Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
891dbeab
Commit
891dbeab
authored
Feb 16, 2014
by
Ilya Lavrenov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
implemented OpenCL version of cv::fastNlMeansDenoising
parent
d27068f7
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
489 additions
and
2 deletions
+489
-2
denoising.cpp
modules/photo/src/denoising.cpp
+5
-2
fast_nlmeans_denoising_opencl.hpp
modules/photo/src/fast_nlmeans_denoising_opencl.hpp
+128
-0
nlmeans.cl
modules/photo/src/opencl/nlmeans.cl
+249
-0
precomp.hpp
modules/photo/src/precomp.hpp
+2
-0
test_denoising.cpp
modules/photo/test/ocl/test_denoising.cpp
+105
-0
No files found.
modules/photo/src/denoising.cpp
View file @
891dbeab
...
...
@@ -40,14 +40,17 @@
//M*/
#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include "fast_nlmeans_denoising_invoker.hpp"
#include "fast_nlmeans_multi_denoising_invoker.hpp"
#include "fast_nlmeans_denoising_opencl.hpp"
void
cv
::
fastNlMeansDenoising
(
InputArray
_src
,
OutputArray
_dst
,
float
h
,
int
templateWindowSize
,
int
searchWindowSize
)
{
CV_OCL_RUN
(
_src
.
dims
()
<=
2
&&
(
_src
.
isUMat
()
||
_dst
.
isUMat
()),
ocl_fastNlMeansDenoising
(
_src
,
_dst
,
h
,
templateWindowSize
,
searchWindowSize
))
Mat
src
=
_src
.
getMat
();
_dst
.
create
(
src
.
size
(),
src
.
type
());
Mat
dst
=
_dst
.
getMat
();
...
...
modules/photo/src/fast_nlmeans_denoising_opencl.hpp
0 → 100644
View file @
891dbeab
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_FAST_NLMEANS_DENOISING_OPENCL_HPP__
#define __OPENCV_FAST_NLMEANS_DENOISING_OPENCL_HPP__
#include "precomp.hpp"
#define CV_OPENCL_RUN_ASSERT
#include "opencl_kernels.hpp"
namespace
cv
{
enum
{
BLOCK_ROWS
=
32
,
BLOCK_COLS
=
128
,
CTA_SIZE
=
128
};
static
inline
int
getNearestPowerOf2
(
int
value
)
{
int
p
=
0
;
while
(
1
<<
p
<
value
)
++
p
;
return
p
;
}
static
int
divUp
(
int
a
,
int
b
)
{
return
(
a
+
b
-
1
)
/
b
;
}
static
bool
ocl_calcAlmostDist2Weight
(
UMat
&
almostDist2Weight
,
int
searchWindowSize
,
int
templateWindowSize
,
float
h
,
int
cn
,
int
&
almostTemplateWindowSizeSqBinShift
)
{
const
int
maxEstimateSumValue
=
searchWindowSize
*
searchWindowSize
*
255
;
int
fixedPointMult
=
std
::
numeric_limits
<
int
>::
max
()
/
maxEstimateSumValue
;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
CV_Assert
(
templateWindowSize
<=
46340
);
// sqrt(INT_MAX)
int
templateWindowSizeSq
=
templateWindowSize
*
templateWindowSize
;
almostTemplateWindowSizeSqBinShift
=
getNearestPowerOf2
(
templateWindowSizeSq
);
float
almostDist2ActualDistMultiplier
=
(
float
)(
1
<<
almostTemplateWindowSizeSqBinShift
)
/
templateWindowSizeSq
;
const
float
WEIGHT_THRESHOLD
=
1e-3
f
;
int
maxDist
=
255
*
255
*
cn
;
int
almostMaxDist
=
(
int
)(
maxDist
/
almostDist2ActualDistMultiplier
+
1
);
float
den
=
1.0
f
/
(
h
*
h
*
cn
);
almostDist2Weight
.
create
(
1
,
almostMaxDist
,
CV_32SC1
);
ocl
::
Kernel
k
(
"calcAlmostDist2Weight"
,
ocl
::
photo
::
nlmeans_oclsrc
,
"-D OP_CALC_WEIGHTS"
);
if
(
k
.
empty
())
return
false
;
k
.
args
(
ocl
::
KernelArg
::
PtrWriteOnly
(
almostDist2Weight
),
almostMaxDist
,
almostDist2ActualDistMultiplier
,
fixedPointMult
,
den
,
WEIGHT_THRESHOLD
);
size_t
globalsize
[
1
]
=
{
almostMaxDist
};
return
k
.
run
(
1
,
globalsize
,
NULL
,
false
);
}
static
bool
ocl_fastNlMeansDenoising
(
InputArray
_src
,
OutputArray
_dst
,
float
h
,
int
templateWindowSize
,
int
searchWindowSize
)
{
int
type
=
_src
.
type
(),
depth
=
CV_MAT_DEPTH
(
type
),
cn
=
CV_MAT_CN
(
type
);
Size
size
=
_src
.
size
();
if
(
!
(
depth
==
CV_8U
&&
cn
<=
4
&&
cn
!=
3
)
)
return
false
;
int
templateWindowHalfWize
=
templateWindowSize
/
2
;
int
searchWindowHalfSize
=
searchWindowSize
/
2
;
templateWindowSize
=
templateWindowHalfWize
*
2
+
1
;
searchWindowSize
=
searchWindowHalfSize
*
2
+
1
;
int
nblocksx
=
divUp
(
size
.
width
,
BLOCK_COLS
),
nblocksy
=
divUp
(
size
.
height
,
BLOCK_ROWS
);
int
almostTemplateWindowSizeSqBinShift
=
-
1
;
char
cvt
[
2
][
40
];
String
opts
=
format
(
"-D OP_CALC_FASTNLMEANS -D TEMPLATE_SIZE=%d -D SEARCH_SIZE=%d"
" -D uchar_t=%s -D int_t=%s -D BLOCK_COLS=%d -D BLOCK_ROWS=%d"
" -D CTA_SIZE=%d -D TEMPLATE_SIZE2=%d -D SEARCH_SIZE2=%d"
" -D convert_int_t=%s -D cn=%d -D CTA_SIZE2=%d -D convert_uchar_t=%s"
,
templateWindowSize
,
searchWindowSize
,
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
CV_32SC
(
cn
)),
BLOCK_COLS
,
BLOCK_ROWS
,
CTA_SIZE
,
templateWindowHalfWize
,
searchWindowHalfSize
,
ocl
::
convertTypeStr
(
CV_8U
,
CV_32S
,
cn
,
cvt
[
0
]),
cn
,
CTA_SIZE
>>
1
,
ocl
::
convertTypeStr
(
CV_32S
,
CV_8U
,
cn
,
cvt
[
1
]));
ocl
::
Kernel
k
(
"fastNlMeansDenoising"
,
ocl
::
photo
::
nlmeans_oclsrc
,
opts
);
if
(
k
.
empty
())
return
false
;
UMat
almostDist2Weight
;
if
(
!
ocl_calcAlmostDist2Weight
(
almostDist2Weight
,
searchWindowSize
,
templateWindowSize
,
h
,
cn
,
almostTemplateWindowSizeSqBinShift
))
return
false
;
CV_Assert
(
almostTemplateWindowSizeSqBinShift
>=
0
);
UMat
srcex
;
int
borderSize
=
searchWindowHalfSize
+
templateWindowHalfWize
;
copyMakeBorder
(
_src
,
srcex
,
borderSize
,
borderSize
,
borderSize
,
borderSize
,
BORDER_DEFAULT
);
_dst
.
create
(
size
,
type
);
UMat
dst
=
_dst
.
getUMat
();
Size
upColSumSize
(
size
.
width
,
searchWindowSize
*
searchWindowSize
*
nblocksy
);
Size
colSumSize
(
nblocksx
*
templateWindowSize
,
searchWindowSize
*
searchWindowSize
*
nblocksy
);
UMat
buffer
(
upColSumSize
+
colSumSize
,
CV_32SC
(
cn
));
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
srcex
),
ocl
::
KernelArg
::
WriteOnly
(
dst
),
ocl
::
KernelArg
::
PtrReadOnly
(
almostDist2Weight
),
nblocksy
,
nblocksx
,
ocl
::
KernelArg
::
PtrReadOnly
(
buffer
),
almostTemplateWindowSizeSqBinShift
);
size_t
globalsize
[
2
]
=
{
nblocksx
,
nblocksy
},
localsize
[
2
]
=
{
CTA_SIZE
,
1
};
return
k
.
run
(
2
,
globalsize
,
localsize
,
false
);
}
}
#endif
modules/photo/src/opencl/nlmeans.cl
0 → 100644
View file @
891dbeab
//
This
file
is
part
of
OpenCV
project.
//
It
is
subject
to
the
license
terms
in
the
LICENSE
file
found
in
the
top-level
directory
//
of
this
distribution
and
at
http://opencv.org/license.html.
//
Copyright
(
C
)
2014
,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
#
ifdef
OP_CALC_WEIGHTS
__kernel
void
calcAlmostDist2Weight
(
__global
int
*
almostDist2Weight,
int
almostMaxDist,
float
almostDist2ActualDistMultiplier,
int
fixedPointMult,
float
den,
float
WEIGHT_THRESHOLD
)
{
int
almostDist
=
get_global_id
(
0
)
;
if
(
almostDist
<
almostMaxDist
)
{
float
dist
=
almostDist
*
almostDist2ActualDistMultiplier
;
int
weight
=
convert_int_sat_rte
(
fixedPointMult
*
exp
(
-dist
*
den
))
;
if
(
weight
<
WEIGHT_THRESHOLD
*
fixedPointMult
)
weight
=
0
;
almostDist2Weight[almostDist]
=
weight
;
}
}
#
elif
defined
OP_CALC_FASTNLMEANS
#
define
SEARCH_SIZE_SQ
(
SEARCH_SIZE
*
SEARCH_SIZE
)
inline
int_t
calcDist
(
uchar_t
a,
uchar_t
b
)
{
int_t
diff
=
convert_int_t
(
a
)
-convert_int_t
(
b
)
;
return
diff
*
diff
;
}
inline
void
calcFirstElementInRow
(
__global
const
uchar
*
src,
int
src_step,
int
src_offset,
__local
int_t
*
dists,
int
y,
int
x,
int
id,
__global
int_t
*
col_dists,
__global
int_t
*
up_col_dists
)
{
int
sx
=
x
-
SEARCH_SIZE2,
sy
=
y
-
SEARCH_SIZE2
;
for
(
int
i
=
0
,
size
=
SEARCH_SIZE_SQ
; i < size; i += CTA_SIZE)
{
int_t
dist
=
(
int_t
)(
0
)
,
value
;
sx
+=
i
%
SEARCH_SIZE
;
sy
+=
i
/
SEARCH_SIZE
;
__global
const
uchar_t
*
src_template
=
(
__global
const
uchar_t
*
)(
src
+
mad24
(
sy,
src_step,
mad24
(
cn,
x,
src_offset
)))
;
__global
const
uchar_t
*
src_current
=
(
__global
const
uchar_t
*
)(
src
+
mad24
(
y,
src_step,
mad24
(
cn,
x,
src_offset
)))
;
__global
int_t
*
col_dists_current
=
col_dists
+
i
*
TEMPLATE_SIZE
;
#
pragma
unroll
for
(
int
j
=
0
; j < TEMPLATE_SIZE; ++j)
col_dists_current[j]
=
(
int_t
)(
0
)
;
#
pragma
unroll
for
(
int
ty
=
-TEMPLATE_SIZE2
; ty <= TEMPLATE_SIZE2; ++ty)
{
#
pragma
unroll
for
(
int
tx
=
-TEMPLATE_SIZE2
; tx <= TEMPLATE_SIZE2; ++tx)
{
value
=
calcDist
(
src_template[tx],
src_current[tx]
)
;
col_dists_current[tx
+
TEMPLATE_SIZE2]
+=
value
;
dist
+=
value
;
}
src_current
+=
src_step
;
src_template
+=
src_step
;
}
dists[i]
=
dist
;
up_col_dists[i]
=
col_dists[TEMPLATE_SIZE
-
1]
;
}
}
inline
void
calcElementInFirstRow
(
__global
const
uchar
*
src,
int
src_step,
int
src_offset,
__local
int_t
*
dists,
int
y,
int
x,
int
id,
int
first,
__global
int_t
*
col_dists,
__global
int_t
*
up_col_dists
)
{
x
+=
TEMPLATE_SIZE2
;
int
sx
=
x
-
SEARCH_SIZE2,
sy
=
y
-
SEARCH_SIZE2
;
for
(
int
i
=
0
,
size
=
SEARCH_SIZE_SQ
; i < size; i += CTA_SIZE)
{
sx
+=
i
%
SEARCH_SIZE
;
sy
+=
i
/
SEARCH_SIZE
;
__global
const
uchar_t
*
src_current
=
(
__global
const
uchar_t
*
)(
src
+
mad24
(
y,
src_step,
mad24
(
cn,
x,
src_offset
)))
;
__global
const
uchar_t
*
src_template
=
(
__global
const
uchar_t
*
)(
src
+
mad24
(
sy,
src_step,
mad24
(
cn,
x,
src_offset
)))
;
__global
int_t
*
col_dists_current
=
col_dists
+
TEMPLATE_SIZE
*
i
;
int_t
value
;
dists[id]
-=
col_dists_current[first]
;
col_dists_current[first]
=
(
int_t
)(
0
)
;
#
pragma
unroll
for
(
int
ty
=
-TEMPLATE_SIZE2
; ty <= TEMPLATE_SIZE2; ++ty)
{
value
=
calcDist
(
src_current[0],
src_template[0]
)
;
col_dists_current[first]
+=
value
;
src_current
+=
src_step
;
src_template
+=
src_step
;
}
dists[id]
+=
col_dists_current[first]
;
up_col_dists[id]
=
col_dists_current[first]
;
}
}
inline
void
calcElement
(
__global
const
uchar
*
src,
int
src_step,
int
src_offset,
__local
int_t
*
dists,
int
y,
int
x,
int
id,
int
first,
__global
int_t
*
col_dists,
__global
int_t
*
up_col_dists
)
{
int
sx_up
=
x
+
TEMPLATE_SIZE2,
sy_up
=
y
-
TEMPLATE_SIZE2
-
1
;
int
sx_down
=
x
+
TEMPLATE_SIZE2,
sy_down
=
y
+
TEMPLATE_SIZE2
;
uchar_t
up_value
=
*
(
__global
const
uchar_t
*
)(
src
+
mad24
(
sy_up,
src_step,
mad24
(
cn,
sx_up,
src_offset
)))
;
uchar_t
down_value
=
*
(
__global
const
uchar_t
*
)(
src
+
mad24
(
sy_down,
src_step,
mad24
(
cn,
sx_down,
src_offset
)))
;
for
(
int
i
=
0
,
size
=
SEARCH_SIZE_SQ
; i < size; i += CTA_SIZE)
{
int
wx
=
i
%
SEARCH_SIZE
;
int
wy
=
i
/
SEARCH_SIZE
;
sx_up
+=
wx,
sx_down
+=
wx
;
sy_up
+=
wy,
sy_down
+=
wy
;
uchar_t
up_value_t
=
*
(
__global
const
uchar_t
*
)(
src
+
mad24
(
sy_up,
src_step,
mad24
(
cn,
sx_up,
src_offset
)))
;
uchar_t
down_value_t
=
*
(
__global
const
uchar_t
*
)(
src
+
mad24
(
sy_down,
src_step,
mad24
(
cn,
sx_down,
src_offset
)))
;
__global
int_t
*
col_dists_current
=
col_dists
+
i
*
TEMPLATE_SIZE
;
__global
int_t
*
up_col_dists_current
=
up_col_dists
+
i
;
dists[i]
-=
col_dists_current[first]
;
col_dists_current[first]
=
up_col_dists_current[id]
+
calcDist
(
down_value,
down_value_t
)
-
calcDist
(
up_value,
up_value_t
)
;
dists[i]
+=
col_dists_current[first]
;
up_col_dists_current[id]
=
col_dists_current[first]
;
}
}
inline
void
convolveWindow
(
__global
const
uchar
*
src,
int
src_step,
int
src_offset,
__local
int
*
dists,
__global
const
int
*
almostDist2Weight,
__global
uchar
*
dst,
int
dst_step,
int
dst_offset,
int
y,
int
x,
int
id,
__local
int
*
weights_local,
__local
int
*
weighted_sum_local,
int
almostTemplateWindowSizeSqBinShift
)
{
int
sx
=
x
-
SEARCH_SIZE2,
sy
=
y
-
SEARCH_SIZE2,
weights
=
0
;
int_t
weighted_sum
=
(
int_t
)(
0
)
;
for
(
int
i
=
0
,
size
=
SEARCH_SIZE_SQ
; i < size; i += id)
{
int
src_index
=
mad24
(
sy
+
i
/
SEARCH_SIZE,
src_step,
(
i
%
SEARCH_SIZE
+
sx
)
*
cn
+
src_offset
)
;
__global
const
uchar_t
*
src_search
=
(
__global
const
uchar_t
*
)(
src
+
src_index
)
;
int
almostAvgDist
=
dists[i]
>>
almostTemplateWindowSizeSqBinShift
;
int
weight
=
almostDist2Weight[almostAvgDist]
;
weights
+=
weight
;
weighted_sum
+=
(
int_t
)(
weight
)
*
convert_int_t
(
src_search[0]
)
;
}
if
(
id
>=
CTA_SIZE2
)
{
weights_local[id
-
CTA_SIZE2]
=
weights
;
weighted_sum_local[id
-
CTA_SIZE2]
=
weighted_sum
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
id
<
CTA_SIZE2
)
{
weights_local[id]
+=
weights
;
weighted_sum_local[id]
+=
weighted_sum
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
for
(
int
lsize
=
CTA_SIZE2
>>
1
; lsize >= 4; lsize >>= 1)
{
if
(
id
<
lsize
)
{
int
id2
=
lsize
+
id
;
weights_local[id]
=
weights
+
weights_local[id2]
;
weighted_sum_local[id]
=
weighted_sum
+
weighted_sum_local[id2]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
if
(
id
==
0
)
{
int
dst_index
=
mad24
(
y,
dst_step,
dst_offset
+
x
*
cn
)
;
int_t
weights_local_0
=
(
int_t
)(
weights_local[0]
+
weights_local[1]
+
weights_local[2]
+
weights_local[3]
)
;
int_t
weighted_sum_local_0
=
weighted_sum_local[0]
+
weighted_sum_local[1]
+
weighted_sum_local[2]
+
weighted_sum_local[3]
;
*
(
__global
uchar_t
*
)(
dst
+
dst_index
)
=
convert_uchar_t
((
weighted_sum_local_0
+
weights_local_0
>>
1
)
/
weights_local_0
)
;
}
}
__kernel
void
fastNlMeansDenoising
(
__global
const
uchar
*
src,
int
src_step,
int
src_offset,
__global
uchar
*
dst,
int
dst_step,
int
dst_offset,
int
dst_rows,
int
dst_cols,
__global
const
int
*
almostDist2Weight,
int
nblocksy,
int
nblocksx,
__global
uchar
*
buffer,
int
almostTemplateWindowSizeSqBinShift
)
{
int
block_x
=
get_global_id
(
0
)
;
int
block_y
=
get_global_id
(
1
)
;
int
id
=
get_local_id
(
0
)
,
first
;
__local
int_t
dists[SEARCH_SIZE_SQ],
weighted_sum[CTA_SIZE2]
;
__local
int
weights[CTA_SIZE2]
;
int
block_data_start
=
mad24
(
block_y,
nblocksx,
block_x
)
*
SEARCH_SIZE_SQ
*
(
TEMPLATE_SIZE
+
BLOCK_COLS
)
;
__global
int_t
*
col_dists
=
(
__global
int_t
*
)(
buffer
+
block_data_start
*
sizeof
(
int_t
))
;
__global
int_t
*
up_col_dists
=
(
__global
int_t
*
)(
buffer
+
sizeof
(
int_t
)
*
(
block_data_start
+
SEARCH_SIZE_SQ
*
TEMPLATE_SIZE
))
;
if
(
block_x
<
nblocksx
&&
block_y
<
nblocksy
)
{
int
x0
=
block_x
*
BLOCK_COLS,
x1
=
min
(
x0
+
BLOCK_COLS,
dst_cols
)
;
int
y0
=
block_y
*
BLOCK_ROWS,
y1
=
min
(
y0
+
BLOCK_ROWS,
dst_rows
)
;
for
(
int
y
=
y0
; y < y1; ++y)
for
(
int
x
=
x0
; x < x1; ++x)
{
if
(
x
==
x0
)
{
calcFirstElementInRow
(
src,
src_step,
src_offset,
dists,
y,
x,
id,
col_dists,
up_col_dists
)
;
first
=
0
;
}
else
{
if
(
y
==
y0
)
calcElementInFirstRow
(
src,
src_step,
src_offset,
dists,
y,
x,
id,
first,
col_dists,
up_col_dists
)
;
else
{
calcElement
(
src,
src_step,
src_offset,
dists,
y,
x,
id,
first,
col_dists,
up_col_dists
)
;
first
=
(
first
+
1
)
%
TEMPLATE_SIZE
;
}
convolveWindow
(
src,
src_step,
src_offset,
dists,
almostDist2Weight,
dst,
dst_step,
dst_offset,
y,
x,
id,
weights,
weighted_sum,
almostTemplateWindowSizeSqBinShift
)
;
}
}
}
}
#
endif
modules/photo/src/precomp.hpp
View file @
891dbeab
...
...
@@ -46,6 +46,8 @@
#include "opencv2/core/private.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/imgproc.hpp"
#ifdef HAVE_TEGRA_OPTIMIZATION
#include "opencv2/photo/photo_tegra.hpp"
...
...
modules/photo/test/ocl/test_denoising.cpp
0 → 100644
View file @
891dbeab
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace
cvtest
{
namespace
ocl
{
PARAM_TEST_CASE
(
FastNlMeansDenoisingTestBase
,
Channels
,
bool
)
{
int
cn
,
templateWindowSize
,
searchWindowSize
;
float
h
;
bool
use_roi
;
TEST_DECLARE_INPUT_PARAMETER
(
src
)
TEST_DECLARE_OUTPUT_PARAMETER
(
dst
)
virtual
void
SetUp
()
{
cn
=
GET_PARAM
(
0
);
use_roi
=
GET_PARAM
(
1
);
templateWindowSize
=
7
;
searchWindowSize
=
21
;
h
=
3.0
f
;
}
virtual
void
generateTestData
()
{
const
int
type
=
CV_8UC
(
cn
);
Size
roiSize
=
randomSize
(
1
,
MAX_VALUE
);
Border
srcBorder
=
randomBorder
(
0
,
use_roi
?
MAX_VALUE
:
0
);
randomSubMat
(
src
,
src_roi
,
roiSize
,
srcBorder
,
type
,
0
,
255
);
Border
dstBorder
=
randomBorder
(
0
,
use_roi
?
MAX_VALUE
:
0
);
randomSubMat
(
dst
,
dst_roi
,
roiSize
,
dstBorder
,
type
,
0
,
255
);
UMAT_UPLOAD_INPUT_PARAMETER
(
src
)
UMAT_UPLOAD_OUTPUT_PARAMETER
(
dst
)
}
};
typedef
FastNlMeansDenoisingTestBase
FastNlMeansDenoising
;
OCL_TEST_P
(
FastNlMeansDenoising
,
Mat
)
{
for
(
int
j
=
0
;
j
<
test_loop_times
;
j
++
)
{
generateTestData
();
OCL_OFF
(
cv
::
fastNlMeansDenoising
(
src_roi
,
dst_roi
,
h
,
templateWindowSize
,
searchWindowSize
));
OCL_ON
(
cv
::
fastNlMeansDenoising
(
usrc_roi
,
udst_roi
,
h
,
templateWindowSize
,
searchWindowSize
));
OCL_EXPECT_MATS_NEAR
(
dst
,
1
)
}
}
OCL_INSTANTIATE_TEST_CASE_P
(
Photo
,
FastNlMeansDenoising
,
Combine
(
Values
((
Channels
)
1
),
Bool
()));
}
}
// namespace cvtest::ocl
#endif // HAVE_OPENCL
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment