Commit 8877e3ae authored by saskatchewancatch's avatar saskatchewancatch

Adjustmenbts

parent fda1e767
...@@ -644,20 +644,6 @@ CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stdde ...@@ -644,20 +644,6 @@ CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stdde
This version of cv::norm calculates the absolute norm of src1. The type of norm to calculate is specified using cv::NormTypes. This version of cv::norm calculates the absolute norm of src1. The type of norm to calculate is specified using cv::NormTypes.
If normType is not specified, NORM_L2 is used.
--done edit--
\f[norm = \forkfour{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
{ \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) }
{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }
{ \| \texttt{src1} \| _{L_2} ^{2} = \sum_I \texttt{src1}(I)^2} {if \(\texttt{normType} = \texttt{NORM_L2SQR}\)}\f]
If normType is not specified, NORM_L2 is used.
or an absolute or relative difference norm if src2 is there:
As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$. As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$ The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
is calculated as follows is calculated as follows
...@@ -676,14 +662,16 @@ The following graphic shows all values for the three norm functions \f$\| r(x) \ ...@@ -676,14 +662,16 @@ The following graphic shows all values for the three norm functions \f$\| r(x) \
It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$. It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$.
![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png) ![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png)
The function cv::norm returns the calculated norm.
When the mask parameter is specified and it is not empty, the norm is When the mask parameter is specified and it is not empty, the norm is
If normType is not specified, NORM_L2 is used.
calculated only over the region specified by the mask. calculated only over the region specified by the mask.
Multi-channel input arrays are treated as single-channel arrays, that is, Multi-channel input arrays are treated as single-channel arrays, that is,
the results for all channels are combined. the results for all channels are combined.
Hamming norms can only be calculated with CV_8U depth arrays.
@param src1 first input array. @param src1 first input array.
@param normType type of the norm (see cv::NormTypes). @param normType type of the norm (see cv::NormTypes).
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
...@@ -696,18 +684,6 @@ This version of cv::norm calculates the absolute difference norm ...@@ -696,18 +684,6 @@ This version of cv::norm calculates the absolute difference norm
or the relative difference norm of arrays src1 and src2. or the relative difference norm of arrays src1 and src2.
The type of norm to calculate is specified using cv::NormTypes. The type of norm to calculate is specified using cv::NormTypes.
\f[norm = \forkfour{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_2} ^{2} = \sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2 }{if \(\texttt{normType} = \texttt{NORM_L2SQR}\) }
\f]
or
\f[norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_INF}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L1}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L2}\) }\f]
@param src1 first input array. @param src1 first input array.
@param src2 second input array of the same size and the same type as src1. @param src2 second input array of the same size and the same type as src1.
@param normType type of the norm (cv::NormTypes). @param normType type of the norm (cv::NormTypes).
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment