Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
88e67545
Commit
88e67545
authored
May 06, 2013
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
split mog sources
parent
4b234fa0
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
611 additions
and
460 deletions
+611
-460
mog.cu
modules/gpubgsegm/src/cuda/mog.cu
+0
-339
mog2.cu
modules/gpubgsegm/src/cuda/mog2.cu
+438
-0
mog.cpp
modules/gpubgsegm/src/mog.cpp
+0
-121
mog2.cpp
modules/gpubgsegm/src/mog2.cpp
+173
-0
No files found.
modules/gpubgsegm/src/cuda/mog.cu
View file @
88e67545
...
...
@@ -111,14 +111,6 @@ namespace cv { namespace gpu { namespace cudev
0.0f);
}
template <class Ptr2D>
__device__ __forceinline__ void swap(Ptr2D& ptr, int x, int y, int k, int rows)
{
typename Ptr2D::elem_type val = ptr(k * rows + y, x);
ptr(k * rows + y, x) = ptr((k + 1) * rows + y, x);
ptr((k + 1) * rows + y, x) = val;
}
///////////////////////////////////////////////////////////////
// MOG without learning
...
...
@@ -426,337 +418,6 @@ namespace cv { namespace gpu { namespace cudev
funcs[cn](weight, mean, dst, nmixtures, backgroundRatio, stream);
}
///////////////////////////////////////////////////////////////
// MOG2
__constant__ int c_nmixtures;
__constant__ float c_Tb;
__constant__ float c_TB;
__constant__ float c_Tg;
__constant__ float c_varInit;
__constant__ float c_varMin;
__constant__ float c_varMax;
__constant__ float c_tau;
__constant__ unsigned char c_shadowVal;
void loadConstants(int nmixtures, float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal)
{
varMin = ::fminf(varMin, varMax);
varMax = ::fmaxf(varMin, varMax);
cudaSafeCall( cudaMemcpyToSymbol(c_nmixtures, &nmixtures, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_Tb, &Tb, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_TB, &TB, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_Tg, &Tg, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_varInit, &varInit, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_varMin, &varMin, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_varMax, &varMax, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_tau, &tau, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_shadowVal, &shadowVal, sizeof(unsigned char)) );
}
template <bool detectShadows, typename SrcT, typename WorkT>
__global__ void mog2(const PtrStepSz<SrcT> frame, PtrStepb fgmask, PtrStepb modesUsed,
PtrStepf gmm_weight, PtrStepf gmm_variance, PtrStep<WorkT> gmm_mean,
const float alphaT, const float alpha1, const float prune)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= frame.cols || y >= frame.rows)
return;
WorkT pix = cvt(frame(y, x));
//calculate distances to the modes (+ sort)
//here we need to go in descending order!!!
bool background = false; // true - the pixel classified as background
//internal:
bool fitsPDF = false; //if it remains zero a new GMM mode will be added
int nmodes = modesUsed(y, x);
int nNewModes = nmodes; //current number of modes in GMM
float totalWeight = 0.0f;
//go through all modes
for (int mode = 0; mode < nmodes; ++mode)
{
//need only weight if fit is found
float weight = alpha1 * gmm_weight(mode * frame.rows + y, x) + prune;
//fit not found yet
if (!fitsPDF)
{
//check if it belongs to some of the remaining modes
float var = gmm_variance(mode * frame.rows + y, x);
WorkT mean = gmm_mean(mode * frame.rows + y, x);
//calculate difference and distance
WorkT diff = mean - pix;
float dist2 = sqr(diff);
//background? - Tb - usually larger than Tg
if (totalWeight < c_TB && dist2 < c_Tb * var)
background = true;
//check fit
if (dist2 < c_Tg * var)
{
//belongs to the mode
fitsPDF = true;
//update distribution
//update weight
weight += alphaT;
float k = alphaT / weight;
//update mean
gmm_mean(mode * frame.rows + y, x) = mean - k * diff;
//update variance
float varnew = var + k * (dist2 - var);
//limit the variance
varnew = ::fmaxf(varnew, c_varMin);
varnew = ::fminf(varnew, c_varMax);
gmm_variance(mode * frame.rows + y, x) = varnew;
//sort
//all other weights are at the same place and
//only the matched (iModes) is higher -> just find the new place for it
for (int i = mode; i > 0; --i)
{
//check one up
if (weight < gmm_weight((i - 1) * frame.rows + y, x))
break;
//swap one up
swap(gmm_weight, x, y, i - 1, frame.rows);
swap(gmm_variance, x, y, i - 1, frame.rows);
swap(gmm_mean, x, y, i - 1, frame.rows);
}
//belongs to the mode - bFitsPDF becomes 1
}
} // !fitsPDF
//check prune
if (weight < -prune)
{
weight = 0.0;
nmodes--;
}
gmm_weight(mode * frame.rows + y, x) = weight; //update weight by the calculated value
totalWeight += weight;
}
//renormalize weights
totalWeight = 1.f / totalWeight;
for (int mode = 0; mode < nmodes; ++mode)
gmm_weight(mode * frame.rows + y, x) *= totalWeight;
nmodes = nNewModes;
//make new mode if needed and exit
if (!fitsPDF)
{
// replace the weakest or add a new one
int mode = nmodes == c_nmixtures ? c_nmixtures - 1 : nmodes++;
if (nmodes == 1)
gmm_weight(mode * frame.rows + y, x) = 1.f;
else
{
gmm_weight(mode * frame.rows + y, x) = alphaT;
// renormalize all other weights
for (int i = 0; i < nmodes - 1; ++i)
gmm_weight(i * frame.rows + y, x) *= alpha1;
}
// init
gmm_mean(mode * frame.rows + y, x) = pix;
gmm_variance(mode * frame.rows + y, x) = c_varInit;
//sort
//find the new place for it
for (int i = nmodes - 1; i > 0; --i)
{
// check one up
if (alphaT < gmm_weight((i - 1) * frame.rows + y, x))
break;
//swap one up
swap(gmm_weight, x, y, i - 1, frame.rows);
swap(gmm_variance, x, y, i - 1, frame.rows);
swap(gmm_mean, x, y, i - 1, frame.rows);
}
}
//set the number of modes
modesUsed(y, x) = nmodes;
bool isShadow = false;
if (detectShadows && !background)
{
float tWeight = 0.0f;
// check all the components marked as background:
for (int mode = 0; mode < nmodes; ++mode)
{
WorkT mean = gmm_mean(mode * frame.rows + y, x);
WorkT pix_mean = pix * mean;
float numerator = sum(pix_mean);
float denominator = sqr(mean);
// no division by zero allowed
if (denominator == 0)
break;
// if tau < a < 1 then also check the color distortion
if (numerator <= denominator && numerator >= c_tau * denominator)
{
float a = numerator / denominator;
WorkT dD = a * mean - pix;
if (sqr(dD) < c_Tb * gmm_variance(mode * frame.rows + y, x) * a * a)
{
isShadow = true;
break;
}
};
tWeight += gmm_weight(mode * frame.rows + y, x);
if (tWeight > c_TB)
break;
}
}
fgmask(y, x) = background ? 0 : isShadow ? c_shadowVal : 255;
}
template <typename SrcT, typename WorkT>
void mog2_caller(PtrStepSzb frame, PtrStepSzb fgmask, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzf variance, PtrStepSzb mean,
float alphaT, float prune, bool detectShadows, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y));
const float alpha1 = 1.0f - alphaT;
if (detectShadows)
{
cudaSafeCall( cudaFuncSetCacheConfig(mog2<true, SrcT, WorkT>, cudaFuncCachePreferL1) );
mog2<true, SrcT, WorkT><<<grid, block, 0, stream>>>((PtrStepSz<SrcT>) frame, fgmask, modesUsed,
weight, variance, (PtrStepSz<WorkT>) mean,
alphaT, alpha1, prune);
}
else
{
cudaSafeCall( cudaFuncSetCacheConfig(mog2<false, SrcT, WorkT>, cudaFuncCachePreferL1) );
mog2<false, SrcT, WorkT><<<grid, block, 0, stream>>>((PtrStepSz<SrcT>) frame, fgmask, modesUsed,
weight, variance, (PtrStepSz<WorkT>) mean,
alphaT, alpha1, prune);
}
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void mog2_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzf variance, PtrStepSzb mean,
float alphaT, float prune, bool detectShadows, cudaStream_t stream)
{
typedef void (*func_t)(PtrStepSzb frame, PtrStepSzb fgmask, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzf variance, PtrStepSzb mean, float alphaT, float prune, bool detectShadows, cudaStream_t stream);
static const func_t funcs[] =
{
0, mog2_caller<uchar, float>, 0, mog2_caller<uchar3, float3>, mog2_caller<uchar4, float4>
};
funcs[cn](frame, fgmask, modesUsed, weight, variance, mean, alphaT, prune, detectShadows, stream);
}
template <typename WorkT, typename OutT>
__global__ void getBackgroundImage2(const PtrStepSzb modesUsed, const PtrStepf gmm_weight, const PtrStep<WorkT> gmm_mean, PtrStep<OutT> dst)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= modesUsed.cols || y >= modesUsed.rows)
return;
int nmodes = modesUsed(y, x);
WorkT meanVal = VecTraits<WorkT>::all(0.0f);
float totalWeight = 0.0f;
for (int mode = 0; mode < nmodes; ++mode)
{
float weight = gmm_weight(mode * modesUsed.rows + y, x);
WorkT mean = gmm_mean(mode * modesUsed.rows + y, x);
meanVal = meanVal + weight * mean;
totalWeight += weight;
if(totalWeight > c_TB)
break;
}
meanVal = meanVal * (1.f / totalWeight);
dst(y, x) = saturate_cast<OutT>(meanVal);
}
template <typename WorkT, typename OutT>
void getBackgroundImage2_caller(PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(modesUsed.cols, block.x), divUp(modesUsed.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(getBackgroundImage2<WorkT, OutT>, cudaFuncCachePreferL1) );
getBackgroundImage2<WorkT, OutT><<<grid, block, 0, stream>>>(modesUsed, weight, (PtrStepSz<WorkT>) mean, (PtrStepSz<OutT>) dst);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void getBackgroundImage2_gpu(int cn, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, cudaStream_t stream)
{
typedef void (*func_t)(PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
0, getBackgroundImage2_caller<float, uchar>, 0, getBackgroundImage2_caller<float3, uchar3>, getBackgroundImage2_caller<float4, uchar4>
};
funcs[cn](modesUsed, weight, mean, dst, stream);
}
}
}}}
...
...
modules/gpubgsegm/src/cuda/mog2.cu
0 → 100644
View file @
88e67545
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/vec_traits.hpp"
#include "opencv2/core/cuda/vec_math.hpp"
#include "opencv2/core/cuda/limits.hpp"
namespace cv { namespace gpu { namespace cudev
{
namespace mog2
{
///////////////////////////////////////////////////////////////
// Utility
__device__ __forceinline__ float cvt(uchar val)
{
return val;
}
__device__ __forceinline__ float3 cvt(const uchar3& val)
{
return make_float3(val.x, val.y, val.z);
}
__device__ __forceinline__ float4 cvt(const uchar4& val)
{
return make_float4(val.x, val.y, val.z, val.w);
}
__device__ __forceinline__ float sqr(float val)
{
return val * val;
}
__device__ __forceinline__ float sqr(const float3& val)
{
return val.x * val.x + val.y * val.y + val.z * val.z;
}
__device__ __forceinline__ float sqr(const float4& val)
{
return val.x * val.x + val.y * val.y + val.z * val.z;
}
__device__ __forceinline__ float sum(float val)
{
return val;
}
__device__ __forceinline__ float sum(const float3& val)
{
return val.x + val.y + val.z;
}
__device__ __forceinline__ float sum(const float4& val)
{
return val.x + val.y + val.z;
}
template <class Ptr2D>
__device__ __forceinline__ void swap(Ptr2D& ptr, int x, int y, int k, int rows)
{
typename Ptr2D::elem_type val = ptr(k * rows + y, x);
ptr(k * rows + y, x) = ptr((k + 1) * rows + y, x);
ptr((k + 1) * rows + y, x) = val;
}
///////////////////////////////////////////////////////////////
// MOG2
__constant__ int c_nmixtures;
__constant__ float c_Tb;
__constant__ float c_TB;
__constant__ float c_Tg;
__constant__ float c_varInit;
__constant__ float c_varMin;
__constant__ float c_varMax;
__constant__ float c_tau;
__constant__ unsigned char c_shadowVal;
void loadConstants(int nmixtures, float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal)
{
varMin = ::fminf(varMin, varMax);
varMax = ::fmaxf(varMin, varMax);
cudaSafeCall( cudaMemcpyToSymbol(c_nmixtures, &nmixtures, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_Tb, &Tb, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_TB, &TB, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_Tg, &Tg, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_varInit, &varInit, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_varMin, &varMin, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_varMax, &varMax, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_tau, &tau, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(c_shadowVal, &shadowVal, sizeof(unsigned char)) );
}
template <bool detectShadows, typename SrcT, typename WorkT>
__global__ void mog2(const PtrStepSz<SrcT> frame, PtrStepb fgmask, PtrStepb modesUsed,
PtrStepf gmm_weight, PtrStepf gmm_variance, PtrStep<WorkT> gmm_mean,
const float alphaT, const float alpha1, const float prune)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= frame.cols || y >= frame.rows)
return;
WorkT pix = cvt(frame(y, x));
//calculate distances to the modes (+ sort)
//here we need to go in descending order!!!
bool background = false; // true - the pixel classified as background
//internal:
bool fitsPDF = false; //if it remains zero a new GMM mode will be added
int nmodes = modesUsed(y, x);
int nNewModes = nmodes; //current number of modes in GMM
float totalWeight = 0.0f;
//go through all modes
for (int mode = 0; mode < nmodes; ++mode)
{
//need only weight if fit is found
float weight = alpha1 * gmm_weight(mode * frame.rows + y, x) + prune;
//fit not found yet
if (!fitsPDF)
{
//check if it belongs to some of the remaining modes
float var = gmm_variance(mode * frame.rows + y, x);
WorkT mean = gmm_mean(mode * frame.rows + y, x);
//calculate difference and distance
WorkT diff = mean - pix;
float dist2 = sqr(diff);
//background? - Tb - usually larger than Tg
if (totalWeight < c_TB && dist2 < c_Tb * var)
background = true;
//check fit
if (dist2 < c_Tg * var)
{
//belongs to the mode
fitsPDF = true;
//update distribution
//update weight
weight += alphaT;
float k = alphaT / weight;
//update mean
gmm_mean(mode * frame.rows + y, x) = mean - k * diff;
//update variance
float varnew = var + k * (dist2 - var);
//limit the variance
varnew = ::fmaxf(varnew, c_varMin);
varnew = ::fminf(varnew, c_varMax);
gmm_variance(mode * frame.rows + y, x) = varnew;
//sort
//all other weights are at the same place and
//only the matched (iModes) is higher -> just find the new place for it
for (int i = mode; i > 0; --i)
{
//check one up
if (weight < gmm_weight((i - 1) * frame.rows + y, x))
break;
//swap one up
swap(gmm_weight, x, y, i - 1, frame.rows);
swap(gmm_variance, x, y, i - 1, frame.rows);
swap(gmm_mean, x, y, i - 1, frame.rows);
}
//belongs to the mode - bFitsPDF becomes 1
}
} // !fitsPDF
//check prune
if (weight < -prune)
{
weight = 0.0;
nmodes--;
}
gmm_weight(mode * frame.rows + y, x) = weight; //update weight by the calculated value
totalWeight += weight;
}
//renormalize weights
totalWeight = 1.f / totalWeight;
for (int mode = 0; mode < nmodes; ++mode)
gmm_weight(mode * frame.rows + y, x) *= totalWeight;
nmodes = nNewModes;
//make new mode if needed and exit
if (!fitsPDF)
{
// replace the weakest or add a new one
int mode = nmodes == c_nmixtures ? c_nmixtures - 1 : nmodes++;
if (nmodes == 1)
gmm_weight(mode * frame.rows + y, x) = 1.f;
else
{
gmm_weight(mode * frame.rows + y, x) = alphaT;
// renormalize all other weights
for (int i = 0; i < nmodes - 1; ++i)
gmm_weight(i * frame.rows + y, x) *= alpha1;
}
// init
gmm_mean(mode * frame.rows + y, x) = pix;
gmm_variance(mode * frame.rows + y, x) = c_varInit;
//sort
//find the new place for it
for (int i = nmodes - 1; i > 0; --i)
{
// check one up
if (alphaT < gmm_weight((i - 1) * frame.rows + y, x))
break;
//swap one up
swap(gmm_weight, x, y, i - 1, frame.rows);
swap(gmm_variance, x, y, i - 1, frame.rows);
swap(gmm_mean, x, y, i - 1, frame.rows);
}
}
//set the number of modes
modesUsed(y, x) = nmodes;
bool isShadow = false;
if (detectShadows && !background)
{
float tWeight = 0.0f;
// check all the components marked as background:
for (int mode = 0; mode < nmodes; ++mode)
{
WorkT mean = gmm_mean(mode * frame.rows + y, x);
WorkT pix_mean = pix * mean;
float numerator = sum(pix_mean);
float denominator = sqr(mean);
// no division by zero allowed
if (denominator == 0)
break;
// if tau < a < 1 then also check the color distortion
if (numerator <= denominator && numerator >= c_tau * denominator)
{
float a = numerator / denominator;
WorkT dD = a * mean - pix;
if (sqr(dD) < c_Tb * gmm_variance(mode * frame.rows + y, x) * a * a)
{
isShadow = true;
break;
}
};
tWeight += gmm_weight(mode * frame.rows + y, x);
if (tWeight > c_TB)
break;
}
}
fgmask(y, x) = background ? 0 : isShadow ? c_shadowVal : 255;
}
template <typename SrcT, typename WorkT>
void mog2_caller(PtrStepSzb frame, PtrStepSzb fgmask, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzf variance, PtrStepSzb mean,
float alphaT, float prune, bool detectShadows, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y));
const float alpha1 = 1.0f - alphaT;
if (detectShadows)
{
cudaSafeCall( cudaFuncSetCacheConfig(mog2<true, SrcT, WorkT>, cudaFuncCachePreferL1) );
mog2<true, SrcT, WorkT><<<grid, block, 0, stream>>>((PtrStepSz<SrcT>) frame, fgmask, modesUsed,
weight, variance, (PtrStepSz<WorkT>) mean,
alphaT, alpha1, prune);
}
else
{
cudaSafeCall( cudaFuncSetCacheConfig(mog2<false, SrcT, WorkT>, cudaFuncCachePreferL1) );
mog2<false, SrcT, WorkT><<<grid, block, 0, stream>>>((PtrStepSz<SrcT>) frame, fgmask, modesUsed,
weight, variance, (PtrStepSz<WorkT>) mean,
alphaT, alpha1, prune);
}
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void mog2_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzf variance, PtrStepSzb mean,
float alphaT, float prune, bool detectShadows, cudaStream_t stream)
{
typedef void (*func_t)(PtrStepSzb frame, PtrStepSzb fgmask, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzf variance, PtrStepSzb mean, float alphaT, float prune, bool detectShadows, cudaStream_t stream);
static const func_t funcs[] =
{
0, mog2_caller<uchar, float>, 0, mog2_caller<uchar3, float3>, mog2_caller<uchar4, float4>
};
funcs[cn](frame, fgmask, modesUsed, weight, variance, mean, alphaT, prune, detectShadows, stream);
}
template <typename WorkT, typename OutT>
__global__ void getBackgroundImage2(const PtrStepSzb modesUsed, const PtrStepf gmm_weight, const PtrStep<WorkT> gmm_mean, PtrStep<OutT> dst)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= modesUsed.cols || y >= modesUsed.rows)
return;
int nmodes = modesUsed(y, x);
WorkT meanVal = VecTraits<WorkT>::all(0.0f);
float totalWeight = 0.0f;
for (int mode = 0; mode < nmodes; ++mode)
{
float weight = gmm_weight(mode * modesUsed.rows + y, x);
WorkT mean = gmm_mean(mode * modesUsed.rows + y, x);
meanVal = meanVal + weight * mean;
totalWeight += weight;
if(totalWeight > c_TB)
break;
}
meanVal = meanVal * (1.f / totalWeight);
dst(y, x) = saturate_cast<OutT>(meanVal);
}
template <typename WorkT, typename OutT>
void getBackgroundImage2_caller(PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(modesUsed.cols, block.x), divUp(modesUsed.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(getBackgroundImage2<WorkT, OutT>, cudaFuncCachePreferL1) );
getBackgroundImage2<WorkT, OutT><<<grid, block, 0, stream>>>(modesUsed, weight, (PtrStepSz<WorkT>) mean, (PtrStepSz<OutT>) dst);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void getBackgroundImage2_gpu(int cn, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, cudaStream_t stream)
{
typedef void (*func_t)(PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
0, getBackgroundImage2_caller<float, uchar>, 0, getBackgroundImage2_caller<float3, uchar3>, getBackgroundImage2_caller<float4, uchar4>
};
funcs[cn](modesUsed, weight, mean, dst, stream);
}
}
}}}
#endif /* CUDA_DISABLER */
modules/gpubgsegm/src/mog.cpp
View file @
88e67545
...
...
@@ -50,12 +50,6 @@ void cv::gpu::MOG_GPU::operator()(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, floa
void
cv
::
gpu
::
MOG_GPU
::
getBackgroundImage
(
GpuMat
&
,
Stream
&
)
const
{
throw_no_cuda
();
}
void
cv
::
gpu
::
MOG_GPU
::
release
()
{}
cv
::
gpu
::
MOG2_GPU
::
MOG2_GPU
(
int
)
{
throw_no_cuda
();
}
void
cv
::
gpu
::
MOG2_GPU
::
initialize
(
cv
::
Size
,
int
)
{
throw_no_cuda
();
}
void
cv
::
gpu
::
MOG2_GPU
::
operator
()(
const
GpuMat
&
,
GpuMat
&
,
float
,
Stream
&
)
{
throw_no_cuda
();
}
void
cv
::
gpu
::
MOG2_GPU
::
getBackgroundImage
(
GpuMat
&
,
Stream
&
)
const
{
throw_no_cuda
();
}
void
cv
::
gpu
::
MOG2_GPU
::
release
()
{}
#else
namespace
cv
{
namespace
gpu
{
namespace
cudev
...
...
@@ -66,10 +60,6 @@ namespace cv { namespace gpu { namespace cudev
int
nmixtures
,
float
varThreshold
,
float
learningRate
,
float
backgroundRatio
,
float
noiseSigma
,
cudaStream_t
stream
);
void
getBackgroundImage_gpu
(
int
cn
,
PtrStepSzf
weight
,
PtrStepSzb
mean
,
PtrStepSzb
dst
,
int
nmixtures
,
float
backgroundRatio
,
cudaStream_t
stream
);
void
loadConstants
(
int
nmixtures
,
float
Tb
,
float
TB
,
float
Tg
,
float
varInit
,
float
varMin
,
float
varMax
,
float
tau
,
unsigned
char
shadowVal
);
void
mog2_gpu
(
PtrStepSzb
frame
,
int
cn
,
PtrStepSzb
fgmask
,
PtrStepSzb
modesUsed
,
PtrStepSzf
weight
,
PtrStepSzf
variance
,
PtrStepSzb
mean
,
float
alphaT
,
float
prune
,
bool
detectShadows
,
cudaStream_t
stream
);
void
getBackgroundImage2_gpu
(
int
cn
,
PtrStepSzb
modesUsed
,
PtrStepSzf
weight
,
PtrStepSzb
mean
,
PtrStepSzb
dst
,
cudaStream_t
stream
);
}
}}}
...
...
@@ -165,115 +155,4 @@ void cv::gpu::MOG_GPU::release()
var_
.
release
();
}
/////////////////////////////////////////////////////////////////
// MOG2
namespace
mog2
{
// default parameters of gaussian background detection algorithm
const
int
defaultHistory
=
500
;
// Learning rate; alpha = 1/defaultHistory2
const
float
defaultVarThreshold
=
4.0
f
*
4.0
f
;
const
int
defaultNMixtures
=
5
;
// maximal number of Gaussians in mixture
const
float
defaultBackgroundRatio
=
0.9
f
;
// threshold sum of weights for background test
const
float
defaultVarThresholdGen
=
3.0
f
*
3.0
f
;
const
float
defaultVarInit
=
15.0
f
;
// initial variance for new components
const
float
defaultVarMax
=
5.0
f
*
defaultVarInit
;
const
float
defaultVarMin
=
4.0
f
;
// additional parameters
const
float
defaultfCT
=
0.05
f
;
// complexity reduction prior constant 0 - no reduction of number of components
const
unsigned
char
defaultnShadowDetection
=
127
;
// value to use in the segmentation mask for shadows, set 0 not to do shadow detection
const
float
defaultfTau
=
0.5
f
;
// Tau - shadow threshold, see the paper for explanation
}
cv
::
gpu
::
MOG2_GPU
::
MOG2_GPU
(
int
nmixtures
)
:
frameSize_
(
0
,
0
),
frameType_
(
0
),
nframes_
(
0
)
{
nmixtures_
=
nmixtures
>
0
?
nmixtures
:
mog2
::
defaultNMixtures
;
history
=
mog2
::
defaultHistory
;
varThreshold
=
mog2
::
defaultVarThreshold
;
bShadowDetection
=
true
;
backgroundRatio
=
mog2
::
defaultBackgroundRatio
;
fVarInit
=
mog2
::
defaultVarInit
;
fVarMax
=
mog2
::
defaultVarMax
;
fVarMin
=
mog2
::
defaultVarMin
;
varThresholdGen
=
mog2
::
defaultVarThresholdGen
;
fCT
=
mog2
::
defaultfCT
;
nShadowDetection
=
mog2
::
defaultnShadowDetection
;
fTau
=
mog2
::
defaultfTau
;
}
void
cv
::
gpu
::
MOG2_GPU
::
initialize
(
cv
::
Size
frameSize
,
int
frameType
)
{
using
namespace
cv
::
gpu
::
cudev
::
mog
;
CV_Assert
(
frameType
==
CV_8UC1
||
frameType
==
CV_8UC3
||
frameType
==
CV_8UC4
);
frameSize_
=
frameSize
;
frameType_
=
frameType
;
nframes_
=
0
;
int
ch
=
CV_MAT_CN
(
frameType
);
int
work_ch
=
ch
;
// for each gaussian mixture of each pixel bg model we store ...
// the mixture weight (w),
// the mean (nchannels values) and
// the covariance
weight_
.
create
(
frameSize
.
height
*
nmixtures_
,
frameSize_
.
width
,
CV_32FC1
);
variance_
.
create
(
frameSize
.
height
*
nmixtures_
,
frameSize_
.
width
,
CV_32FC1
);
mean_
.
create
(
frameSize
.
height
*
nmixtures_
,
frameSize_
.
width
,
CV_32FC
(
work_ch
));
//make the array for keeping track of the used modes per pixel - all zeros at start
bgmodelUsedModes_
.
create
(
frameSize_
,
CV_8UC1
);
bgmodelUsedModes_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
loadConstants
(
nmixtures_
,
varThreshold
,
backgroundRatio
,
varThresholdGen
,
fVarInit
,
fVarMin
,
fVarMax
,
fTau
,
nShadowDetection
);
}
void
cv
::
gpu
::
MOG2_GPU
::
operator
()(
const
GpuMat
&
frame
,
GpuMat
&
fgmask
,
float
learningRate
,
Stream
&
stream
)
{
using
namespace
cv
::
gpu
::
cudev
::
mog
;
int
ch
=
frame
.
channels
();
int
work_ch
=
ch
;
if
(
nframes_
==
0
||
learningRate
>=
1.0
f
||
frame
.
size
()
!=
frameSize_
||
work_ch
!=
mean_
.
channels
())
initialize
(
frame
.
size
(),
frame
.
type
());
fgmask
.
create
(
frameSize_
,
CV_8UC1
);
fgmask
.
setTo
(
cv
::
Scalar
::
all
(
0
));
++
nframes_
;
learningRate
=
learningRate
>=
0.0
f
&&
nframes_
>
1
?
learningRate
:
1.0
f
/
std
::
min
(
2
*
nframes_
,
history
);
CV_Assert
(
learningRate
>=
0.0
f
);
mog2_gpu
(
frame
,
frame
.
channels
(),
fgmask
,
bgmodelUsedModes_
,
weight_
,
variance_
,
mean_
,
learningRate
,
-
learningRate
*
fCT
,
bShadowDetection
,
StreamAccessor
::
getStream
(
stream
));
}
void
cv
::
gpu
::
MOG2_GPU
::
getBackgroundImage
(
GpuMat
&
backgroundImage
,
Stream
&
stream
)
const
{
using
namespace
cv
::
gpu
::
cudev
::
mog
;
backgroundImage
.
create
(
frameSize_
,
frameType_
);
getBackgroundImage2_gpu
(
backgroundImage
.
channels
(),
bgmodelUsedModes_
,
weight_
,
mean_
,
backgroundImage
,
StreamAccessor
::
getStream
(
stream
));
}
void
cv
::
gpu
::
MOG2_GPU
::
release
()
{
frameSize_
=
Size
(
0
,
0
);
frameType_
=
0
;
nframes_
=
0
;
weight_
.
release
();
variance_
.
release
();
mean_
.
release
();
bgmodelUsedModes_
.
release
();
}
#endif
modules/gpubgsegm/src/mog2.cpp
0 → 100644
View file @
88e67545
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
cv
::
gpu
::
MOG2_GPU
::
MOG2_GPU
(
int
)
{
throw_no_cuda
();
}
void
cv
::
gpu
::
MOG2_GPU
::
initialize
(
cv
::
Size
,
int
)
{
throw_no_cuda
();
}
void
cv
::
gpu
::
MOG2_GPU
::
operator
()(
const
GpuMat
&
,
GpuMat
&
,
float
,
Stream
&
)
{
throw_no_cuda
();
}
void
cv
::
gpu
::
MOG2_GPU
::
getBackgroundImage
(
GpuMat
&
,
Stream
&
)
const
{
throw_no_cuda
();
}
void
cv
::
gpu
::
MOG2_GPU
::
release
()
{}
#else
namespace
cv
{
namespace
gpu
{
namespace
cudev
{
namespace
mog2
{
void
loadConstants
(
int
nmixtures
,
float
Tb
,
float
TB
,
float
Tg
,
float
varInit
,
float
varMin
,
float
varMax
,
float
tau
,
unsigned
char
shadowVal
);
void
mog2_gpu
(
PtrStepSzb
frame
,
int
cn
,
PtrStepSzb
fgmask
,
PtrStepSzb
modesUsed
,
PtrStepSzf
weight
,
PtrStepSzf
variance
,
PtrStepSzb
mean
,
float
alphaT
,
float
prune
,
bool
detectShadows
,
cudaStream_t
stream
);
void
getBackgroundImage2_gpu
(
int
cn
,
PtrStepSzb
modesUsed
,
PtrStepSzf
weight
,
PtrStepSzb
mean
,
PtrStepSzb
dst
,
cudaStream_t
stream
);
}
}}}
namespace
mog2
{
// default parameters of gaussian background detection algorithm
const
int
defaultHistory
=
500
;
// Learning rate; alpha = 1/defaultHistory2
const
float
defaultVarThreshold
=
4.0
f
*
4.0
f
;
const
int
defaultNMixtures
=
5
;
// maximal number of Gaussians in mixture
const
float
defaultBackgroundRatio
=
0.9
f
;
// threshold sum of weights for background test
const
float
defaultVarThresholdGen
=
3.0
f
*
3.0
f
;
const
float
defaultVarInit
=
15.0
f
;
// initial variance for new components
const
float
defaultVarMax
=
5.0
f
*
defaultVarInit
;
const
float
defaultVarMin
=
4.0
f
;
// additional parameters
const
float
defaultfCT
=
0.05
f
;
// complexity reduction prior constant 0 - no reduction of number of components
const
unsigned
char
defaultnShadowDetection
=
127
;
// value to use in the segmentation mask for shadows, set 0 not to do shadow detection
const
float
defaultfTau
=
0.5
f
;
// Tau - shadow threshold, see the paper for explanation
}
cv
::
gpu
::
MOG2_GPU
::
MOG2_GPU
(
int
nmixtures
)
:
frameSize_
(
0
,
0
),
frameType_
(
0
),
nframes_
(
0
)
{
nmixtures_
=
nmixtures
>
0
?
nmixtures
:
mog2
::
defaultNMixtures
;
history
=
mog2
::
defaultHistory
;
varThreshold
=
mog2
::
defaultVarThreshold
;
bShadowDetection
=
true
;
backgroundRatio
=
mog2
::
defaultBackgroundRatio
;
fVarInit
=
mog2
::
defaultVarInit
;
fVarMax
=
mog2
::
defaultVarMax
;
fVarMin
=
mog2
::
defaultVarMin
;
varThresholdGen
=
mog2
::
defaultVarThresholdGen
;
fCT
=
mog2
::
defaultfCT
;
nShadowDetection
=
mog2
::
defaultnShadowDetection
;
fTau
=
mog2
::
defaultfTau
;
}
void
cv
::
gpu
::
MOG2_GPU
::
initialize
(
cv
::
Size
frameSize
,
int
frameType
)
{
using
namespace
cv
::
gpu
::
cudev
::
mog2
;
CV_Assert
(
frameType
==
CV_8UC1
||
frameType
==
CV_8UC3
||
frameType
==
CV_8UC4
);
frameSize_
=
frameSize
;
frameType_
=
frameType
;
nframes_
=
0
;
int
ch
=
CV_MAT_CN
(
frameType
);
int
work_ch
=
ch
;
// for each gaussian mixture of each pixel bg model we store ...
// the mixture weight (w),
// the mean (nchannels values) and
// the covariance
weight_
.
create
(
frameSize
.
height
*
nmixtures_
,
frameSize_
.
width
,
CV_32FC1
);
variance_
.
create
(
frameSize
.
height
*
nmixtures_
,
frameSize_
.
width
,
CV_32FC1
);
mean_
.
create
(
frameSize
.
height
*
nmixtures_
,
frameSize_
.
width
,
CV_32FC
(
work_ch
));
//make the array for keeping track of the used modes per pixel - all zeros at start
bgmodelUsedModes_
.
create
(
frameSize_
,
CV_8UC1
);
bgmodelUsedModes_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
loadConstants
(
nmixtures_
,
varThreshold
,
backgroundRatio
,
varThresholdGen
,
fVarInit
,
fVarMin
,
fVarMax
,
fTau
,
nShadowDetection
);
}
void
cv
::
gpu
::
MOG2_GPU
::
operator
()(
const
GpuMat
&
frame
,
GpuMat
&
fgmask
,
float
learningRate
,
Stream
&
stream
)
{
using
namespace
cv
::
gpu
::
cudev
::
mog2
;
int
ch
=
frame
.
channels
();
int
work_ch
=
ch
;
if
(
nframes_
==
0
||
learningRate
>=
1.0
f
||
frame
.
size
()
!=
frameSize_
||
work_ch
!=
mean_
.
channels
())
initialize
(
frame
.
size
(),
frame
.
type
());
fgmask
.
create
(
frameSize_
,
CV_8UC1
);
fgmask
.
setTo
(
cv
::
Scalar
::
all
(
0
));
++
nframes_
;
learningRate
=
learningRate
>=
0.0
f
&&
nframes_
>
1
?
learningRate
:
1.0
f
/
std
::
min
(
2
*
nframes_
,
history
);
CV_Assert
(
learningRate
>=
0.0
f
);
mog2_gpu
(
frame
,
frame
.
channels
(),
fgmask
,
bgmodelUsedModes_
,
weight_
,
variance_
,
mean_
,
learningRate
,
-
learningRate
*
fCT
,
bShadowDetection
,
StreamAccessor
::
getStream
(
stream
));
}
void
cv
::
gpu
::
MOG2_GPU
::
getBackgroundImage
(
GpuMat
&
backgroundImage
,
Stream
&
stream
)
const
{
using
namespace
cv
::
gpu
::
cudev
::
mog2
;
backgroundImage
.
create
(
frameSize_
,
frameType_
);
getBackgroundImage2_gpu
(
backgroundImage
.
channels
(),
bgmodelUsedModes_
,
weight_
,
mean_
,
backgroundImage
,
StreamAccessor
::
getStream
(
stream
));
}
void
cv
::
gpu
::
MOG2_GPU
::
release
()
{
frameSize_
=
Size
(
0
,
0
);
frameType_
=
0
;
nframes_
=
0
;
weight_
.
release
();
variance_
.
release
();
mean_
.
release
();
bgmodelUsedModes_
.
release
();
}
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment