output Hu invariants.
......@@ -163,8 +159,6 @@ Finds contours in a binary image.
.. ocv:cfunction:: int cvFindContours( CvArr* image, CvMemStorage* storage, CvSeq** first_contour, int header_size=sizeof(CvContour), int mode=CV_RETR_LIST, int method=CV_CHAIN_APPROX_SIMPLE, CvPoint offset=cvPoint(0,0) )
.. ocv:pyoldfunction:: cv.FindContours(image, storage, mode=CV_RETR_LIST, method=CV_CHAIN_APPROX_SIMPLE, offset=(0, 0)) -> contours
:param image: Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero pixels remain 0's, so the image is treated as ``binary`` . You can use :ocv:func:`compare` , :ocv:func:`inRange` , :ocv:func:`threshold` , :ocv:func:`adaptiveThreshold` , :ocv:func:`Canny` , and others to create a binary image out of a grayscale or color one. The function modifies the ``image`` while extracting the contours.
:param contours: Detected contours. Each contour is stored as a vector of points.
......@@ -243,8 +237,6 @@ Approximates Freeman chain(s) with a polygonal curve.
.. ocv:cfunction:: CvSeq* cvApproxChains( CvSeq* src_seq, CvMemStorage* storage, int method=CV_CHAIN_APPROX_SIMPLE, double parameter=0, int minimal_perimeter=0, int recursive=0 )
.. ocv:pyoldfunction:: cv.ApproxChains(src_seq, storage, method=CV_CHAIN_APPROX_SIMPLE, parameter=0, minimal_perimeter=0, recursive=0)-> contours
:param src_seq: Pointer to the approximated Freeman chain that can refer to other chains.
:param storage: Storage location for the resulting polylines.
......@@ -270,8 +262,6 @@ Calculates a contour perimeter or a curve length.
.. ocv:cfunction:: double cvArcLength( const void* curve, CvSlice slice=CV_WHOLE_SEQ, int is_closed=-1 )
.. ocv:pyoldfunction:: cv.ArcLength(curve, slice=CV_WHOLE_SEQ, isClosed=-1) -> float
:param curve: Input vector of 2D points, stored in ``std::vector`` or ``Mat``.
:param closed: Flag indicating whether the curve is closed or not.
......@@ -289,7 +279,6 @@ Calculates the up-right bounding rectangle of a point set.
.. ocv:pyfunction:: cv2.boundingRect(points) -> retval
.. ocv:cfunction:: CvRect cvBoundingRect( CvArr* points, int update=0 )
.. ocv:pyoldfunction:: cv.BoundingRect(points, update=0)-> CvRect
:param points: Input 2D point set, stored in ``std::vector`` or ``Mat``.
......@@ -308,8 +297,6 @@ Calculates a contour area.
.. ocv:cfunction:: double cvContourArea( const CvArr* contour, CvSlice slice=CV_WHOLE_SEQ, int oriented=0 )
.. ocv:pyoldfunction:: cv.ContourArea(contour, slice=CV_WHOLE_SEQ) -> float
:param contour: Input vector of 2D points (contour vertices), stored in ``std::vector`` or ``Mat``.
:param oriented: Oriented area flag. If it is true, the function returns a signed area value, depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can determine orientation of a contour by taking the sign of an area. By default, the parameter is ``false``, which means that the absolute value is returned.
......@@ -349,8 +336,6 @@ Finds the convex hull of a point set.
.. ocv:cfunction:: CvSeq* cvConvexHull2( const CvArr* input, void* hull_storage=NULL, int orientation=CV_CLOCKWISE, int return_points=0 )
.. ocv:pyoldfunction:: cv.ConvexHull2(points, storage, orientation=CV_CLOCKWISE, return_points=0) -> convexHull
:param points: Input 2D point set, stored in ``std::vector`` or ``Mat``.
:param hull: Output convex hull. It is either an integer vector of indices or vector of points. In the first case, the ``hull`` elements are 0-based indices of the convex hull points in the original array (since the set of convex hull points is a subset of the original point set). In the second case, ``hull`` elements are the convex hull points themselves.
......@@ -379,8 +364,6 @@ Finds the convexity defects of a contour.
.. ocv:cfunction:: CvSeq* cvConvexityDefects( const CvArr* contour, const CvArr* convexhull, CvMemStorage* storage=NULL )
.. ocv:pyoldfunction:: cv.ConvexityDefects(contour, convexhull, storage)-> convexityDefects
:param contour: Input contour.
:param convexhull: Convex hull obtained using :ocv:func:`convexHull` that should contain indices of the contour points that make the hull.
......@@ -412,7 +395,6 @@ Fits an ellipse around a set of 2D points.
.. ocv:pyfunction:: cv2.fitEllipse(points) -> retval
.. ocv:cfunction:: CvBox2D cvFitEllipse2( const CvArr* points )
.. ocv:pyoldfunction:: cv.FitEllipse2(points)-> Box2D
:param points: Input 2D point set, stored in:
......@@ -434,8 +416,6 @@ Fits a line to a 2D or 3D point set.
.. ocv:cfunction:: void cvFitLine( const CvArr* points, int dist_type, double param, double reps, double aeps, float* line )
.. ocv:pyoldfunction:: cv.FitLine(points, dist_type, param, reps, aeps) -> line
:param points: Input vector of 2D or 3D points, stored in ``std::vector<>`` or ``Mat``.
:param line: Output line parameters. In case of 2D fitting, it should be a vector of 4 elements (like ``Vec4f``) - ``(vx, vy, x0, y0)``, where ``(vx, vy)`` is a normalized vector collinear to the line and ``(x0, y0)`` is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like ``Vec6f``) - ``(vx, vy, vz, x0, y0, z0)``, where ``(vx, vy, vz)`` is a normalized vector collinear to the line and ``(x0, y0, z0)`` is a point on the line.
......@@ -507,7 +487,6 @@ Tests a contour convexity.
.. ocv:pyfunction:: cv2.isContourConvex(contour) -> retval
.. ocv:cfunction:: int cvCheckContourConvexity( const CvArr* contour )
.. ocv:pyoldfunction:: cv.CheckContourConvexity(contour)-> int
:param contour: Input vector of 2D points, stored in:
......@@ -531,8 +510,6 @@ Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
.. ocv:cfunction:: CvBox2D cvMinAreaRect2( const CvArr* points, CvMemStorage* storage=NULL )
.. ocv:pyoldfunction:: cv.MinAreaRect2(points, storage=None) -> Box2D
:param points: Input vector of 2D points, stored in:
* ``std::vector<>`` or ``Mat`` (C++ interface)
......@@ -555,8 +532,6 @@ Finds a circle of the minimum area enclosing a 2D point set.
.. ocv:cfunction:: int cvMinEnclosingCircle( const CvArr* points, CvPoint2D32f* center, float* radius )
.. ocv:pyoldfunction:: cv.MinEnclosingCircle(points)-> (int, center, radius)
:param points: Input vector of 2D points, stored in:
* ``std::vector<>`` or ``Mat`` (C++ interface)
......@@ -582,7 +557,6 @@ Compares two shapes.
.. ocv:pyfunction:: cv2.matchShapes(contour1, contour2, method, parameter) -> retval
.. ocv:cfunction:: double cvMatchShapes( const void* object1, const void* object2, int method, double parameter=0 )
.. ocv:pyoldfunction:: cv.MatchShapes(object1, object2, method, parameter=0) -> float
:param object1: First contour or grayscale image.
......@@ -637,7 +611,6 @@ Performs a point-in-contour test.
.. ocv:pyfunction:: cv2.pointPolygonTest(contour, pt, measureDist) -> retval
.. ocv:cfunction:: double cvPointPolygonTest( const CvArr* contour, CvPoint2D32f pt, int measure_dist )
.. ocv:pyoldfunction:: cv.PointPolygonTest(contour, pt, measure_dist) -> float
:param contour: Input contour.
......
......@@ -79,8 +79,6 @@ class DeclarationParser(object):
return "C"
if line.startswith(".. ocv:pyfunction::"):
return "Python2"
if line.startswith(".. ocv:pyoldfunction::"):
return "Python1"
if line.startswith(".. ocv:jfunction::"):
return "Java"
return None
......
......@@ -39,11 +39,6 @@ Queries the value of the histogram bin.
.. ocv:cfunction:: float cvQueryHistValue_3D(CvHistogram hist, int idx0, int idx1, int idx2)
.. ocv:cfunction:: float cvQueryHistValue_nD(CvHistogram hist, const int* idx)
.. ocv:pyoldfunction:: cv.QueryHistValue_1D(hist, idx0) -> float
.. ocv:pyoldfunction:: cv.QueryHistValue_2D(hist, idx0, idx1) -> float
.. ocv:pyoldfunction:: cv.QueryHistValue_3D(hist, idx0, idx1, idx2) -> float
.. ocv:pyoldfunction:: cv.QueryHistValue_nD(hist, idx) -> float
:param hist: Histogram.
:param idx0: 0-th index.
......
......@@ -10,8 +10,6 @@ Calculates the optical flow for two images by using the block matching method.
.. ocv:cfunction:: void cvCalcOpticalFlowBM( const CvArr* prev, const CvArr* curr, CvSize block_size, CvSize shift_size, CvSize max_range, int use_previous, CvArr* velx, CvArr* vely )
.. ocv:pyoldfunction:: cv.CalcOpticalFlowBM(prev, curr, blockSize, shiftSize, max_range, usePrevious, velx, vely)-> None
:param prev: First image, 8-bit, single-channel
:param curr: Second image, 8-bit, single-channel
......@@ -45,8 +43,6 @@ Calculates the optical flow for two images using Horn-Schunck algorithm.
.. ocv:cfunction:: void cvCalcOpticalFlowHS(const CvArr* prev, const CvArr* curr, int use_previous, CvArr* velx, CvArr* vely, double lambda, CvTermCriteria criteria)
.. ocv:pyoldfunction:: cv.CalcOpticalFlowHS(prev, curr, usePrevious, velx, vely, lambda, criteria)-> None
:param prev: First image, 8-bit, single-channel
:param curr: Second image, 8-bit, single-channel
......@@ -71,8 +67,6 @@ Calculates the optical flow for two images using Lucas-Kanade algorithm.
.. ocv:cfunction:: void cvCalcOpticalFlowLK( const CvArr* prev, const CvArr* curr, CvSize win_size, CvArr* velx, CvArr* vely )
.. ocv:pyoldfunction:: cv.CalcOpticalFlowLK(prev, curr, winSize, velx, vely)-> None
:param prev: First image, 8-bit, single-channel
:param curr: Second image, 8-bit, single-channel
......
......@@ -116,7 +116,6 @@ CalcSubdivVoronoi2D
Calculates the coordinates of the Voronoi diagram cells.
.. ocv:cfunction:: void cvCalcSubdivVoronoi2D( CvSubdiv2D* subdiv )
.. ocv:pyoldfunction:: cv.CalcSubdivVoronoi2D(subdiv)-> None
:param subdiv: Delaunay subdivision, in which all the points are already added.
......@@ -130,7 +129,6 @@ ClearSubdivVoronoi2D
Removes all virtual points.
.. ocv:cfunction:: void cvClearSubdivVoronoi2D( CvSubdiv2D* subdiv )
.. ocv:pyoldfunction:: cv.ClearSubdivVoronoi2D(subdiv)-> None
:param subdiv: Delaunay subdivision.
......@@ -145,7 +143,6 @@ CreateSubdivDelaunay2D
Creates an empty Delaunay triangulation.
.. ocv:cfunction:: CvSubdiv2D* cvCreateSubdivDelaunay2D( CvRect rect, CvMemStorage* storage )
.. ocv:pyoldfunction:: cv.CreateSubdivDelaunay2D(rect, storage) -> CvSubdiv2D
:param rect: Rectangle that includes all of the 2D points that are to be added to the subdivision.
......@@ -166,7 +163,6 @@ FindNearestPoint2D
Finds the subdivision vertex closest to the given point.
.. ocv:cfunction:: CvSubdiv2DPoint* cvFindNearestPoint2D( CvSubdiv2D* subdiv, CvPoint2D32f pt )
.. ocv:pyoldfunction:: cv.FindNearestPoint2D(subdiv, pt)-> point
:param subdiv: Delaunay or another subdivision.
......@@ -185,7 +181,6 @@ Subdiv2DEdgeDst
Returns the edge destination.
.. ocv:cfunction:: CvSubdiv2DPoint* cvSubdiv2DEdgeDst( CvSubdiv2DEdge edge )
.. ocv:pyoldfunction:: cv.Subdiv2DEdgeDst(edge)-> point
:param edge: Subdivision edge (not a quad-edge).
......@@ -200,7 +195,6 @@ Subdiv2DGetEdge
Returns one of the edges related to the given edge.
.. ocv:cfunction:: CvSubdiv2DEdge cvSubdiv2DGetEdge( CvSubdiv2DEdge edge, CvNextEdgeType type )
.. ocv:pyoldfunction:: cv.Subdiv2DGetEdge(edge, type)-> CvSubdiv2DEdge
:param edge: Subdivision edge (not a quad-edge).
......@@ -231,7 +225,6 @@ Subdiv2DNextEdge
Returns next edge around the edge origin.
.. ocv:cfunction:: CvSubdiv2DEdge cvSubdiv2DNextEdge( CvSubdiv2DEdge edge )
.. ocv:pyoldfunction:: cv.Subdiv2DNextEdge(edge)-> CvSubdiv2DEdge
:param edge: Subdivision edge (not a quad-edge).
......@@ -246,7 +239,6 @@ Subdiv2DLocate
Returns the location of a point within a Delaunay triangulation.
.. ocv:cfunction:: CvSubdiv2DPointLocation cvSubdiv2DLocate( CvSubdiv2D* subdiv, CvPoint2D32f pt, CvSubdiv2DEdge* edge, CvSubdiv2DPoint** vertex=NULL )
.. ocv:pyoldfunction:: cv.Subdiv2DLocate(subdiv, pt) -> (loc, where)
:param subdiv: Delaunay or another subdivision.
......@@ -294,7 +286,6 @@ Subdiv2DRotateEdge
Returns another edge of the same quad-edge.
.. ocv:cfunction:: CvSubdiv2DEdge cvSubdiv2DRotateEdge( CvSubdiv2DEdge edge, int rotate )
.. ocv:pyoldfunction:: cv.Subdiv2DRotateEdge(edge, rotate)-> CvSubdiv2DEdge
:param edge: Subdivision edge (not a quad-edge).
......@@ -315,7 +306,6 @@ SubdivDelaunay2DInsert
Inserts a single point into a Delaunay triangulation.
.. ocv:cfunction:: CvSubdiv2DPoint* cvSubdivDelaunay2DInsert( CvSubdiv2D* subdiv, CvPoint2D32f pt)
.. ocv:pyoldfunction:: cv.SubdivDelaunay2DInsert(subdiv, pt)-> point
:param subdiv: Delaunay subdivision created by the function :ocv:cfunc:`CreateSubdivDelaunay2D`.
......
......@@ -108,8 +108,6 @@ Detects keypoints and computes SURF descriptors for them.
.. ocv:cfunction:: void cvExtractSURF( const CvArr* image, const CvArr* mask, CvSeq** keypoints, CvSeq** descriptors, CvMemStorage* storage, CvSURFParams params )
.. ocv:pyoldfunction:: cv.ExtractSURF(image, mask, storage, params)-> (keypoints, descriptors)
:param image: Input 8-bit grayscale image
:param mask: Optional input mask that marks the regions where we should detect features.
......
......@@ -195,8 +195,6 @@ Detects objects of different sizes in the input image. The detected objects are
.. ocv:cfunction:: CvSeq* cvHaarDetectObjects( const CvArr* image, CvHaarClassifierCascade* cascade, CvMemStorage* storage, double scale_factor=1.1, int min_neighbors=3, int flags=0, CvSize min_size=cvSize(0,0), CvSize max_size=cvSize(0,0) )
.. ocv:pyoldfunction:: cv.HaarDetectObjects(image, cascade, storage, scale_factor=1.1, min_neighbors=3, flags=0, min_size=(0, 0)) -> detectedObjects
:param cascade: Haar classifier cascade (OpenCV 1.x API only). It can be loaded from XML or YAML file using :ocv:cfunc:`Load`. When the cascade is not needed anymore, release it using ``cvReleaseHaarClassifierCascade(&cascade)``.
:param image: Matrix of the type ``CV_8U`` containing an image where objects are detected.
......
......@@ -12,7 +12,6 @@ Restores the selected region in an image using the region neighborhood.
.. ocv:pyfunction:: cv2.inpaint(src, inpaintMask, inpaintRadius, flags[, dst]) -> dst
.. ocv:cfunction:: void cvInpaint( const CvArr* src, const CvArr* inpaint_mask, CvArr* dst, double inpaintRange, int flags )
.. ocv:pyoldfunction:: cv.Inpaint(src, mask, dst, inpaintRadius, flags) -> None
:param src: Input 8-bit 1-channel or 3-channel image.
......
......@@ -13,7 +13,6 @@ Calculates an optical flow for a sparse feature set using the iterative Lucas-Ka
.. ocv:pyfunction:: cv2.calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts[, status[, err[, winSize[, maxLevel[, criteria[, flags[, minEigThreshold]]]]]]]) -> nextPts, status, err
.. ocv:cfunction:: void cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr, CvArr* prev_pyr, CvArr* curr_pyr, const CvPoint2D32f* prev_features, CvPoint2D32f* curr_features, int count, CvSize win_size, int level, char* status, float* track_error, CvTermCriteria criteria, int flags )
.. ocv:pyoldfunction:: cv.CalcOpticalFlowPyrLK(prev, curr, prevPyr, currPyr, prevFeatures, winSize, level, criteria, flags, guesses=None) -> (currFeatures, status, track_error)
:param prevImg: first 8-bit input image or pyramid constructed by :ocv:func:`buildOpticalFlowPyramid`.
......@@ -210,7 +209,6 @@ Updates the motion history image by a moving silhouette.
.. ocv:pyfunction:: cv2.updateMotionHistory(silhouette, mhi, timestamp, duration) -> mhi
.. ocv:cfunction:: void cvUpdateMotionHistory( const CvArr* silhouette, CvArr* mhi, double timestamp, double duration )
.. ocv:pyoldfunction:: cv.UpdateMotionHistory(silhouette, mhi, timestamp, duration)-> None
:param silhouette: Silhouette mask that has non-zero pixels where the motion occurs.
......@@ -244,7 +242,6 @@ Calculates a gradient orientation of a motion history image.
.. ocv:pyfunction:: cv2.calcMotionGradient(mhi, delta1, delta2[, mask[, orientation[, apertureSize]]]) -> mask, orientation
.. ocv:cfunction:: void cvCalcMotionGradient( const CvArr* mhi, CvArr* mask, CvArr* orientation, double delta1, double delta2, int aperture_size=3 )
.. ocv:pyoldfunction:: cv.CalcMotionGradient(mhi, mask, orientation, delta1, delta2, apertureSize=3)-> None
:param mhi: Motion history single-channel floating-point image.
......@@ -284,7 +281,6 @@ Calculates a global motion orientation in a selected region.
.. ocv:pyfunction:: cv2.calcGlobalOrientation(orientation, mask, mhi, timestamp, duration) -> retval
.. ocv:cfunction:: double cvCalcGlobalOrientation( const CvArr* orientation, const CvArr* mask, const CvArr* mhi, double timestamp, double duration )
.. ocv:pyoldfunction:: cv.CalcGlobalOrientation(orientation, mask, mhi, timestamp, duration)-> float
:param orientation: Motion gradient orientation image calculated by the function :ocv:func:`calcMotionGradient` .
......@@ -314,7 +310,6 @@ Splits a motion history image into a few parts corresponding to separate indepen
.. ocv:pyfunction:: cv2.segmentMotion(mhi, timestamp, segThresh[, segmask]) -> segmask, boundingRects
.. ocv:cfunction:: CvSeq* cvSegmentMotion( const CvArr* mhi, CvArr* seg_mask, CvMemStorage* storage, double timestamp, double seg_thresh )
.. ocv:pyoldfunction:: cv.SegmentMotion(mhi, seg_mask, storage, timestamp, seg_thresh) -> boundingRects
:param mhi: Motion history image.
......@@ -342,8 +337,6 @@ Finds an object center, size, and orientation.
.. ocv:cfunction:: int cvCamShift( const CvArr* prob_image, CvRect window, CvTermCriteria criteria, CvConnectedComp* comp, CvBox2D* box=NULL )
.. ocv:pyoldfunction:: cv.CamShift(prob_image, window, criteria) -> (int, comp, box)
:param probImage: Back projection of the object histogram. See :ocv:func:`calcBackProject` .
:param window: Initial search window.
......@@ -370,7 +363,6 @@ Finds an object on a back projection image.
.. ocv:pyfunction:: cv2.meanShift(probImage, window, criteria) -> retval, window
.. ocv:cfunction:: int cvMeanShift( const CvArr* prob_image, CvRect window, CvTermCriteria criteria, CvConnectedComp* comp )
.. ocv:pyoldfunction:: cv.MeanShift(prob_image, window, criteria) -> comp
:param probImage: Back projection of the object histogram. See :ocv:func:`calcBackProject` for details.
......@@ -413,7 +405,6 @@ The constructors.
.. ocv:pyfunction:: cv2.KalmanFilter([dynamParams, measureParams[, controlParams[, type]]]) -> <KalmanFilter object>
.. ocv:cfunction:: CvKalman* cvCreateKalman( int dynam_params, int measure_params, int control_params=0 )
.. ocv:pyoldfunction:: cv.CreateKalman(dynam_params, measure_params, control_params=0) -> CvKalman
The full constructor.
......@@ -451,7 +442,6 @@ Computes a predicted state.
.. ocv:pyfunction:: cv2.KalmanFilter.predict([control]) -> retval
.. ocv:cfunction:: const CvMat* cvKalmanPredict( CvKalman* kalman, const CvMat* control=NULL)
.. ocv:pyoldfunction:: cv.KalmanPredict(kalman, control=None) -> mat
:param control: The optional input control
......@@ -466,8 +456,6 @@ Updates the predicted state from the measurement.
.. ocv:cfunction:: const CvMat* cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement )
.. ocv:pyoldfunction:: cv.KalmanCorrect(kalman, measurement) -> mat
:param measurement: The measured system parameters
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment