Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
878ec080
Commit
878ec080
authored
Dec 08, 2015
by
Maksim Shabunin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #3540 from AlexanderUsentsov:good_feature
parents
7172c164
9abdf39c
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
770 additions
and
1 deletion
+770
-1
featureselect.cpp
modules/imgproc/src/featureselect.cpp
+10
-1
test_goodfeaturetotrack.cpp
modules/imgproc/test/test_goodfeaturetotrack.cpp
+495
-0
ts.hpp
modules/ts/include/opencv2/ts.hpp
+3
-0
ts_func.cpp
modules/ts/src/ts_func.cpp
+262
-0
No files found.
modules/imgproc/src/featureselect.cpp
View file @
878ec080
...
...
@@ -309,11 +309,18 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
tmpCorners
.
push_back
(
eig_data
+
x
);
}
}
std
::
sort
(
tmpCorners
.
begin
(),
tmpCorners
.
end
(),
greaterThanPtr
()
);
std
::
vector
<
Point2f
>
corners
;
size_t
i
,
j
,
total
=
tmpCorners
.
size
(),
ncorners
=
0
;
if
(
total
==
0
)
{
_corners
.
release
();
return
;
}
std
::
sort
(
tmpCorners
.
begin
(),
tmpCorners
.
end
(),
greaterThanPtr
()
);
if
(
minDistance
>=
1
)
{
// Partition the image into larger grids
...
...
@@ -351,6 +358,7 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
y2
=
std
::
min
(
grid_height
-
1
,
y2
);
for
(
int
yy
=
y1
;
yy
<=
y2
;
yy
++
)
{
for
(
int
xx
=
x1
;
xx
<=
x2
;
xx
++
)
{
std
::
vector
<
Point2f
>
&
m
=
grid
[
yy
*
grid_width
+
xx
];
...
...
@@ -370,6 +378,7 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
}
}
}
}
break_out
:
...
...
modules/imgproc/test/test_goodfeaturetotrack.cpp
0 → 100644
View file @
878ec080
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using
namespace
cv
;
using
namespace
std
;
enum
{
MINEIGENVAL
=
0
,
HARRIS
=
1
,
EIGENVALSVECS
=
2
};
#if 0 //set 1 to switch ON debug message
#define TEST_MESSAGE( message ) std::cout << message;
#define TEST_MESSAGEL( message, val) std::cout << message << val << std::endl;
#else
#define TEST_MESSAGE( message )
#define TEST_MESSAGEL( message, val)
#endif
/////////////////////ref//////////////////////
struct
greaterThanPtr
:
public
std
::
binary_function
<
const
float
*
,
const
float
*
,
bool
>
{
bool
operator
()
(
const
float
*
a
,
const
float
*
b
)
const
{
return
*
a
>
*
b
;
}
};
static
void
test_cornerEigenValsVecs
(
const
Mat
&
src
,
Mat
&
eigenv
,
int
block_size
,
int
_aperture_size
,
double
k
,
int
mode
,
int
borderType
,
const
Scalar
&
_borderValue
)
{
int
i
,
j
;
Scalar
borderValue
=
_borderValue
;
int
aperture_size
=
_aperture_size
<
0
?
3
:
_aperture_size
;
Point
anchor
(
aperture_size
/
2
,
aperture_size
/
2
);
CV_Assert
(
src
.
type
()
==
CV_8UC1
||
src
.
type
()
==
CV_32FC1
);
CV_Assert
(
eigenv
.
type
()
==
CV_32FC1
);
CV_Assert
(
(
src
.
rows
==
eigenv
.
rows
)
&&
(((
mode
==
MINEIGENVAL
)
||
(
mode
==
HARRIS
))
&&
(
src
.
cols
==
eigenv
.
cols
))
);
int
type
=
src
.
type
();
int
ftype
=
CV_32FC1
;
double
kernel_scale
=
1
;
Mat
dx2
,
dy2
,
dxdy
(
src
.
size
(),
CV_32F
),
kernel
;
kernel
=
cvtest
::
calcSobelKernel2D
(
1
,
0
,
_aperture_size
);
cvtest
::
filter2D
(
src
,
dx2
,
ftype
,
kernel
*
kernel_scale
,
anchor
,
0
,
borderType
,
borderValue
);
kernel
=
cvtest
::
calcSobelKernel2D
(
0
,
1
,
_aperture_size
);
cvtest
::
filter2D
(
src
,
dy2
,
ftype
,
kernel
*
kernel_scale
,
anchor
,
0
,
borderType
,
borderValue
);
double
denom
=
(
1
<<
(
aperture_size
-
1
))
*
block_size
;
denom
=
denom
*
denom
;
if
(
_aperture_size
<
0
)
denom
*=
4
;
if
(
type
!=
ftype
)
denom
*=
255.
;
denom
=
1.
/
denom
;
for
(
i
=
0
;
i
<
src
.
rows
;
i
++
)
{
float
*
dxdyp
=
dxdy
.
ptr
<
float
>
(
i
);
float
*
dx2p
=
dx2
.
ptr
<
float
>
(
i
);
float
*
dy2p
=
dy2
.
ptr
<
float
>
(
i
);
for
(
j
=
0
;
j
<
src
.
cols
;
j
++
)
{
double
xval
=
dx2p
[
j
],
yval
=
dy2p
[
j
];
dxdyp
[
j
]
=
(
float
)(
xval
*
yval
*
denom
);
dx2p
[
j
]
=
(
float
)(
xval
*
xval
*
denom
);
dy2p
[
j
]
=
(
float
)(
yval
*
yval
*
denom
);
}
}
kernel
=
Mat
::
ones
(
block_size
,
block_size
,
CV_32F
);
anchor
=
Point
(
block_size
/
2
,
block_size
/
2
);
cvtest
::
filter2D
(
dx2
,
dx2
,
ftype
,
kernel
,
anchor
,
0
,
borderType
,
borderValue
);
cvtest
::
filter2D
(
dy2
,
dy2
,
ftype
,
kernel
,
anchor
,
0
,
borderType
,
borderValue
);
cvtest
::
filter2D
(
dxdy
,
dxdy
,
ftype
,
kernel
,
anchor
,
0
,
borderType
,
borderValue
);
if
(
mode
==
MINEIGENVAL
)
{
for
(
i
=
0
;
i
<
src
.
rows
;
i
++
)
{
float
*
eigenvp
=
eigenv
.
ptr
<
float
>
(
i
);
const
float
*
dxdyp
=
dxdy
.
ptr
<
float
>
(
i
);
const
float
*
dx2p
=
dx2
.
ptr
<
float
>
(
i
);
const
float
*
dy2p
=
dy2
.
ptr
<
float
>
(
i
);
for
(
j
=
0
;
j
<
src
.
cols
;
j
++
)
{
double
a
=
dx2p
[
j
],
b
=
dxdyp
[
j
],
c
=
dy2p
[
j
];
double
d
=
sqrt
(
(
a
-
c
)
*
(
a
-
c
)
+
4
*
b
*
b
);
eigenvp
[
j
]
=
(
float
)(
0.5
*
(
a
+
c
-
d
));
}
}
}
else
if
(
mode
==
HARRIS
)
{
for
(
i
=
0
;
i
<
src
.
rows
;
i
++
)
{
float
*
eigenvp
=
eigenv
.
ptr
<
float
>
(
i
);
const
float
*
dxdyp
=
dxdy
.
ptr
<
float
>
(
i
);
const
float
*
dx2p
=
dx2
.
ptr
<
float
>
(
i
);
const
float
*
dy2p
=
dy2
.
ptr
<
float
>
(
i
);
for
(
j
=
0
;
j
<
src
.
cols
;
j
++
)
{
double
a
=
dx2p
[
j
],
b
=
dxdyp
[
j
],
c
=
dy2p
[
j
];
eigenvp
[
j
]
=
(
float
)(
a
*
c
-
b
*
b
-
k
*
(
a
+
c
)
*
(
a
+
c
));
}
}
}
}
static
void
test_goodFeaturesToTrack
(
InputArray
_image
,
OutputArray
_corners
,
int
maxCorners
,
double
qualityLevel
,
double
minDistance
,
InputArray
_mask
,
int
blockSize
,
bool
useHarrisDetector
,
double
harrisK
)
{
CV_Assert
(
qualityLevel
>
0
&&
minDistance
>=
0
&&
maxCorners
>=
0
);
CV_Assert
(
_mask
.
empty
()
||
(
_mask
.
type
()
==
CV_8UC1
&&
_mask
.
sameSize
(
_image
))
);
Mat
image
=
_image
.
getMat
(),
mask
=
_mask
.
getMat
();
int
aperture_size
=
3
;
int
borderType
=
BORDER_DEFAULT
;
Mat
eig
,
tmp
,
tt
;
eig
.
create
(
image
.
size
(),
CV_32F
);
if
(
useHarrisDetector
)
test_cornerEigenValsVecs
(
image
,
eig
,
blockSize
,
aperture_size
,
harrisK
,
HARRIS
,
borderType
,
0
);
else
test_cornerEigenValsVecs
(
image
,
eig
,
blockSize
,
aperture_size
,
0
,
MINEIGENVAL
,
borderType
,
0
);
double
maxVal
=
0
;
cvtest
::
minMaxIdx
(
eig
,
0
,
&
maxVal
,
0
,
0
,
mask
);
cvtest
::
threshold
(
eig
,
eig
,
(
float
)(
maxVal
*
qualityLevel
),
0.
f
,
THRESH_TOZERO
);
cvtest
::
dilate
(
eig
,
tmp
,
Mat
(),
Point
(
-
1
,
-
1
),
borderType
,
0
);
Size
imgsize
=
image
.
size
();
vector
<
const
float
*>
tmpCorners
;
// collect list of pointers to features - put them into temporary image
for
(
int
y
=
1
;
y
<
imgsize
.
height
-
1
;
y
++
)
{
const
float
*
eig_data
=
(
const
float
*
)
eig
.
ptr
(
y
);
const
float
*
tmp_data
=
(
const
float
*
)
tmp
.
ptr
(
y
);
const
uchar
*
mask_data
=
mask
.
data
?
mask
.
ptr
(
y
)
:
0
;
for
(
int
x
=
1
;
x
<
imgsize
.
width
-
1
;
x
++
)
{
float
val
=
eig_data
[
x
];
if
(
val
!=
0
&&
val
==
tmp_data
[
x
]
&&
(
!
mask_data
||
mask_data
[
x
])
)
{
tmpCorners
.
push_back
(
eig_data
+
x
);
}
}
}
vector
<
Point2f
>
corners
;
size_t
i
,
j
,
total
=
tmpCorners
.
size
(),
ncorners
=
0
;
std
::
sort
(
tmpCorners
.
begin
(),
tmpCorners
.
end
(),
greaterThanPtr
()
);
if
(
minDistance
>=
1
)
{
// Partition the image into larger grids
int
w
=
image
.
cols
;
int
h
=
image
.
rows
;
const
int
cell_size
=
cvRound
(
minDistance
);
const
int
grid_width
=
(
w
+
cell_size
-
1
)
/
cell_size
;
const
int
grid_height
=
(
h
+
cell_size
-
1
)
/
cell_size
;
std
::
vector
<
std
::
vector
<
Point2f
>
>
grid
(
grid_width
*
grid_height
);
minDistance
*=
minDistance
;
for
(
i
=
0
;
i
<
total
;
i
++
)
{
int
ofs
=
(
int
)((
const
uchar
*
)
tmpCorners
[
i
]
-
eig
.
data
);
int
y
=
(
int
)(
ofs
/
eig
.
step
);
int
x
=
(
int
)((
ofs
-
y
*
eig
.
step
)
/
sizeof
(
float
));
bool
good
=
true
;
int
x_cell
=
x
/
cell_size
;
int
y_cell
=
y
/
cell_size
;
int
x1
=
x_cell
-
1
;
int
y1
=
y_cell
-
1
;
int
x2
=
x_cell
+
1
;
int
y2
=
y_cell
+
1
;
// boundary check
x1
=
std
::
max
(
0
,
x1
);
y1
=
std
::
max
(
0
,
y1
);
x2
=
std
::
min
(
grid_width
-
1
,
x2
);
y2
=
std
::
min
(
grid_height
-
1
,
y2
);
for
(
int
yy
=
y1
;
yy
<=
y2
;
yy
++
)
{
for
(
int
xx
=
x1
;
xx
<=
x2
;
xx
++
)
{
vector
<
Point2f
>
&
m
=
grid
[
yy
*
grid_width
+
xx
];
if
(
m
.
size
()
)
{
for
(
j
=
0
;
j
<
m
.
size
();
j
++
)
{
float
dx
=
x
-
m
[
j
].
x
;
float
dy
=
y
-
m
[
j
].
y
;
if
(
dx
*
dx
+
dy
*
dy
<
minDistance
)
{
good
=
false
;
goto
break_out
;
}
}
}
}
}
break_out:
if
(
good
)
{
grid
[
y_cell
*
grid_width
+
x_cell
].
push_back
(
Point2f
((
float
)
x
,
(
float
)
y
));
corners
.
push_back
(
Point2f
((
float
)
x
,
(
float
)
y
));
++
ncorners
;
if
(
maxCorners
>
0
&&
(
int
)
ncorners
==
maxCorners
)
break
;
}
}
}
else
{
for
(
i
=
0
;
i
<
total
;
i
++
)
{
int
ofs
=
(
int
)((
const
uchar
*
)
tmpCorners
[
i
]
-
eig
.
data
);
int
y
=
(
int
)(
ofs
/
eig
.
step
);
int
x
=
(
int
)((
ofs
-
y
*
eig
.
step
)
/
sizeof
(
float
));
corners
.
push_back
(
Point2f
((
float
)
x
,
(
float
)
y
));
++
ncorners
;
if
(
maxCorners
>
0
&&
(
int
)
ncorners
==
maxCorners
)
break
;
}
}
Mat
(
corners
).
convertTo
(
_corners
,
_corners
.
fixedType
()
?
_corners
.
type
()
:
CV_32F
);
}
/////////////////end of ref code//////////////////////////
class
CV_GoodFeatureToTTest
:
public
cvtest
::
ArrayTest
{
public
:
CV_GoodFeatureToTTest
();
protected
:
int
prepare_test_case
(
int
test_case_idx
);
void
run_func
();
int
validate_test_results
(
int
test_case_idx
);
int
aperture_size
;
Mat
src
,
src_gray
;
Mat
src_gray32f
,
src_gray8U
;
Mat
mask
;
int
maxCorners
;
vector
<
Point2f
>
corners
;
vector
<
Point2f
>
Refcorners
;
double
qualityLevel
;
double
minDistance
;
int
blockSize
;
bool
useHarrisDetector
;
double
k
;
int
SrcType
;
};
CV_GoodFeatureToTTest
::
CV_GoodFeatureToTTest
()
{
RNG
&
rng
=
ts
->
get_rng
();
maxCorners
=
rng
.
uniform
(
50
,
100
);
qualityLevel
=
0.01
;
minDistance
=
10
;
blockSize
=
3
;
useHarrisDetector
=
false
;
k
=
0.04
;
mask
=
Mat
();
test_case_count
=
4
;
}
int
CV_GoodFeatureToTTest
::
prepare_test_case
(
int
test_case_idx
)
{
const
static
int
types
[]
=
{
CV_32FC1
,
CV_8UC1
};
cvtest
::
TS
&
tst
=
*
cvtest
::
TS
::
ptr
();
src
=
imread
(
string
(
tst
.
get_data_path
())
+
"shared/fruits.png"
,
IMREAD_COLOR
);
CV_Assert
(
src
.
data
!=
NULL
);
cvtColor
(
src
,
src_gray
,
CV_BGR2GRAY
);
SrcType
=
types
[
test_case_idx
&
0x1
];
useHarrisDetector
=
test_case_idx
&
2
?
true
:
false
;
return
1
;
}
void
CV_GoodFeatureToTTest
::
run_func
()
{
int
cn
=
src_gray
.
channels
();
CV_Assert
(
cn
==
1
);
CV_Assert
(
(
CV_MAT_DEPTH
(
SrcType
)
==
CV_32FC1
)
||
(
CV_MAT_DEPTH
(
SrcType
)
==
CV_8UC1
));
TEST_MESSAGEL
(
" maxCorners = "
,
maxCorners
)
if
(
useHarrisDetector
)
{
TEST_MESSAGE
(
" useHarrisDetector = true
\n
"
);
}
else
{
TEST_MESSAGE
(
" useHarrisDetector = false
\n
"
);
}
if
(
CV_MAT_DEPTH
(
SrcType
)
==
CV_32FC1
)
{
if
(
src_gray
.
depth
()
!=
CV_32FC1
)
src_gray
.
convertTo
(
src_gray32f
,
CV_32FC1
);
else
src_gray32f
=
src_gray
.
clone
();
TEST_MESSAGE
(
"goodFeaturesToTrack 32f
\n
"
)
goodFeaturesToTrack
(
src_gray32f
,
corners
,
maxCorners
,
qualityLevel
,
minDistance
,
Mat
(),
blockSize
,
useHarrisDetector
,
k
);
}
else
{
if
(
src_gray
.
depth
()
!=
CV_8UC1
)
src_gray
.
convertTo
(
src_gray8U
,
CV_8UC1
);
else
src_gray8U
=
src_gray
.
clone
();
TEST_MESSAGE
(
"goodFeaturesToTrack 8U
\n
"
)
goodFeaturesToTrack
(
src_gray8U
,
corners
,
maxCorners
,
qualityLevel
,
minDistance
,
Mat
(),
blockSize
,
useHarrisDetector
,
k
);
}
}
int
CV_GoodFeatureToTTest
::
validate_test_results
(
int
test_case_idx
)
{
static
const
double
eps
=
2e-6
;
if
(
CV_MAT_DEPTH
(
SrcType
)
==
CV_32FC1
)
{
if
(
src_gray
.
depth
()
!=
CV_32FC1
)
src_gray
.
convertTo
(
src_gray32f
,
CV_32FC1
);
else
src_gray32f
=
src_gray
.
clone
();
TEST_MESSAGE
(
"test_goodFeaturesToTrack 32f
\n
"
)
test_goodFeaturesToTrack
(
src_gray32f
,
Refcorners
,
maxCorners
,
qualityLevel
,
minDistance
,
Mat
(),
blockSize
,
useHarrisDetector
,
k
);
}
else
{
if
(
src_gray
.
depth
()
!=
CV_8UC1
)
src_gray
.
convertTo
(
src_gray8U
,
CV_8UC1
);
else
src_gray8U
=
src_gray
.
clone
();
TEST_MESSAGE
(
"test_goodFeaturesToTrack 8U
\n
"
)
test_goodFeaturesToTrack
(
src_gray8U
,
Refcorners
,
maxCorners
,
qualityLevel
,
minDistance
,
Mat
(),
blockSize
,
useHarrisDetector
,
k
);
}
double
e
=
norm
(
corners
,
Refcorners
);
if
(
e
>
eps
)
{
TEST_MESSAGEL
(
"Number of features: Refcorners = "
,
Refcorners
.
size
())
TEST_MESSAGEL
(
" TestCorners = "
,
corners
.
size
())
TEST_MESSAGE
(
"
\n
"
)
ts
->
printf
(
cvtest
::
TS
::
CONSOLE
,
"actual error: %g, expected: %g"
,
e
,
eps
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
for
(
int
i
=
0
;
i
<
(
int
)
std
::
min
((
unsigned
int
)(
corners
.
size
()),
(
unsigned
int
)(
Refcorners
.
size
()));
i
++
){
if
(
(
corners
[
i
].
x
!=
Refcorners
[
i
].
x
)
||
(
corners
[
i
].
y
!=
Refcorners
[
i
].
y
))
printf
(
"i = %i X %2.2f Xref %2.2f Y %2.2f Yref %2.2f
\n
"
,
i
,
corners
[
i
].
x
,
Refcorners
[
i
].
x
,
corners
[
i
].
y
,
Refcorners
[
i
].
y
);
}
}
else
{
TEST_MESSAGEL
(
" Refcorners = "
,
Refcorners
.
size
())
TEST_MESSAGEL
(
" TestCorners = "
,
corners
.
size
())
TEST_MESSAGE
(
"
\n
"
)
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
}
return
BaseTest
::
validate_test_results
(
test_case_idx
);
}
TEST
(
Imgproc_GoodFeatureToT
,
accuracy
)
{
CV_GoodFeatureToTTest
test
;
test
.
safe_run
();
}
/* End of file. */
modules/ts/include/opencv2/ts.hpp
View file @
878ec080
...
...
@@ -163,6 +163,9 @@ CV_EXPORTS void gemm(const Mat& src1, const Mat& src2, double alpha,
const
Mat
&
src3
,
double
beta
,
Mat
&
dst
,
int
flags
);
CV_EXPORTS
void
transform
(
const
Mat
&
src
,
Mat
&
dst
,
const
Mat
&
transmat
,
const
Mat
&
shift
);
CV_EXPORTS
double
crossCorr
(
const
Mat
&
src1
,
const
Mat
&
src2
);
CV_EXPORTS
void
threshold
(
const
Mat
&
src
,
Mat
&
dst
,
double
thresh
,
double
maxval
,
int
thresh_type
);
CV_EXPORTS
void
minMaxIdx
(
InputArray
_img
,
double
*
minVal
,
double
*
maxVal
,
Point
*
minLoc
,
Point
*
maxLoc
,
InputArray
_mask
);
struct
CV_EXPORTS
MatInfo
{
...
...
modules/ts/src/ts_func.cpp
View file @
878ec080
#include "precomp.hpp"
#include <float.h>
#include <limits.h>
#include "opencv2/imgproc/types_c.h"
#ifdef HAVE_TEGRA_OPTIMIZATION
#include "tegra.hpp"
...
...
@@ -3074,4 +3075,265 @@ void printVersionInfo(bool useStdOut)
#endif
}
void
threshold
(
const
Mat
&
_src
,
Mat
&
_dst
,
double
thresh
,
double
maxval
,
int
thresh_type
)
{
int
i
,
j
;
int
depth
=
_src
.
depth
(),
cn
=
_src
.
channels
();
int
width_n
=
_src
.
cols
*
cn
,
height
=
_src
.
rows
;
int
ithresh
=
cvFloor
(
thresh
);
int
imaxval
,
ithresh2
;
if
(
depth
==
CV_8U
)
{
ithresh2
=
saturate_cast
<
uchar
>
(
ithresh
);
imaxval
=
saturate_cast
<
uchar
>
(
maxval
);
}
else
if
(
depth
==
CV_16S
)
{
ithresh2
=
saturate_cast
<
short
>
(
ithresh
);
imaxval
=
saturate_cast
<
short
>
(
maxval
);
}
else
{
ithresh2
=
cvRound
(
ithresh
);
imaxval
=
cvRound
(
maxval
);
}
assert
(
depth
==
CV_8U
||
depth
==
CV_16S
||
depth
==
CV_32F
);
switch
(
thresh_type
)
{
case
CV_THRESH_BINARY
:
for
(
i
=
0
;
i
<
height
;
i
++
)
{
if
(
depth
==
CV_8U
)
{
const
uchar
*
src
=
_src
.
ptr
<
uchar
>
(
i
);
uchar
*
dst
=
_dst
.
ptr
<
uchar
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
dst
[
j
]
=
(
uchar
)(
src
[
j
]
>
ithresh
?
imaxval
:
0
);
}
else
if
(
depth
==
CV_16S
)
{
const
short
*
src
=
_src
.
ptr
<
short
>
(
i
);
short
*
dst
=
_dst
.
ptr
<
short
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
dst
[
j
]
=
(
short
)(
src
[
j
]
>
ithresh
?
imaxval
:
0
);
}
else
{
const
float
*
src
=
_src
.
ptr
<
float
>
(
i
);
float
*
dst
=
_dst
.
ptr
<
float
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
dst
[
j
]
=
(
float
)((
double
)
src
[
j
]
>
thresh
?
maxval
:
0.
f
);
}
}
break
;
case
CV_THRESH_BINARY_INV
:
for
(
i
=
0
;
i
<
height
;
i
++
)
{
if
(
depth
==
CV_8U
)
{
const
uchar
*
src
=
_src
.
ptr
<
uchar
>
(
i
);
uchar
*
dst
=
_dst
.
ptr
<
uchar
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
dst
[
j
]
=
(
uchar
)(
src
[
j
]
>
ithresh
?
0
:
imaxval
);
}
else
if
(
depth
==
CV_16S
)
{
const
short
*
src
=
_src
.
ptr
<
short
>
(
i
);
short
*
dst
=
_dst
.
ptr
<
short
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
dst
[
j
]
=
(
short
)(
src
[
j
]
>
ithresh
?
0
:
imaxval
);
}
else
{
const
float
*
src
=
_src
.
ptr
<
float
>
(
i
);
float
*
dst
=
_dst
.
ptr
<
float
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
dst
[
j
]
=
(
float
)((
double
)
src
[
j
]
>
thresh
?
0.
f
:
maxval
);
}
}
break
;
case
CV_THRESH_TRUNC
:
for
(
i
=
0
;
i
<
height
;
i
++
)
{
if
(
depth
==
CV_8U
)
{
const
uchar
*
src
=
_src
.
ptr
<
uchar
>
(
i
);
uchar
*
dst
=
_dst
.
ptr
<
uchar
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
{
int
s
=
src
[
j
];
dst
[
j
]
=
(
uchar
)(
s
>
ithresh
?
ithresh2
:
s
);
}
}
else
if
(
depth
==
CV_16S
)
{
const
short
*
src
=
_src
.
ptr
<
short
>
(
i
);
short
*
dst
=
_dst
.
ptr
<
short
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
{
int
s
=
src
[
j
];
dst
[
j
]
=
(
short
)(
s
>
ithresh
?
ithresh2
:
s
);
}
}
else
{
const
float
*
src
=
_src
.
ptr
<
float
>
(
i
);
float
*
dst
=
_dst
.
ptr
<
float
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
{
double
s
=
src
[
j
];
dst
[
j
]
=
(
float
)(
s
>
thresh
?
thresh
:
s
);
}
}
}
break
;
case
CV_THRESH_TOZERO
:
for
(
i
=
0
;
i
<
height
;
i
++
)
{
if
(
depth
==
CV_8U
)
{
const
uchar
*
src
=
_src
.
ptr
<
uchar
>
(
i
);
uchar
*
dst
=
_dst
.
ptr
<
uchar
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
{
int
s
=
src
[
j
];
dst
[
j
]
=
(
uchar
)(
s
>
ithresh
?
s
:
0
);
}
}
else
if
(
depth
==
CV_16S
)
{
const
short
*
src
=
_src
.
ptr
<
short
>
(
i
);
short
*
dst
=
_dst
.
ptr
<
short
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
{
int
s
=
src
[
j
];
dst
[
j
]
=
(
short
)(
s
>
ithresh
?
s
:
0
);
}
}
else
{
const
float
*
src
=
_src
.
ptr
<
float
>
(
i
);
float
*
dst
=
_dst
.
ptr
<
float
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
{
float
s
=
src
[
j
];
dst
[
j
]
=
s
>
thresh
?
s
:
0.
f
;
}
}
}
break
;
case
CV_THRESH_TOZERO_INV
:
for
(
i
=
0
;
i
<
height
;
i
++
)
{
if
(
depth
==
CV_8U
)
{
const
uchar
*
src
=
_src
.
ptr
<
uchar
>
(
i
);
uchar
*
dst
=
_dst
.
ptr
<
uchar
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
{
int
s
=
src
[
j
];
dst
[
j
]
=
(
uchar
)(
s
>
ithresh
?
0
:
s
);
}
}
else
if
(
depth
==
CV_16S
)
{
const
short
*
src
=
_src
.
ptr
<
short
>
(
i
);
short
*
dst
=
_dst
.
ptr
<
short
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
{
int
s
=
src
[
j
];
dst
[
j
]
=
(
short
)(
s
>
ithresh
?
0
:
s
);
}
}
else
{
const
float
*
src
=
_src
.
ptr
<
float
>
(
i
);
float
*
dst
=
_dst
.
ptr
<
float
>
(
i
);
for
(
j
=
0
;
j
<
width_n
;
j
++
)
{
float
s
=
src
[
j
];
dst
[
j
]
=
s
>
thresh
?
0.
f
:
s
;
}
}
}
break
;
default
:
assert
(
0
);
}
}
static
void
_minMaxIdx
(
const
float
*
src
,
const
uchar
*
mask
,
double
*
_minVal
,
double
*
_maxVal
,
size_t
*
_minIdx
,
size_t
*
_maxIdx
,
int
len
,
size_t
startIdx
)
{
double
minVal
=
FLT_MAX
,
maxVal
=
-
FLT_MAX
;
size_t
minIdx
=
0
,
maxIdx
=
0
;
if
(
!
mask
)
{
for
(
int
i
=
0
;
i
<
len
;
i
++
)
{
float
val
=
src
[
i
];
if
(
val
<
minVal
)
{
minVal
=
val
;
minIdx
=
startIdx
+
i
;
}
if
(
val
>
maxVal
)
{
maxVal
=
val
;
maxIdx
=
startIdx
+
i
;
}
}
}
else
{
for
(
int
i
=
0
;
i
<
len
;
i
++
)
{
float
val
=
src
[
i
];
if
(
mask
[
i
]
&&
val
<
minVal
)
{
minVal
=
val
;
minIdx
=
startIdx
+
i
;
}
if
(
mask
[
i
]
&&
val
>
maxVal
)
{
maxVal
=
val
;
maxIdx
=
startIdx
+
i
;
}
}
}
if
(
_minIdx
)
*
_minIdx
=
minIdx
;
if
(
_maxIdx
)
*
_maxIdx
=
maxIdx
;
if
(
_minVal
)
*
_minVal
=
minVal
;
if
(
_maxVal
)
*
_maxVal
=
maxVal
;
}
void
minMaxIdx
(
InputArray
_img
,
double
*
minVal
,
double
*
maxVal
,
Point
*
minLoc
,
Point
*
maxLoc
,
InputArray
_mask
)
{
Mat
img
=
_img
.
getMat
();
Mat
mask
=
_mask
.
getMat
();
CV_Assert
(
img
.
dims
<=
2
);
_minMaxIdx
((
const
float
*
)
img
.
data
,
mask
.
data
,
minVal
,
maxVal
,
(
size_t
*
)
minLoc
,
(
size_t
*
)
maxLoc
,
(
int
)
img
.
total
(),
1
);
if
(
minLoc
)
std
::
swap
(
minLoc
->
x
,
minLoc
->
y
);
if
(
maxLoc
)
std
::
swap
(
maxLoc
->
x
,
maxLoc
->
y
);
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment