Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
8a148e39
Commit
8a148e39
authored
Nov 08, 2011
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
new sample for the complex detector+descriptor+matcher evaluation
parent
2e9f5c43
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
344 additions
and
0 deletions
+344
-0
detector_descriptor_matcher_evaluation.cpp
samples/cpp/detector_descriptor_matcher_evaluation.cpp
+344
-0
No files found.
samples/cpp/detector_descriptor_matcher_evaluation.cpp
0 → 100644
View file @
8a148e39
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/features2d/features2d.hpp"
#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <limits>
#include <cstdio>
#include <iostream>
#include <fstream>
using
namespace
std
;
using
namespace
cv
;
/*
The algorithm:
for each tested combination of detector+descriptor+matcher:
create detector, descriptor and matcher,
load their params if they are there, otherwise use the default ones and save them
for each dataset:
load reference image
detect keypoints in it, compute descriptors
for each transformed image:
load the image
load the transformation matrix
detect keypoints in it too, compute descriptors
find matches
transform keypoints from the first image using the ground-truth matrix
compute the number of matched keypoints, i.e. for each pair (i,j) found by a matcher compare
j-th keypoint from the second image with the transformed i-th keypoint. If they are close, +1.
so, we have:
N - number of keypoints in the first image that are also visible
(after transformation) on the second image
N1 - number of keypoints in the first image that have been matched.
n - number of the correct matches found by the matcher
n/N1 - precision
n/N - recall (?)
we store (N, n/N1, n/N) (where N is stored primarily for tuning the detector's thresholds,
in order to semi-equalize their keypoints counts)
*/
typedef
Vec3f
TVec
;
// (N, n/N1, n/N) - see above
static
void
saveloadDDM
(
const
string
&
params_filename
,
Ptr
<
FeatureDetector
>&
detector
,
Ptr
<
DescriptorExtractor
>&
descriptor
,
Ptr
<
DescriptorMatcher
>&
matcher
)
{
FileStorage
fs
(
params_filename
,
FileStorage
::
READ
);
if
(
fs
.
isOpened
()
)
{
detector
->
read
(
fs
[
"detector"
]);
descriptor
->
read
(
fs
[
"descriptor"
]);
matcher
->
read
(
fs
[
"matcher"
]);
}
else
{
fs
.
open
(
params_filename
,
FileStorage
::
WRITE
);
fs
<<
"detector"
<<
"{"
;
detector
->
write
(
fs
);
fs
<<
"}"
<<
"descriptor"
<<
"{"
;
descriptor
->
write
(
fs
);
fs
<<
"}"
<<
"matcher"
<<
"{"
;
matcher
->
write
(
fs
);
fs
<<
"}"
;
}
}
static
Mat
loadMat
(
const
string
&
fsname
)
{
FileStorage
fs
(
fsname
,
FileStorage
::
READ
);
Mat
m
;
fs
.
getFirstTopLevelNode
()
>>
m
;
return
m
;
}
static
void
transformKeypoints
(
const
vector
<
KeyPoint
>&
kp
,
vector
<
vector
<
Point2f
>
>&
contours
,
const
Mat
&
H
)
{
const
float
scale
=
256.
f
;
size_t
i
,
n
=
kp
.
size
();
contours
.
resize
(
n
);
vector
<
Point
>
temp
;
for
(
i
=
0
;
i
<
n
;
i
++
)
{
ellipse2Poly
(
Point2f
(
kp
[
i
].
pt
.
x
*
scale
,
kp
[
i
].
pt
.
y
*
scale
),
Size2f
(
kp
[
i
].
size
*
scale
,
kp
[
i
].
size
*
scale
),
0
,
0
,
360
,
12
,
temp
);
Mat
(
temp
).
convertTo
(
contours
[
i
],
CV_32F
,
1.
/
scale
);
perspectiveTransform
(
contours
[
i
],
contours
[
i
],
H
);
}
}
static
TVec
proccessMatches
(
Size
imgsize
,
const
vector
<
DMatch
>&
matches
,
const
vector
<
vector
<
Point2f
>
>&
kp1t_contours
,
const
vector
<
vector
<
Point2f
>
>&
kp_contours
,
double
overlapThreshold
)
{
const
double
visibilityThreshold
=
0.6
;
// 1. [preprocessing] find bounding rect for each element of kp1t_contours and kp_contours.
// 2. [cross-check] for each DMatch (iK, i1)
// update best_match[i1] using DMatch::distance.
// 3. [compute overlapping] for each i1 (keypoint from the first image) do:
// if i1-th keypoint is outside of image, skip it
// increment N
// if best_match[i1] is initialized, increment N1
// if kp_contours[best_match[i1]] and kp1t_contours[i1] overlap by overlapThreshold*100%,
// increment n. Use bounding rects to speedup this step
int
i
,
size1
=
(
int
)
kp1t_contours
.
size
(),
size
=
(
int
)
kp_contours
.
size
(),
msize
=
(
int
)
matches
.
size
();
vector
<
DMatch
>
best_match
(
size1
);
vector
<
Rect
>
rects1
(
size1
),
rects
(
size
);
// proprocess
for
(
i
=
0
;
i
<
size1
;
i
++
)
rects1
[
i
]
=
boundingRect
(
kp1t_contours
[
i
]);
for
(
i
=
0
;
i
<
size
;
i
++
)
rects
[
i
]
=
boundingRect
(
kp_contours
[
i
]);
// cross-check
for
(
i
=
0
;
i
<
msize
;
i
++
)
{
DMatch
m
=
matches
[
i
];
int
i1
=
m
.
trainIdx
,
iK
=
m
.
queryIdx
;
CV_Assert
(
0
<=
i1
&&
i1
<
size1
&&
0
<=
iK
&&
iK
<
size
);
if
(
best_match
[
i1
].
trainIdx
<
0
||
best_match
[
i1
].
distance
>
m
.
distance
)
best_match
[
i1
]
=
m
;
}
int
N
=
0
,
N1
=
0
,
n
=
0
;
// overlapping
for
(
i
=
0
;
i
<
size1
;
i
++
)
{
int
i1
=
i
,
iK
=
best_match
[
i
].
queryIdx
;
if
(
iK
>=
0
)
N1
++
;
Rect
r
=
rects1
[
i
]
&
Rect
(
0
,
0
,
imgsize
.
width
,
imgsize
.
height
);
if
(
r
.
area
()
<
visibilityThreshold
*
rects1
[
i
].
area
()
)
continue
;
N
++
;
if
(
iK
<
0
||
(
rects1
[
i1
]
&
rects
[
iK
]).
area
()
==
0
)
continue
;
double
n_area
=
intersectConvexConvex
(
kp1t_contours
[
i1
],
kp_contours
[
iK
],
noArray
(),
true
);
if
(
n_area
==
0
)
continue
;
double
area1
=
contourArea
(
kp1t_contours
[
i1
],
false
);
double
area
=
contourArea
(
kp_contours
[
iK
],
false
);
double
ratio
=
n_area
/
(
area1
+
area
-
n_area
);
n
+=
ratio
>=
overlapThreshold
;
}
return
TVec
((
float
)
N
,
(
float
)
n
/
std
::
max
(
N1
,
1
),
(
float
)
n
/
std
::
max
(
N
,
1
));
}
static
void
saveResults
(
const
string
&
dir
,
const
string
&
name
,
const
string
&
dsname
,
const
vector
<
TVec
>&
results
,
const
int
*
xvals
)
{
string
fname1
=
format
(
"%s%s_%s_precision.csv"
,
dir
.
c_str
(),
name
.
c_str
(),
dsname
.
c_str
());
string
fname2
=
format
(
"%s%s_%s_recall.csv"
,
dir
.
c_str
(),
name
.
c_str
(),
dsname
.
c_str
());
FILE
*
f1
=
fopen
(
fname1
.
c_str
(),
"wt"
);
FILE
*
f2
=
fopen
(
fname2
.
c_str
(),
"wt"
);
for
(
size_t
i
=
0
;
i
<
results
.
size
();
i
++
)
{
fprintf
(
f1
,
"%d, %.1f
\n
"
,
xvals
[
i
],
results
[
i
][
1
]
*
100
);
fprintf
(
f2
,
"%d, %.1f
\n
"
,
xvals
[
i
],
results
[
i
][
2
]
*
100
);
}
fclose
(
f1
);
fclose
(
f2
);
}
int
main
(
int
argc
,
char
**
argv
)
{
static
const
char
*
ddms
[]
=
{
"ORBX_BF"
,
"ORB"
,
"ORB"
,
"BruteForce-Hamming"
,
//"ORB_BF", "ORB", "ORB", "BruteForce-Hamming",
//"ORB3_BF", "ORB", "ORB", "BruteForce-Hamming(2)",
//"ORB4_BF", "ORB", "ORB", "BruteForce-Hamming(2)",
//"ORB_LSH", "ORB", "ORB", "LSH"
//"SURF_BF", "SURF", "SURF", "BruteForce",
0
};
static
const
char
*
datasets
[]
=
{
"bark"
,
"bikes"
,
"boat"
,
"graf"
,
"leuven"
,
"trees"
,
"ubc"
,
"wall"
,
0
};
static
const
int
imgXVals
[]
=
{
2
,
3
,
4
,
5
,
6
};
// if scale, blur or light changes
static
const
int
viewpointXVals
[]
=
{
20
,
30
,
40
,
50
,
60
};
// if viewpoint changes
static
const
int
jpegXVals
[]
=
{
60
,
80
,
90
,
95
,
98
};
// if jpeg compression
const
double
overlapThreshold
=
0.6
;
vector
<
vector
<
vector
<
TVec
>
>
>
results
;
// indexed as results[ddm][dataset][testcase]
string
dataset_dir
=
string
(
getenv
(
"OPENCV_TEST_DATA_PATH"
))
+
"/cv/detectors_descriptors_evaluation/images_datasets"
;
string
dir
=
argc
>
1
?
argv
[
1
]
:
"."
;
if
(
dir
[
dir
.
size
()
-
1
]
!=
'\\'
&&
dir
[
dir
.
size
()
-
1
]
!=
'/'
)
dir
+=
"/"
;
system
((
"mkdir "
+
dir
).
c_str
());
for
(
int
i
=
0
;
ddms
[
i
*
4
]
!=
0
;
i
++
)
{
const
char
*
name
=
ddms
[
i
*
4
];
const
char
*
detector_name
=
ddms
[
i
*
4
+
1
];
const
char
*
descriptor_name
=
ddms
[
i
*
4
+
2
];
const
char
*
matcher_name
=
ddms
[
i
*
4
+
3
];
string
params_filename
=
dir
+
string
(
name
)
+
"_params.yml"
;
cout
<<
"Testing "
<<
name
<<
endl
;
Ptr
<
FeatureDetector
>
detector
=
FeatureDetector
::
create
(
detector_name
);
Ptr
<
DescriptorExtractor
>
descriptor
=
DescriptorExtractor
::
create
(
descriptor_name
);
Ptr
<
DescriptorMatcher
>
matcher
=
DescriptorMatcher
::
create
(
matcher_name
);
saveloadDDM
(
params_filename
,
detector
,
descriptor
,
matcher
);
results
.
push_back
(
vector
<
vector
<
TVec
>
>
());
for
(
int
j
=
0
;
datasets
[
j
]
!=
0
;
j
++
)
{
const
char
*
dsname
=
datasets
[
j
];
cout
<<
"
\t
on "
<<
dsname
<<
" "
;
cout
.
flush
();
const
int
*
xvals
=
strcmp
(
dsname
,
"ubc"
)
==
0
?
jpegXVals
:
strcmp
(
dsname
,
"graf"
)
==
0
||
strcmp
(
dsname
,
"wall"
)
==
0
?
viewpointXVals
:
imgXVals
;
vector
<
KeyPoint
>
kp1
,
kp
;
vector
<
DMatch
>
matches
;
vector
<
vector
<
Point2f
>
>
kp1t_contours
,
kp_contours
;
Mat
desc1
,
desc
;
Mat
img1
=
imread
(
format
(
"%s/%s/img1.png"
,
dataset_dir
.
c_str
(),
dsname
),
0
);
CV_Assert
(
!
img1
.
empty
()
);
detector
->
detect
(
img1
,
kp1
);
descriptor
->
compute
(
img1
,
kp1
,
desc1
);
results
[
i
].
push_back
(
vector
<
TVec
>
());
for
(
int
k
=
2
;
;
k
++
)
{
cout
<<
"."
;
cout
.
flush
();
Mat
imgK
=
imread
(
format
(
"%s/%s/img%d.png"
,
dataset_dir
.
c_str
(),
dsname
,
k
),
0
);
if
(
imgK
.
empty
()
)
break
;
detector
->
detect
(
imgK
,
kp
);
descriptor
->
compute
(
imgK
,
kp
,
desc
);
matcher
->
match
(
desc
,
desc1
,
matches
);
Mat
H
=
loadMat
(
format
(
"%s/%s/H1to%dp.xml"
,
dataset_dir
.
c_str
(),
dsname
,
k
));
transformKeypoints
(
kp1
,
kp1t_contours
,
H
);
transformKeypoints
(
kp
,
kp_contours
,
Mat
::
eye
(
3
,
3
,
CV_64F
));
TVec
r
=
proccessMatches
(
imgK
.
size
(),
matches
,
kp1t_contours
,
kp_contours
,
overlapThreshold
);
results
[
i
][
j
].
push_back
(
r
);
}
saveResults
(
dir
,
name
,
dsname
,
results
[
i
][
j
],
xvals
);
cout
<<
endl
;
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment