Commit 891dbeab authored by Ilya Lavrenov's avatar Ilya Lavrenov

implemented OpenCL version of cv::fastNlMeansDenoising

parent d27068f7
...@@ -40,14 +40,17 @@ ...@@ -40,14 +40,17 @@
//M*/ //M*/
#include "precomp.hpp" #include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include "fast_nlmeans_denoising_invoker.hpp" #include "fast_nlmeans_denoising_invoker.hpp"
#include "fast_nlmeans_multi_denoising_invoker.hpp" #include "fast_nlmeans_multi_denoising_invoker.hpp"
#include "fast_nlmeans_denoising_opencl.hpp"
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h, void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize) int templateWindowSize, int searchWindowSize)
{ {
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()),
ocl_fastNlMeansDenoising(_src, _dst, h, templateWindowSize, searchWindowSize))
Mat src = _src.getMat(); Mat src = _src.getMat();
_dst.create(src.size(), src.type()); _dst.create(src.size(), src.type());
Mat dst = _dst.getMat(); Mat dst = _dst.getMat();
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_FAST_NLMEANS_DENOISING_OPENCL_HPP__
#define __OPENCV_FAST_NLMEANS_DENOISING_OPENCL_HPP__
#include "precomp.hpp"
#define CV_OPENCL_RUN_ASSERT
#include "opencl_kernels.hpp"
namespace cv {
enum
{
BLOCK_ROWS = 32,
BLOCK_COLS = 128,
CTA_SIZE = 128
};
static inline int getNearestPowerOf2(int value)
{
int p = 0;
while (1 << p < value)
++p;
return p;
}
static int divUp(int a, int b)
{
return (a + b - 1) / b;
}
static bool ocl_calcAlmostDist2Weight(UMat & almostDist2Weight, int searchWindowSize, int templateWindowSize, float h, int cn,
int & almostTemplateWindowSizeSqBinShift)
{
const int maxEstimateSumValue = searchWindowSize * searchWindowSize * 255;
int fixedPointMult = std::numeric_limits<int>::max() / maxEstimateSumValue;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
CV_Assert(templateWindowSize <= 46340); // sqrt(INT_MAX)
int templateWindowSizeSq = templateWindowSize * templateWindowSize;
almostTemplateWindowSizeSqBinShift = getNearestPowerOf2(templateWindowSizeSq);
float almostDist2ActualDistMultiplier = (float)(1 << almostTemplateWindowSizeSqBinShift) / templateWindowSizeSq;
const float WEIGHT_THRESHOLD = 1e-3f;
int maxDist = 255 * 255 * cn;
int almostMaxDist = (int)(maxDist / almostDist2ActualDistMultiplier + 1);
float den = 1.0f / (h * h * cn);
almostDist2Weight.create(1, almostMaxDist, CV_32SC1);
ocl::Kernel k("calcAlmostDist2Weight", ocl::photo::nlmeans_oclsrc,
"-D OP_CALC_WEIGHTS");
if (k.empty())
return false;
k.args(ocl::KernelArg::PtrWriteOnly(almostDist2Weight), almostMaxDist,
almostDist2ActualDistMultiplier, fixedPointMult, den, WEIGHT_THRESHOLD);
size_t globalsize[1] = { almostMaxDist };
return k.run(1, globalsize, NULL, false);
}
static bool ocl_fastNlMeansDenoising(InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
Size size = _src.size();
if ( !(depth == CV_8U && cn <= 4 && cn != 3) )
return false;
int templateWindowHalfWize = templateWindowSize / 2;
int searchWindowHalfSize = searchWindowSize / 2;
templateWindowSize = templateWindowHalfWize * 2 + 1;
searchWindowSize = searchWindowHalfSize * 2 + 1;
int nblocksx = divUp(size.width, BLOCK_COLS), nblocksy = divUp(size.height, BLOCK_ROWS);
int almostTemplateWindowSizeSqBinShift = -1;
char cvt[2][40];
String opts = format("-D OP_CALC_FASTNLMEANS -D TEMPLATE_SIZE=%d -D SEARCH_SIZE=%d"
" -D uchar_t=%s -D int_t=%s -D BLOCK_COLS=%d -D BLOCK_ROWS=%d"
" -D CTA_SIZE=%d -D TEMPLATE_SIZE2=%d -D SEARCH_SIZE2=%d"
" -D convert_int_t=%s -D cn=%d -D CTA_SIZE2=%d -D convert_uchar_t=%s",
templateWindowSize, searchWindowSize, ocl::typeToStr(type),
ocl::typeToStr(CV_32SC(cn)), BLOCK_COLS, BLOCK_ROWS, CTA_SIZE,
templateWindowHalfWize, searchWindowHalfSize,
ocl::convertTypeStr(CV_8U, CV_32S, cn, cvt[0]), cn,
CTA_SIZE >> 1, ocl::convertTypeStr(CV_32S, CV_8U, cn, cvt[1]));
ocl::Kernel k("fastNlMeansDenoising", ocl::photo::nlmeans_oclsrc, opts);
if (k.empty())
return false;
UMat almostDist2Weight;
if (!ocl_calcAlmostDist2Weight(almostDist2Weight, searchWindowSize, templateWindowSize, h, cn,
almostTemplateWindowSizeSqBinShift))
return false;
CV_Assert(almostTemplateWindowSizeSqBinShift >= 0);
UMat srcex;
int borderSize = searchWindowHalfSize + templateWindowHalfWize;
copyMakeBorder(_src, srcex, borderSize, borderSize, borderSize, borderSize, BORDER_DEFAULT);
_dst.create(size, type);
UMat dst = _dst.getUMat();
Size upColSumSize(size.width, searchWindowSize * searchWindowSize * nblocksy);
Size colSumSize(nblocksx * templateWindowSize, searchWindowSize * searchWindowSize * nblocksy);
UMat buffer(upColSumSize + colSumSize, CV_32SC(cn));
k.args(ocl::KernelArg::ReadOnlyNoSize(srcex), ocl::KernelArg::WriteOnly(dst),
ocl::KernelArg::PtrReadOnly(almostDist2Weight), nblocksy, nblocksx,
ocl::KernelArg::PtrReadOnly(buffer), almostTemplateWindowSizeSqBinShift);
size_t globalsize[2] = { nblocksx, nblocksy }, localsize[2] = { CTA_SIZE, 1 };
return k.run(2, globalsize, localsize, false);
}
}
#endif
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#ifdef OP_CALC_WEIGHTS
__kernel void calcAlmostDist2Weight(__global int * almostDist2Weight, int almostMaxDist,
float almostDist2ActualDistMultiplier, int fixedPointMult,
float den, float WEIGHT_THRESHOLD)
{
int almostDist = get_global_id(0);
if (almostDist < almostMaxDist)
{
float dist = almostDist * almostDist2ActualDistMultiplier;
int weight = convert_int_sat_rte(fixedPointMult * exp(-dist * den));
if (weight < WEIGHT_THRESHOLD * fixedPointMult)
weight = 0;
almostDist2Weight[almostDist] = weight;
}
}
#elif defined OP_CALC_FASTNLMEANS
#define SEARCH_SIZE_SQ (SEARCH_SIZE * SEARCH_SIZE)
inline int_t calcDist(uchar_t a, uchar_t b)
{
int_t diff = convert_int_t(a) -convert_int_t(b);
return diff * diff;
}
inline void calcFirstElementInRow(__global const uchar * src, int src_step, int src_offset,
__local int_t * dists, int y, int x, int id,
__global int_t * col_dists, __global int_t * up_col_dists)
{
int sx = x - SEARCH_SIZE2, sy = y - SEARCH_SIZE2;
for (int i = 0, size = SEARCH_SIZE_SQ; i < size; i += CTA_SIZE)
{
int_t dist = (int_t)(0), value;
sx += i % SEARCH_SIZE;
sy += i / SEARCH_SIZE;
__global const uchar_t * src_template = (__global const uchar_t *)(src + mad24(sy, src_step, mad24(cn, x, src_offset)));
__global const uchar_t * src_current = (__global const uchar_t *)(src + mad24(y, src_step, mad24(cn, x, src_offset)));
__global int_t * col_dists_current = col_dists + i * TEMPLATE_SIZE;
#pragma unroll
for (int j = 0; j < TEMPLATE_SIZE; ++j)
col_dists_current[j] = (int_t)(0);
#pragma unroll
for (int ty = -TEMPLATE_SIZE2; ty <= TEMPLATE_SIZE2; ++ty)
{
#pragma unroll
for (int tx = -TEMPLATE_SIZE2; tx <= TEMPLATE_SIZE2; ++tx)
{
value = calcDist(src_template[tx], src_current[tx]);
col_dists_current[tx + TEMPLATE_SIZE2] += value;
dist += value;
}
src_current += src_step;
src_template += src_step;
}
dists[i] = dist;
up_col_dists[i] = col_dists[TEMPLATE_SIZE - 1];
}
}
inline void calcElementInFirstRow(__global const uchar * src, int src_step, int src_offset,
__local int_t * dists, int y, int x, int id, int first,
__global int_t * col_dists, __global int_t * up_col_dists)
{
x += TEMPLATE_SIZE2;
int sx = x - SEARCH_SIZE2, sy = y - SEARCH_SIZE2;
for (int i = 0, size = SEARCH_SIZE_SQ; i < size; i += CTA_SIZE)
{
sx += i % SEARCH_SIZE;
sy += i / SEARCH_SIZE;
__global const uchar_t * src_current = (__global const uchar_t *)(src + mad24(y, src_step, mad24(cn, x, src_offset)));
__global const uchar_t * src_template = (__global const uchar_t *)(src + mad24(sy, src_step, mad24(cn, x, src_offset)));
__global int_t * col_dists_current = col_dists + TEMPLATE_SIZE * i;
int_t value;
dists[id] -= col_dists_current[first];
col_dists_current[first] = (int_t)(0);
#pragma unroll
for (int ty = -TEMPLATE_SIZE2; ty <= TEMPLATE_SIZE2; ++ty)
{
value = calcDist(src_current[0], src_template[0]);
col_dists_current[first] += value;
src_current += src_step;
src_template += src_step;
}
dists[id] += col_dists_current[first];
up_col_dists[id] = col_dists_current[first];
}
}
inline void calcElement(__global const uchar * src, int src_step, int src_offset,
__local int_t * dists, int y, int x, int id, int first,
__global int_t * col_dists, __global int_t * up_col_dists)
{
int sx_up = x + TEMPLATE_SIZE2, sy_up = y - TEMPLATE_SIZE2 - 1;
int sx_down = x + TEMPLATE_SIZE2, sy_down = y + TEMPLATE_SIZE2;
uchar_t up_value = *(__global const uchar_t *)(src + mad24(sy_up, src_step, mad24(cn, sx_up, src_offset)));
uchar_t down_value = *(__global const uchar_t *)(src + mad24(sy_down, src_step, mad24(cn, sx_down, src_offset)));
for (int i = 0, size = SEARCH_SIZE_SQ; i < size; i += CTA_SIZE)
{
int wx = i % SEARCH_SIZE;
int wy = i / SEARCH_SIZE;
sx_up += wx, sx_down += wx;
sy_up += wy, sy_down += wy;
uchar_t up_value_t = *(__global const uchar_t *)(src + mad24(sy_up, src_step, mad24(cn, sx_up, src_offset)));
uchar_t down_value_t = *(__global const uchar_t *)(src + mad24(sy_down, src_step, mad24(cn, sx_down, src_offset)));
__global int_t * col_dists_current = col_dists + i * TEMPLATE_SIZE;
__global int_t * up_col_dists_current = up_col_dists + i;
dists[i] -= col_dists_current[first];
col_dists_current[first] = up_col_dists_current[id] + calcDist(down_value, down_value_t) - calcDist(up_value, up_value_t);
dists[i] += col_dists_current[first];
up_col_dists_current[id] = col_dists_current[first];
}
}
inline void convolveWindow(__global const uchar * src, int src_step, int src_offset,
__local int * dists, __global const int * almostDist2Weight,
__global uchar * dst, int dst_step, int dst_offset,
int y, int x, int id, __local int * weights_local,
__local int * weighted_sum_local, int almostTemplateWindowSizeSqBinShift)
{
int sx = x - SEARCH_SIZE2, sy = y - SEARCH_SIZE2, weights = 0;
int_t weighted_sum = (int_t)(0);
for (int i = 0, size = SEARCH_SIZE_SQ; i < size; i += id)
{
int src_index = mad24(sy + i / SEARCH_SIZE, src_step, (i % SEARCH_SIZE + sx) * cn + src_offset);
__global const uchar_t * src_search = (__global const uchar_t *)(src + src_index);
int almostAvgDist = dists[i] >> almostTemplateWindowSizeSqBinShift;
int weight = almostDist2Weight[almostAvgDist];
weights += weight;
weighted_sum += (int_t)(weight) * convert_int_t(src_search[0]);
}
if (id >= CTA_SIZE2)
{
weights_local[id - CTA_SIZE2] = weights;
weighted_sum_local[id - CTA_SIZE2] = weighted_sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (id < CTA_SIZE2)
{
weights_local[id] += weights;
weighted_sum_local[id] += weighted_sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
for (int lsize = CTA_SIZE2 >> 1; lsize >= 4; lsize >>= 1)
{
if (id < lsize)
{
int id2 = lsize + id;
weights_local[id] = weights + weights_local[id2];
weighted_sum_local[id] = weighted_sum + weighted_sum_local[id2];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (id == 0)
{
int dst_index = mad24(y, dst_step, dst_offset + x * cn);
int_t weights_local_0 = (int_t)(weights_local[0] + weights_local[1] + weights_local[2] + weights_local[3]);
int_t weighted_sum_local_0 = weighted_sum_local[0] + weighted_sum_local[1] + weighted_sum_local[2] + weighted_sum_local[3];
*(__global uchar_t *)(dst + dst_index) = convert_uchar_t((weighted_sum_local_0 + weights_local_0 >> 1) / weights_local_0);
}
}
__kernel void fastNlMeansDenoising(__global const uchar * src, int src_step, int src_offset,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global const int * almostDist2Weight, int nblocksy, int nblocksx,
__global uchar * buffer, int almostTemplateWindowSizeSqBinShift)
{
int block_x = get_global_id(0);
int block_y = get_global_id(1);
int id = get_local_id(0), first;
__local int_t dists[SEARCH_SIZE_SQ], weighted_sum[CTA_SIZE2];
__local int weights[CTA_SIZE2];
int block_data_start = mad24(block_y, nblocksx, block_x) * SEARCH_SIZE_SQ * (TEMPLATE_SIZE + BLOCK_COLS);
__global int_t * col_dists = (__global int_t *)(buffer + block_data_start * sizeof(int_t));
__global int_t * up_col_dists = (__global int_t *)(buffer + sizeof(int_t) * (block_data_start + SEARCH_SIZE_SQ * TEMPLATE_SIZE));
if (block_x < nblocksx && block_y < nblocksy)
{
int x0 = block_x * BLOCK_COLS, x1 = min(x0 + BLOCK_COLS, dst_cols);
int y0 = block_y * BLOCK_ROWS, y1 = min(y0 + BLOCK_ROWS, dst_rows);
for (int y = y0; y < y1; ++y)
for (int x = x0; x < x1; ++x)
{
if (x == x0)
{
calcFirstElementInRow(src, src_step, src_offset, dists, y, x, id, col_dists, up_col_dists);
first = 0;
}
else
{
if (y == y0)
calcElementInFirstRow(src, src_step, src_offset, dists, y, x, id, first, col_dists, up_col_dists);
else
{
calcElement(src, src_step, src_offset, dists, y, x, id, first, col_dists, up_col_dists);
first = (first + 1) % TEMPLATE_SIZE;
}
convolveWindow(src, src_step, src_offset, dists, almostDist2Weight, dst, dst_step, dst_offset,
y, x, id, weights, weighted_sum, almostTemplateWindowSizeSqBinShift);
}
}
}
}
#endif
...@@ -46,6 +46,8 @@ ...@@ -46,6 +46,8 @@
#include "opencv2/core/private.hpp" #include "opencv2/core/private.hpp"
#include "opencv2/core/utility.hpp" #include "opencv2/core/utility.hpp"
#include "opencv2/photo.hpp" #include "opencv2/photo.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/imgproc.hpp"
#ifdef HAVE_TEGRA_OPTIMIZATION #ifdef HAVE_TEGRA_OPTIMIZATION
#include "opencv2/photo/photo_tegra.hpp" #include "opencv2/photo/photo_tegra.hpp"
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, bool)
{
int cn, templateWindowSize, searchWindowSize;
float h;
bool use_roi;
TEST_DECLARE_INPUT_PARAMETER(src)
TEST_DECLARE_OUTPUT_PARAMETER(dst)
virtual void SetUp()
{
cn = GET_PARAM(0);
use_roi = GET_PARAM(1);
templateWindowSize = 7;
searchWindowSize = 21;
h = 3.0f;
}
virtual void generateTestData()
{
const int type = CV_8UC(cn);
Size roiSize = randomSize(1, MAX_VALUE);
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, roiSize, srcBorder, type, 0, 255);
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(dst, dst_roi, roiSize, dstBorder, type, 0, 255);
UMAT_UPLOAD_INPUT_PARAMETER(src)
UMAT_UPLOAD_OUTPUT_PARAMETER(dst)
}
};
typedef FastNlMeansDenoisingTestBase FastNlMeansDenoising;
OCL_TEST_P(FastNlMeansDenoising, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::fastNlMeansDenoising(src_roi, dst_roi, h, templateWindowSize, searchWindowSize));
OCL_ON(cv::fastNlMeansDenoising(usrc_roi, udst_roi, h, templateWindowSize, searchWindowSize));
OCL_EXPECT_MATS_NEAR(dst, 1)
}
}
OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoising, Combine(Values((Channels)1), Bool()));
} } // namespace cvtest::ocl
#endif // HAVE_OPENCL
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment