Commit 86f4cd25 authored by Roman Donchenko's avatar Roman Donchenko Committed by OpenCV Buildbot

Merge pull request #1309 from pengx17:master_retina_ocl

parents 11dcd4f4 9f0a88c1
set(the_description "Biologically inspired algorithms")
ocv_define_module(bioinspired opencv_core OPTIONAL opencv_highgui)
ocv_define_module(bioinspired opencv_core OPTIONAL opencv_highgui opencv_ocl)
......@@ -304,7 +304,8 @@ public:
CV_EXPORTS Ptr<Retina> createRetina(Size inputSize);
CV_EXPORTS Ptr<Retina> createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0);
CV_EXPORTS Ptr<Retina> createRetina_OCL(Size inputSize);
CV_EXPORTS Ptr<Retina> createRetina_OCL(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0);
}
}
#endif /* __OPENCV_BIOINSPIRED_RETINA_HPP__ */
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/////////////////////////////////////////////////////////
//*******************************************************
// basicretinafilter
//////////////// _spatiotemporalLPfilter ////////////////
//_horizontalCausalFilter_addInput
kernel void horizontalCausalFilter_addInput(
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int in_offset,
const int out_offset,
const float _tau,
const float _a
)
{
int gid = get_global_id(0);
if(gid >= rows)
{
return;
}
global const float * iptr =
input + mad24(gid, elements_per_row, in_offset / 4);
global float * optr =
output + mad24(gid, elements_per_row, out_offset / 4);
float res;
float4 in_v4, out_v4, res_v4 = (float4)(0);
//vectorize to increase throughput
for(int i = 0; i < cols / 4; ++i, iptr += 4, optr += 4)
{
in_v4 = vload4(0, iptr);
out_v4 = vload4(0, optr);
res_v4.x = in_v4.x + _tau * out_v4.x + _a * res_v4.w;
res_v4.y = in_v4.y + _tau * out_v4.y + _a * res_v4.x;
res_v4.z = in_v4.z + _tau * out_v4.z + _a * res_v4.y;
res_v4.w = in_v4.w + _tau * out_v4.w + _a * res_v4.z;
vstore4(res_v4, 0, optr);
}
res = res_v4.w;
// there may be left some
for(int i = 0; i < cols % 4; ++i, ++iptr, ++optr)
{
res = *iptr + _tau * *optr + _a * res;
*optr = res;
}
}
//_horizontalAnticausalFilter
kernel void horizontalAnticausalFilter(
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int out_offset,
const float _a
)
{
int gid = get_global_id(0);
if(gid >= rows)
{
return;
}
global float * optr = output +
mad24(gid + 1, elements_per_row, - 1 + out_offset / 4);
float4 result = (float4)(0), out_v4;
// we assume elements_per_row is multple of 4
for(int i = 0; i < elements_per_row / 4; ++i, optr -= 4)
{
// shift left, `offset` is type `size_t` so it cannot be negative
out_v4 = vload4(0, optr - 3);
result.w = out_v4.w + _a * result.x;
result.z = out_v4.z + _a * result.w;
result.y = out_v4.y + _a * result.z;
result.x = out_v4.x + _a * result.y;
vstore4(result, 0, optr - 3);
}
}
//_verticalCausalFilter
kernel void verticalCausalFilter(
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int out_offset,
const float _a
)
{
int gid = get_global_id(0);
if(gid >= cols)
{
return;
}
global float * optr = output + gid + out_offset / 4;
float result = 0;
for(int i = 0; i < rows; ++i, optr += elements_per_row)
{
result = *optr + _a * result;
*optr = result;
}
}
//_verticalCausalFilter
kernel void verticalAnticausalFilter_multGain(
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int out_offset,
const float _a,
const float _gain
)
{
int gid = get_global_id(0);
if(gid >= cols)
{
return;
}
global float * optr = output + (rows - 1) * elements_per_row + gid + out_offset / 4;
float result = 0;
for(int i = 0; i < rows; ++i, optr -= elements_per_row)
{
result = *optr + _a * result;
*optr = _gain * result;
}
}
//
// end of _spatiotemporalLPfilter
/////////////////////////////////////////////////////////////////////
//////////////// horizontalAnticausalFilter_Irregular ////////////////
kernel void horizontalAnticausalFilter_Irregular(
global float * output,
global float * buffer,
const int cols,
const int rows,
const int elements_per_row,
const int out_offset,
const int buffer_offset
)
{
int gid = get_global_id(0);
if(gid >= rows)
{
return;
}
global float * optr =
output + mad24(rows - gid, elements_per_row, -1 + out_offset / 4);
global float * bptr =
buffer + mad24(rows - gid, elements_per_row, -1 + buffer_offset / 4);
float4 buf_v4, out_v4, res_v4 = (float4)(0);
for(int i = 0; i < elements_per_row / 4; ++i, optr -= 4, bptr -= 4)
{
buf_v4 = vload4(0, bptr - 3);
out_v4 = vload4(0, optr - 3);
res_v4.w = out_v4.w + buf_v4.w * res_v4.x;
res_v4.z = out_v4.z + buf_v4.z * res_v4.w;
res_v4.y = out_v4.y + buf_v4.y * res_v4.z;
res_v4.x = out_v4.x + buf_v4.x * res_v4.y;
vstore4(res_v4, 0, optr - 3);
}
}
//////////////// verticalCausalFilter_Irregular ////////////////
kernel void verticalCausalFilter_Irregular(
global float * output,
global float * buffer,
const int cols,
const int rows,
const int elements_per_row,
const int out_offset,
const int buffer_offset
)
{
int gid = get_global_id(0);
if(gid >= cols)
{
return;
}
global float * optr = output + gid + out_offset / 4;
global float * bptr = buffer + gid + buffer_offset / 4;
float result = 0;
for(int i = 0; i < rows; ++i, optr += elements_per_row, bptr += elements_per_row)
{
result = *optr + *bptr * result;
*optr = result;
}
}
//////////////// _adaptiveHorizontalCausalFilter_addInput ////////////////
kernel void adaptiveHorizontalCausalFilter_addInput(
global const float * input,
global const float * gradient,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int in_offset,
const int grad_offset,
const int out_offset
)
{
int gid = get_global_id(0);
if(gid >= rows)
{
return;
}
global const float * iptr =
input + mad24(gid, elements_per_row, in_offset / 4);
global const float * gptr =
gradient + mad24(gid, elements_per_row, grad_offset / 4);
global float * optr =
output + mad24(gid, elements_per_row, out_offset / 4);
float4 in_v4, grad_v4, out_v4, res_v4 = (float4)(0);
for(int i = 0; i < cols / 4; ++i, iptr += 4, gptr += 4, optr += 4)
{
in_v4 = vload4(0, iptr);
grad_v4 = vload4(0, gptr);
res_v4.x = in_v4.x + grad_v4.x * res_v4.w;
res_v4.y = in_v4.y + grad_v4.y * res_v4.x;
res_v4.z = in_v4.z + grad_v4.z * res_v4.y;
res_v4.w = in_v4.w + grad_v4.w * res_v4.z;
vstore4(res_v4, 0, optr);
}
for(int i = 0; i < cols % 4; ++i, ++iptr, ++gptr, ++optr)
{
res_v4.w = *iptr + *gptr * res_v4.w;
*optr = res_v4.w;
}
}
//////////////// _adaptiveVerticalAnticausalFilter_multGain ////////////////
kernel void adaptiveVerticalAnticausalFilter_multGain(
global const float * gradient,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int grad_offset,
const int out_offset,
const float gain
)
{
int gid = get_global_id(0);
if(gid >= cols)
{
return;
}
int start_idx = mad24(rows - 1, elements_per_row, gid);
global const float * gptr = gradient + start_idx + grad_offset / 4;
global float * optr = output + start_idx + out_offset / 4;
float result = 0;
for(int i = 0; i < rows; ++i, gptr -= elements_per_row, optr -= elements_per_row)
{
result = *optr + *gptr * result;
*optr = gain * result;
}
}
//////////////// _localLuminanceAdaptation ////////////////
// FIXME:
// This kernel seems to have precision problem on GPU
kernel void localLuminanceAdaptation(
global const float * luma,
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const float _localLuminanceAddon,
const float _localLuminanceFactor,
const float _maxInputValue
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
float X0 = luma[offset] * _localLuminanceFactor + _localLuminanceAddon;
float input_val = input[offset];
// output of the following line may be different between GPU and CPU
output[offset] = (_maxInputValue + X0) * input_val / (input_val + X0 + 0.00000000001f);
}
// end of basicretinafilter
//*******************************************************
/////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////
//******************************************************
// magno
// TODO: this kernel has too many buffer accesses, better to make it
// vector read/write for fetch efficiency
kernel void amacrineCellsComputing(
global const float * opl_on,
global const float * opl_off,
global float * prev_in_on,
global float * prev_in_off,
global float * out_on,
global float * out_off,
const int cols,
const int rows,
const int elements_per_row,
const float coeff
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
opl_on += offset;
opl_off += offset;
prev_in_on += offset;
prev_in_off += offset;
out_on += offset;
out_off += offset;
float magnoXonPixelResult = coeff * (*out_on + *opl_on - *prev_in_on);
*out_on = fmax(magnoXonPixelResult, 0);
float magnoXoffPixelResult = coeff * (*out_off + *opl_off - *prev_in_off);
*out_off = fmax(magnoXoffPixelResult, 0);
*prev_in_on = *opl_on;
*prev_in_off = *opl_off;
}
/////////////////////////////////////////////////////////
//******************************************************
// parvo
// TODO: this kernel has too many buffer accesses, needs optimization
kernel void OPL_OnOffWaysComputing(
global float4 * photo_out,
global float4 * horiz_out,
global float4 * bipol_on,
global float4 * bipol_off,
global float4 * parvo_on,
global float4 * parvo_off,
const int cols,
const int rows,
const int elements_per_row
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx * 4 >= cols || gidy >= rows)
{
return;
}
// we assume elements_per_row must be multiples of 4
int offset = mad24(gidy, elements_per_row >> 2, gidx);
photo_out += offset;
horiz_out += offset;
bipol_on += offset;
bipol_off += offset;
parvo_on += offset;
parvo_off += offset;
float4 diff = *photo_out - *horiz_out;
float4 isPositive;// = convert_float4(diff > (float4)(0.0f, 0.0f, 0.0f, 0.0f));
isPositive.x = diff.x > 0.0f;
isPositive.y = diff.y > 0.0f;
isPositive.z = diff.z > 0.0f;
isPositive.w = diff.w > 0.0f;
float4 res_on = isPositive * diff;
float4 res_off = (isPositive - (float4)(1.0f)) * diff;
*bipol_on = res_on;
*parvo_on = res_on;
*bipol_off = res_off;
*parvo_off = res_off;
}
/////////////////////////////////////////////////////////
//******************************************************
// retinacolor
inline int bayerSampleOffset(int step, int rows, int x, int y)
{
return mad24(y, step, x) +
((y % 2) + (x % 2)) * rows * step;
}
/////// colorMultiplexing //////
kernel void runColorMultiplexingBayer(
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
output[offset] = input[bayerSampleOffset(elements_per_row, rows, gidx, gidy)];
}
kernel void runColorDemultiplexingBayer(
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
output[bayerSampleOffset(elements_per_row, rows, gidx, gidy)] = input[offset];
}
kernel void demultiplexAssign(
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = bayerSampleOffset(elements_per_row, rows, gidx, gidy);
output[offset] = input[offset];
}
//// normalizeGrayOutputCentredSigmoide
kernel void normalizeGrayOutputCentredSigmoide(
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const float meanval,
const float X0
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
float input_val = input[offset];
output[offset] = meanval +
(meanval + X0) * (input_val - meanval) / (fabs(input_val - meanval) + X0);
}
//// normalize by photoreceptors density
kernel void normalizePhotoDensity(
global const float * chroma,
global const float * colorDensity,
global const float * multiplex,
global float * luma,
global float * demultiplex,
const int cols,
const int rows,
const int elements_per_row,
const float pG
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
int index = offset;
float Cr = chroma[index] * colorDensity[index];
index += elements_per_row * rows;
float Cg = chroma[index] * colorDensity[index];
index += elements_per_row * rows;
float Cb = chroma[index] * colorDensity[index];
const float luma_res = (Cr + Cg + Cb) * pG;
luma[offset] = luma_res;
demultiplex[bayerSampleOffset(elements_per_row, rows, gidx, gidy)] =
multiplex[offset] - luma_res;
}
//////// computeGradient ///////
// TODO:
// this function maybe accelerated by image2d_t or lds
kernel void computeGradient(
global const float * luma,
global float * gradient,
const int cols,
const int rows,
const int elements_per_row
)
{
int gidx = get_global_id(0) + 2, gidy = get_global_id(1) + 2;
if(gidx >= cols - 2 || gidy >= rows - 2)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
luma += offset;
// horizontal and vertical local gradients
const float v_grad = fabs(luma[elements_per_row] - luma[- elements_per_row]);
const float h_grad = fabs(luma[1] - luma[-1]);
// neighborhood horizontal and vertical gradients
const float cur_val = luma[0];
const float v_grad_p = fabs(cur_val - luma[- 2 * elements_per_row]);
const float h_grad_p = fabs(cur_val - luma[- 2]);
const float v_grad_n = fabs(cur_val - luma[2 * elements_per_row]);
const float h_grad_n = fabs(cur_val - luma[2]);
const float horiz_grad = 0.5f * h_grad + 0.25f * (h_grad_p + h_grad_n);
const float verti_grad = 0.5f * v_grad + 0.25f * (v_grad_p + v_grad_n);
const bool is_vertical_greater = horiz_grad < verti_grad;
gradient[offset + elements_per_row * rows] = is_vertical_greater ? 0.06f : 0.57f;
gradient[offset ] = is_vertical_greater ? 0.57f : 0.06f;
}
/////// substractResidual ///////
kernel void substractResidual(
global float * input,
const int cols,
const int rows,
const int elements_per_row,
const float pR,
const float pG,
const float pB
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int indices [3] =
{
mad24(gidy, elements_per_row, gidx),
mad24(gidy + rows, elements_per_row, gidx),
mad24(gidy + 2 * rows, elements_per_row, gidx)
};
float vals[3] = {input[indices[0]], input[indices[1]], input[indices[2]]};
float residu = pR * vals[0] + pG * vals[1] + pB * vals[2];
input[indices[0]] = vals[0] - residu;
input[indices[1]] = vals[1] - residu;
input[indices[2]] = vals[2] - residu;
}
///// clipRGBOutput_0_maxInputValue /////
kernel void clipRGBOutput_0_maxInputValue(
global float * input,
const int cols,
const int rows,
const int elements_per_row,
const float maxVal
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
float val = input[offset];
val = clamp(val, 0.0f, maxVal);
input[offset] = val;
}
//// normalizeGrayOutputNearZeroCentreredSigmoide ////
kernel void normalizeGrayOutputNearZeroCentreredSigmoide(
global float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const float maxVal,
const float X0cube
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
float currentCubeLuminance = input[offset];
currentCubeLuminance = currentCubeLuminance * currentCubeLuminance * currentCubeLuminance;
output[offset] = currentCubeLuminance * X0cube / (X0cube + currentCubeLuminance);
}
//// centerReductImageLuminance ////
kernel void centerReductImageLuminance(
global float * input,
const int cols,
const int rows,
const int elements_per_row,
const float mean,
const float std_dev
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
float val = input[offset];
input[offset] = (val - mean) / std_dev;
}
//// inverseValue ////
kernel void inverseValue(
global float * input,
const int cols,
const int rows,
const int elements_per_row
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
input[offset] = 1.f / input[offset];
}
#define CV_PI 3.1415926535897932384626433832795
//// _processRetinaParvoMagnoMapping ////
kernel void processRetinaParvoMagnoMapping(
global float * parvo,
global float * magno,
global float * output,
const int cols,
const int rows,
const int halfCols,
const int halfRows,
const int elements_per_row,
const float minDistance
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
float distanceToCenter =
sqrt(((float)(gidy - halfRows) * (gidy - halfRows) + (gidx - halfCols) * (gidx - halfCols)));
float a = distanceToCenter < minDistance ?
(0.5f + 0.5f * (float)cos(CV_PI * distanceToCenter / minDistance)) : 0;
float b = 1.f - a;
output[offset] = parvo[offset] * a + magno[offset] * b;
}
......@@ -43,11 +43,17 @@
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#include "opencv2/opencv_modules.hpp"
#include "opencv2/bioinspired.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include <valarray>
#ifdef HAVE_OPENCV_OCL
#include "opencv2/ocl/private/util.hpp"
#endif
namespace cv
{
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "retina_ocl.hpp"
#include <iostream>
#include <sstream>
#ifdef HAVE_OPENCV_OCL
#define NOT_IMPLEMENTED CV_Error(cv::Error::StsNotImplemented, "Not implemented")
namespace cv
{
namespace ocl
{
//OpenCL kernel file string pointer
extern const char * retina_kernel;
}
}
namespace cv
{
namespace bioinspired
{
namespace ocl
{
using namespace cv::ocl;
class RetinaOCLImpl : public Retina
{
public:
RetinaOCLImpl(Size getInputSize);
RetinaOCLImpl(Size getInputSize, const bool colorMode, int colorSamplingMethod = RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0);
virtual ~RetinaOCLImpl();
Size getInputSize();
Size getOutputSize();
void setup(String retinaParameterFile = "", const bool applyDefaultSetupOnFailure = true);
void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure = true);
void setup(RetinaParameters newParameters);
RetinaOCLImpl::RetinaParameters getParameters();
const String printSetup();
virtual void write( String fs ) const;
virtual void write( FileStorage& fs ) const;
void setupOPLandIPLParvoChannel(const bool colorMode = true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity = 0.7, const float photoreceptorsTemporalConstant = 0.5, const float photoreceptorsSpatialConstant = 0.53, const float horizontalCellsGain = 0, const float HcellsTemporalConstant = 1, const float HcellsSpatialConstant = 7, const float ganglionCellsSensitivity = 0.7);
void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta = 0, const float parasolCells_tau = 0, const float parasolCells_k = 7, const float amacrinCellsTemporalCutFrequency = 1.2, const float V0CompressionParameter = 0.95, const float localAdaptintegration_tau = 0, const float localAdaptintegration_k = 7);
void run(InputArray inputImage);
void getParvo(OutputArray retinaOutput_parvo);
void getMagno(OutputArray retinaOutput_magno);
void setColorSaturation(const bool saturateColors = true, const float colorSaturationValue = 4.0);
void clearBuffers();
void activateMovingContoursProcessing(const bool activate);
void activateContoursProcessing(const bool activate);
// unimplemented interfaces:
void applyFastToneMapping(InputArray /*inputImage*/, OutputArray /*outputToneMappedImage*/) { NOT_IMPLEMENTED; }
void getParvoRAW(OutputArray /*retinaOutput_parvo*/) { NOT_IMPLEMENTED; }
void getMagnoRAW(OutputArray /*retinaOutput_magno*/) { NOT_IMPLEMENTED; }
const Mat getMagnoRAW() const { NOT_IMPLEMENTED; return Mat(); }
const Mat getParvoRAW() const { NOT_IMPLEMENTED; return Mat(); }
protected:
RetinaParameters _retinaParameters;
cv::ocl::oclMat _inputBuffer;
RetinaFilter* _retinaFilter;
bool convertToColorPlanes(const cv::ocl::oclMat& input, cv::ocl::oclMat &output);
void convertToInterleaved(const cv::ocl::oclMat& input, bool colorMode, cv::ocl::oclMat &output);
void _init(const Size getInputSize, const bool colorMode, int colorSamplingMethod = RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0);
};
RetinaOCLImpl::RetinaOCLImpl(const cv::Size inputSz)
{
_retinaFilter = 0;
_init(inputSz, true, RETINA_COLOR_BAYER, false);
}
RetinaOCLImpl::RetinaOCLImpl(const cv::Size inputSz, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
_retinaFilter = 0;
_init(inputSz, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
};
RetinaOCLImpl::~RetinaOCLImpl()
{
if (_retinaFilter)
{
delete _retinaFilter;
}
}
/**
* retreive retina input buffer size
*/
Size RetinaOCLImpl::getInputSize()
{
return cv::Size(_retinaFilter->getInputNBcolumns(), _retinaFilter->getInputNBrows());
}
/**
* retreive retina output buffer size
*/
Size RetinaOCLImpl::getOutputSize()
{
return cv::Size(_retinaFilter->getOutputNBcolumns(), _retinaFilter->getOutputNBrows());
}
void RetinaOCLImpl::setColorSaturation(const bool saturateColors, const float colorSaturationValue)
{
_retinaFilter->setColorSaturation(saturateColors, colorSaturationValue);
}
struct RetinaOCLImpl::RetinaParameters RetinaOCLImpl::getParameters()
{
return _retinaParameters;
}
void RetinaOCLImpl::setup(String retinaParameterFile, const bool applyDefaultSetupOnFailure)
{
try
{
// opening retinaParameterFile in read mode
cv::FileStorage fs(retinaParameterFile, cv::FileStorage::READ);
setup(fs, applyDefaultSetupOnFailure);
}
catch(Exception &e)
{
std::cout << "RetinaOCLImpl::setup: wrong/unappropriate xml parameter file : error report :`n=>" << e.what() << std::endl;
if (applyDefaultSetupOnFailure)
{
std::cout << "RetinaOCLImpl::setup: resetting retina with default parameters" << std::endl;
setupOPLandIPLParvoChannel();
setupIPLMagnoChannel();
}
else
{
std::cout << "=> keeping current parameters" << std::endl;
}
}
}
void RetinaOCLImpl::setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure)
{
try
{
// read parameters file if it exists or apply default setup if asked for
if (!fs.isOpened())
{
std::cout << "RetinaOCLImpl::setup: provided parameters file could not be open... skeeping configuration" << std::endl;
return;
// implicit else case : retinaParameterFile could be open (it exists at least)
}
// OPL and Parvo init first... update at the same time the parameters structure and the retina core
cv::FileNode rootFn = fs.root(), currFn = rootFn["OPLandIPLparvo"];
currFn["colorMode"] >> _retinaParameters.OPLandIplParvo.colorMode;
currFn["normaliseOutput"] >> _retinaParameters.OPLandIplParvo.normaliseOutput;
currFn["photoreceptorsLocalAdaptationSensitivity"] >> _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity;
currFn["photoreceptorsTemporalConstant"] >> _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant;
currFn["photoreceptorsSpatialConstant"] >> _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant;
currFn["horizontalCellsGain"] >> _retinaParameters.OPLandIplParvo.horizontalCellsGain;
currFn["hcellsTemporalConstant"] >> _retinaParameters.OPLandIplParvo.hcellsTemporalConstant;
currFn["hcellsSpatialConstant"] >> _retinaParameters.OPLandIplParvo.hcellsSpatialConstant;
currFn["ganglionCellsSensitivity"] >> _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity;
setupOPLandIPLParvoChannel(_retinaParameters.OPLandIplParvo.colorMode, _retinaParameters.OPLandIplParvo.normaliseOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant, _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant, _retinaParameters.OPLandIplParvo.horizontalCellsGain, _retinaParameters.OPLandIplParvo.hcellsTemporalConstant, _retinaParameters.OPLandIplParvo.hcellsSpatialConstant, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity);
// init retina IPL magno setup... update at the same time the parameters structure and the retina core
currFn = rootFn["IPLmagno"];
currFn["normaliseOutput"] >> _retinaParameters.IplMagno.normaliseOutput;
currFn["parasolCells_beta"] >> _retinaParameters.IplMagno.parasolCells_beta;
currFn["parasolCells_tau"] >> _retinaParameters.IplMagno.parasolCells_tau;
currFn["parasolCells_k"] >> _retinaParameters.IplMagno.parasolCells_k;
currFn["amacrinCellsTemporalCutFrequency"] >> _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency;
currFn["V0CompressionParameter"] >> _retinaParameters.IplMagno.V0CompressionParameter;
currFn["localAdaptintegration_tau"] >> _retinaParameters.IplMagno.localAdaptintegration_tau;
currFn["localAdaptintegration_k"] >> _retinaParameters.IplMagno.localAdaptintegration_k;
setupIPLMagnoChannel(_retinaParameters.IplMagno.normaliseOutput, _retinaParameters.IplMagno.parasolCells_beta, _retinaParameters.IplMagno.parasolCells_tau, _retinaParameters.IplMagno.parasolCells_k, _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency, _retinaParameters.IplMagno.V0CompressionParameter, _retinaParameters.IplMagno.localAdaptintegration_tau, _retinaParameters.IplMagno.localAdaptintegration_k);
}
catch(Exception &e)
{
std::cout << "RetinaOCLImpl::setup: resetting retina with default parameters" << std::endl;
if (applyDefaultSetupOnFailure)
{
setupOPLandIPLParvoChannel();
setupIPLMagnoChannel();
}
std::cout << "RetinaOCLImpl::setup: wrong/unappropriate xml parameter file : error report :`n=>" << e.what() << std::endl;
std::cout << "=> keeping current parameters" << std::endl;
}
}
void RetinaOCLImpl::setup(cv::bioinspired::Retina::RetinaParameters newConfiguration)
{
// simply copy structures
memcpy(&_retinaParameters, &newConfiguration, sizeof(cv::bioinspired::Retina::RetinaParameters));
// apply setup
setupOPLandIPLParvoChannel(_retinaParameters.OPLandIplParvo.colorMode, _retinaParameters.OPLandIplParvo.normaliseOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant, _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant, _retinaParameters.OPLandIplParvo.horizontalCellsGain, _retinaParameters.OPLandIplParvo.hcellsTemporalConstant, _retinaParameters.OPLandIplParvo.hcellsSpatialConstant, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity);
setupIPLMagnoChannel(_retinaParameters.IplMagno.normaliseOutput, _retinaParameters.IplMagno.parasolCells_beta, _retinaParameters.IplMagno.parasolCells_tau, _retinaParameters.IplMagno.parasolCells_k, _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency, _retinaParameters.IplMagno.V0CompressionParameter, _retinaParameters.IplMagno.localAdaptintegration_tau, _retinaParameters.IplMagno.localAdaptintegration_k);
}
const String RetinaOCLImpl::printSetup()
{
std::stringstream outmessage;
// displaying OPL and IPL parvo setup
outmessage << "Current Retina instance setup :"
<< "\nOPLandIPLparvo" << "{"
<< "\n==> colorMode : " << _retinaParameters.OPLandIplParvo.colorMode
<< "\n==> normalizeParvoOutput :" << _retinaParameters.OPLandIplParvo.normaliseOutput
<< "\n==> photoreceptorsLocalAdaptationSensitivity : " << _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity
<< "\n==> photoreceptorsTemporalConstant : " << _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant
<< "\n==> photoreceptorsSpatialConstant : " << _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant
<< "\n==> horizontalCellsGain : " << _retinaParameters.OPLandIplParvo.horizontalCellsGain
<< "\n==> hcellsTemporalConstant : " << _retinaParameters.OPLandIplParvo.hcellsTemporalConstant
<< "\n==> hcellsSpatialConstant : " << _retinaParameters.OPLandIplParvo.hcellsSpatialConstant
<< "\n==> parvoGanglionCellsSensitivity : " << _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity
<< "}\n";
// displaying IPL magno setup
outmessage << "Current Retina instance setup :"
<< "\nIPLmagno" << "{"
<< "\n==> normaliseOutput : " << _retinaParameters.IplMagno.normaliseOutput
<< "\n==> parasolCells_beta : " << _retinaParameters.IplMagno.parasolCells_beta
<< "\n==> parasolCells_tau : " << _retinaParameters.IplMagno.parasolCells_tau
<< "\n==> parasolCells_k : " << _retinaParameters.IplMagno.parasolCells_k
<< "\n==> amacrinCellsTemporalCutFrequency : " << _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency
<< "\n==> V0CompressionParameter : " << _retinaParameters.IplMagno.V0CompressionParameter
<< "\n==> localAdaptintegration_tau : " << _retinaParameters.IplMagno.localAdaptintegration_tau
<< "\n==> localAdaptintegration_k : " << _retinaParameters.IplMagno.localAdaptintegration_k
<< "}";
return outmessage.str().c_str();
}
void RetinaOCLImpl::write( String fs ) const
{
FileStorage parametersSaveFile(fs, cv::FileStorage::WRITE );
write(parametersSaveFile);
}
void RetinaOCLImpl::write( FileStorage& fs ) const
{
if (!fs.isOpened())
{
return; // basic error case
}
fs << "OPLandIPLparvo" << "{";
fs << "colorMode" << _retinaParameters.OPLandIplParvo.colorMode;
fs << "normaliseOutput" << _retinaParameters.OPLandIplParvo.normaliseOutput;
fs << "photoreceptorsLocalAdaptationSensitivity" << _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity;
fs << "photoreceptorsTemporalConstant" << _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant;
fs << "photoreceptorsSpatialConstant" << _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant;
fs << "horizontalCellsGain" << _retinaParameters.OPLandIplParvo.horizontalCellsGain;
fs << "hcellsTemporalConstant" << _retinaParameters.OPLandIplParvo.hcellsTemporalConstant;
fs << "hcellsSpatialConstant" << _retinaParameters.OPLandIplParvo.hcellsSpatialConstant;
fs << "ganglionCellsSensitivity" << _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity;
fs << "}";
fs << "IPLmagno" << "{";
fs << "normaliseOutput" << _retinaParameters.IplMagno.normaliseOutput;
fs << "parasolCells_beta" << _retinaParameters.IplMagno.parasolCells_beta;
fs << "parasolCells_tau" << _retinaParameters.IplMagno.parasolCells_tau;
fs << "parasolCells_k" << _retinaParameters.IplMagno.parasolCells_k;
fs << "amacrinCellsTemporalCutFrequency" << _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency;
fs << "V0CompressionParameter" << _retinaParameters.IplMagno.V0CompressionParameter;
fs << "localAdaptintegration_tau" << _retinaParameters.IplMagno.localAdaptintegration_tau;
fs << "localAdaptintegration_k" << _retinaParameters.IplMagno.localAdaptintegration_k;
fs << "}";
}
void RetinaOCLImpl::setupOPLandIPLParvoChannel(const bool colorMode, const bool normaliseOutput, const float photoreceptorsLocalAdaptationSensitivity, const float photoreceptorsTemporalConstant, const float photoreceptorsSpatialConstant, const float horizontalCellsGain, const float HcellsTemporalConstant, const float HcellsSpatialConstant, const float ganglionCellsSensitivity)
{
// retina core parameters setup
_retinaFilter->setColorMode(colorMode);
_retinaFilter->setPhotoreceptorsLocalAdaptationSensitivity(photoreceptorsLocalAdaptationSensitivity);
_retinaFilter->setOPLandParvoParameters(0, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant, HcellsSpatialConstant, ganglionCellsSensitivity);
_retinaFilter->setParvoGanglionCellsLocalAdaptationSensitivity(ganglionCellsSensitivity);
_retinaFilter->activateNormalizeParvoOutput_0_maxOutputValue(normaliseOutput);
// update parameters struture
_retinaParameters.OPLandIplParvo.colorMode = colorMode;
_retinaParameters.OPLandIplParvo.normaliseOutput = normaliseOutput;
_retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity = photoreceptorsLocalAdaptationSensitivity;
_retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant = photoreceptorsTemporalConstant;
_retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant = photoreceptorsSpatialConstant;
_retinaParameters.OPLandIplParvo.horizontalCellsGain = horizontalCellsGain;
_retinaParameters.OPLandIplParvo.hcellsTemporalConstant = HcellsTemporalConstant;
_retinaParameters.OPLandIplParvo.hcellsSpatialConstant = HcellsSpatialConstant;
_retinaParameters.OPLandIplParvo.ganglionCellsSensitivity = ganglionCellsSensitivity;
}
void RetinaOCLImpl::setupIPLMagnoChannel(const bool normaliseOutput, const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float V0CompressionParameter, const float localAdaptintegration_tau, const float localAdaptintegration_k)
{
_retinaFilter->setMagnoCoefficientsTable(parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k);
_retinaFilter->activateNormalizeMagnoOutput_0_maxOutputValue(normaliseOutput);
// update parameters struture
_retinaParameters.IplMagno.normaliseOutput = normaliseOutput;
_retinaParameters.IplMagno.parasolCells_beta = parasolCells_beta;
_retinaParameters.IplMagno.parasolCells_tau = parasolCells_tau;
_retinaParameters.IplMagno.parasolCells_k = parasolCells_k;
_retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency = amacrinCellsTemporalCutFrequency;
_retinaParameters.IplMagno.V0CompressionParameter = V0CompressionParameter;
_retinaParameters.IplMagno.localAdaptintegration_tau = localAdaptintegration_tau;
_retinaParameters.IplMagno.localAdaptintegration_k = localAdaptintegration_k;
}
void RetinaOCLImpl::run(const InputArray input)
{
oclMat &inputMatToConvert = getOclMatRef(input);
bool colorMode = convertToColorPlanes(inputMatToConvert, _inputBuffer);
// first convert input image to the compatible format : std::valarray<float>
// process the retina
if (!_retinaFilter->runFilter(_inputBuffer, colorMode, false, _retinaParameters.OPLandIplParvo.colorMode && colorMode, false))
{
throw cv::Exception(-1, "Retina cannot be applied, wrong input buffer size", "RetinaOCLImpl::run", "Retina.h", 0);
}
}
void RetinaOCLImpl::getParvo(OutputArray output)
{
oclMat &retinaOutput_parvo = getOclMatRef(output);
if (_retinaFilter->getColorMode())
{
// reallocate output buffer (if necessary)
convertToInterleaved(_retinaFilter->getColorOutput(), true, retinaOutput_parvo);
}
else
{
// reallocate output buffer (if necessary)
convertToInterleaved(_retinaFilter->getContours(), false, retinaOutput_parvo);
}
//retinaOutput_parvo/=255.0;
}
void RetinaOCLImpl::getMagno(OutputArray output)
{
oclMat &retinaOutput_magno = getOclMatRef(output);
// reallocate output buffer (if necessary)
convertToInterleaved(_retinaFilter->getMovingContours(), false, retinaOutput_magno);
//retinaOutput_magno/=255.0;
}
// private method called by constructirs
void RetinaOCLImpl::_init(const cv::Size inputSz, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
// basic error check
if (inputSz.height*inputSz.width <= 0)
{
throw cv::Exception(-1, "Bad retina size setup : size height and with must be superior to zero", "RetinaOCLImpl::setup", "Retina.h", 0);
}
// allocate the retina model
if (_retinaFilter)
{
delete _retinaFilter;
}
_retinaFilter = new RetinaFilter(inputSz.height, inputSz.width, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
// prepare the default parameter XML file with default setup
setup(_retinaParameters);
// init retina
_retinaFilter->clearAllBuffers();
}
bool RetinaOCLImpl::convertToColorPlanes(const oclMat& input, oclMat &output)
{
oclMat convert_input;
input.convertTo(convert_input, CV_32F);
if(convert_input.channels() == 3 || convert_input.channels() == 4)
{
ocl::ensureSizeIsEnough(int(_retinaFilter->getInputNBrows() * 4),
int(_retinaFilter->getInputNBcolumns()), CV_32FC1, output);
oclMat channel_splits[4] =
{
output(Rect(Point(0, _retinaFilter->getInputNBrows() * 2), getInputSize())),
output(Rect(Point(0, _retinaFilter->getInputNBrows()), getInputSize())),
output(Rect(Point(0, 0), getInputSize())),
output(Rect(Point(0, _retinaFilter->getInputNBrows() * 3), getInputSize()))
};
ocl::split(convert_input, channel_splits);
return true;
}
else if(convert_input.channels() == 1)
{
convert_input.copyTo(output);
return false;
}
else
{
CV_Error(-1, "Retina ocl only support 1, 3, 4 channel input");
return false;
}
}
void RetinaOCLImpl::convertToInterleaved(const oclMat& input, bool colorMode, oclMat &output)
{
input.convertTo(output, CV_8U);
if(colorMode)
{
int numOfSplits = input.rows / getInputSize().height;
std::vector<oclMat> channel_splits(numOfSplits);
for(int i = 0; i < static_cast<int>(channel_splits.size()); i ++)
{
channel_splits[i] =
output(Rect(Point(0, _retinaFilter->getInputNBrows() * (numOfSplits - i - 1)), getInputSize()));
}
merge(channel_splits, output);
}
else
{
//...
}
}
void RetinaOCLImpl::clearBuffers()
{
_retinaFilter->clearAllBuffers();
}
void RetinaOCLImpl::activateMovingContoursProcessing(const bool activate)
{
_retinaFilter->activateMovingContoursProcessing(activate);
}
void RetinaOCLImpl::activateContoursProcessing(const bool activate)
{
_retinaFilter->activateContoursProcessing(activate);
}
///////////////////////////////////////
///////// BasicRetinaFilter ///////////
///////////////////////////////////////
BasicRetinaFilter::BasicRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns, const unsigned int parametersListSize, const bool)
: _NBrows(NBrows), _NBcols(NBcolumns),
_filterOutput(NBrows, NBcolumns, CV_32FC1),
_localBuffer(NBrows, NBcolumns, CV_32FC1),
_filteringCoeficientsTable(3 * parametersListSize)
{
_halfNBrows = _filterOutput.rows / 2;
_halfNBcolumns = _filterOutput.cols / 2;
// set default values
_maxInputValue = 256.0;
// reset all buffers
clearAllBuffers();
}
BasicRetinaFilter::~BasicRetinaFilter()
{
}
void BasicRetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
// resizing buffers
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _filterOutput);
// updating variables
_halfNBrows = _filterOutput.rows / 2;
_halfNBcolumns = _filterOutput.cols / 2;
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _localBuffer);
// reset buffers
clearAllBuffers();
}
void BasicRetinaFilter::setLPfilterParameters(const float beta, const float tau, const float desired_k, const unsigned int filterIndex)
{
float _beta = beta + tau;
float k = desired_k;
// check if the spatial constant is correct (avoid 0 value to avoid division by 0)
if (desired_k <= 0)
{
k = 0.001f;
std::cerr << "BasicRetinaFilter::spatial constant of the low pass filter must be superior to zero !!! correcting parameter setting to 0,001" << std::endl;
}
float _alpha = k * k;
float _mu = 0.8f;
unsigned int tableOffset = filterIndex * 3;
if (k <= 0)
{
std::cerr << "BasicRetinaFilter::spatial filtering coefficient must be superior to zero, correcting value to 0.01" << std::endl;
_alpha = 0.0001f;
}
float _temp = (1.0f + _beta) / (2.0f * _mu * _alpha);
float a = _filteringCoeficientsTable[tableOffset] = 1.0f + _temp - (float)sqrt( (1.0f + _temp) * (1.0f + _temp) - 1.0f);
_filteringCoeficientsTable[1 + tableOffset] = (1.0f - a) * (1.0f - a) * (1.0f - a) * (1.0f - a) / (1.0f + _beta);
_filteringCoeficientsTable[2 + tableOffset] = tau;
}
const oclMat &BasicRetinaFilter::runFilter_LocalAdapdation(const oclMat &inputFrame, const oclMat &localLuminance)
{
_localLuminanceAdaptation(inputFrame, localLuminance, _filterOutput);
return _filterOutput;
}
void BasicRetinaFilter::runFilter_LocalAdapdation(const oclMat &inputFrame, const oclMat &localLuminance, oclMat &outputFrame)
{
_localLuminanceAdaptation(inputFrame, localLuminance, outputFrame);
}
const oclMat &BasicRetinaFilter::runFilter_LocalAdapdation_autonomous(const oclMat &inputFrame)
{
_spatiotemporalLPfilter(inputFrame, _filterOutput);
_localLuminanceAdaptation(inputFrame, _filterOutput, _filterOutput);
return _filterOutput;
}
void BasicRetinaFilter::runFilter_LocalAdapdation_autonomous(const oclMat &inputFrame, oclMat &outputFrame)
{
_spatiotemporalLPfilter(inputFrame, _filterOutput);
_localLuminanceAdaptation(inputFrame, _filterOutput, outputFrame);
}
void BasicRetinaFilter::_localLuminanceAdaptation(oclMat &inputOutputFrame, const oclMat &localLuminance)
{
_localLuminanceAdaptation(inputOutputFrame, localLuminance, inputOutputFrame, false);
}
void BasicRetinaFilter::_localLuminanceAdaptation(const oclMat &inputFrame, const oclMat &localLuminance, oclMat &outputFrame, const bool updateLuminanceMean)
{
if (updateLuminanceMean)
{
float meanLuminance = saturate_cast<float>(ocl::sum(inputFrame)[0]) / getNBpixels();
updateCompressionParameter(meanLuminance);
}
int elements_per_row = static_cast<int>(inputFrame.step / inputFrame.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {_NBcols, _NBrows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &localLuminance.data));
args.push_back(std::make_pair(sizeof(cl_mem), &inputFrame.data));
args.push_back(std::make_pair(sizeof(cl_mem), &outputFrame.data));
args.push_back(std::make_pair(sizeof(cl_int), &_NBcols));
args.push_back(std::make_pair(sizeof(cl_int), &_NBrows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_float), &_localLuminanceAddon));
args.push_back(std::make_pair(sizeof(cl_float), &_localLuminanceFactor));
args.push_back(std::make_pair(sizeof(cl_float), &_maxInputValue));
openCLExecuteKernel(ctx, &retina_kernel, "localLuminanceAdaptation", globalSize, localSize, args, -1, -1);
}
const oclMat &BasicRetinaFilter::runFilter_LPfilter(const oclMat &inputFrame, const unsigned int filterIndex)
{
_spatiotemporalLPfilter(inputFrame, _filterOutput, filterIndex);
return _filterOutput;
}
void BasicRetinaFilter::runFilter_LPfilter(const oclMat &inputFrame, oclMat &outputFrame, const unsigned int filterIndex)
{
_spatiotemporalLPfilter(inputFrame, outputFrame, filterIndex);
}
void BasicRetinaFilter::_spatiotemporalLPfilter(const oclMat &inputFrame, oclMat &LPfilterOutput, const unsigned int filterIndex)
{
unsigned int coefTableOffset = filterIndex * 3;
_a = _filteringCoeficientsTable[coefTableOffset];
_gain = _filteringCoeficientsTable[1 + coefTableOffset];
_tau = _filteringCoeficientsTable[2 + coefTableOffset];
_horizontalCausalFilter_addInput(inputFrame, LPfilterOutput);
_horizontalAnticausalFilter(LPfilterOutput);
_verticalCausalFilter(LPfilterOutput);
_verticalAnticausalFilter_multGain(LPfilterOutput);
}
void BasicRetinaFilter::_horizontalCausalFilter_addInput(const oclMat &inputFrame, oclMat &outputFrame)
{
int elements_per_row = static_cast<int>(inputFrame.step / inputFrame.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {_NBrows, 1, 1};
size_t localSize[] = {256, 1, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &inputFrame.data));
args.push_back(std::make_pair(sizeof(cl_mem), &outputFrame.data));
args.push_back(std::make_pair(sizeof(cl_int), &_NBcols));
args.push_back(std::make_pair(sizeof(cl_int), &_NBrows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_int), &inputFrame.offset));
args.push_back(std::make_pair(sizeof(cl_int), &inputFrame.offset));
args.push_back(std::make_pair(sizeof(cl_float), &_tau));
args.push_back(std::make_pair(sizeof(cl_float), &_a));
openCLExecuteKernel(ctx, &retina_kernel, "horizontalCausalFilter_addInput", globalSize, localSize, args, -1, -1);
}
void BasicRetinaFilter::_horizontalAnticausalFilter(oclMat &outputFrame)
{
int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {_NBrows, 1, 1};
size_t localSize[] = {256, 1, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &outputFrame.data));
args.push_back(std::make_pair(sizeof(cl_int), &_NBcols));
args.push_back(std::make_pair(sizeof(cl_int), &_NBrows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.offset));
args.push_back(std::make_pair(sizeof(cl_float), &_a));
openCLExecuteKernel(ctx, &retina_kernel, "horizontalAnticausalFilter", globalSize, localSize, args, -1, -1);
}
void BasicRetinaFilter::_verticalCausalFilter(oclMat &outputFrame)
{
int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {_NBcols, 1, 1};
size_t localSize[] = {256, 1, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &outputFrame.data));
args.push_back(std::make_pair(sizeof(cl_int), &_NBcols));
args.push_back(std::make_pair(sizeof(cl_int), &_NBrows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.offset));
args.push_back(std::make_pair(sizeof(cl_float), &_a));
openCLExecuteKernel(ctx, &retina_kernel, "verticalCausalFilter", globalSize, localSize, args, -1, -1);
}
void BasicRetinaFilter::_verticalAnticausalFilter_multGain(oclMat &outputFrame)
{
int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {_NBcols, 1, 1};
size_t localSize[] = {256, 1, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &outputFrame.data));
args.push_back(std::make_pair(sizeof(cl_int), &_NBcols));
args.push_back(std::make_pair(sizeof(cl_int), &_NBrows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.offset));
args.push_back(std::make_pair(sizeof(cl_float), &_a));
args.push_back(std::make_pair(sizeof(cl_float), &_gain));
openCLExecuteKernel(ctx, &retina_kernel, "verticalAnticausalFilter_multGain", globalSize, localSize, args, -1, -1);
}
void BasicRetinaFilter::_horizontalAnticausalFilter_Irregular(oclMat &outputFrame, const oclMat &spatialConstantBuffer)
{
int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {outputFrame.rows, 1, 1};
size_t localSize[] = {256, 1, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &outputFrame.data));
args.push_back(std::make_pair(sizeof(cl_mem), &spatialConstantBuffer.data));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.cols));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.offset));
args.push_back(std::make_pair(sizeof(cl_int), &spatialConstantBuffer.offset));
openCLExecuteKernel(ctx, &retina_kernel, "horizontalAnticausalFilter_Irregular", globalSize, localSize, args, -1, -1);
}
// vertical anticausal filter
void BasicRetinaFilter::_verticalCausalFilter_Irregular(oclMat &outputFrame, const oclMat &spatialConstantBuffer)
{
int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {outputFrame.cols, 1, 1};
size_t localSize[] = {256, 1, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &outputFrame.data));
args.push_back(std::make_pair(sizeof(cl_mem), &spatialConstantBuffer.data));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.cols));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.offset));
args.push_back(std::make_pair(sizeof(cl_int), &spatialConstantBuffer.offset));
openCLExecuteKernel(ctx, &retina_kernel, "verticalCausalFilter_Irregular", globalSize, localSize, args, -1, -1);
}
void normalizeGrayOutput_0_maxOutputValue(oclMat &inputOutputBuffer, const float maxOutputValue)
{
double min_val, max_val;
ocl::minMax(inputOutputBuffer, &min_val, &max_val);
float factor = maxOutputValue / static_cast<float>(max_val - min_val);
float offset = - static_cast<float>(min_val) * factor;
ocl::multiply(factor, inputOutputBuffer, inputOutputBuffer);
ocl::add(inputOutputBuffer, offset, inputOutputBuffer);
}
void normalizeGrayOutputCentredSigmoide(const float meanValue, const float sensitivity, oclMat &in, oclMat &out, const float maxValue)
{
if (sensitivity == 1.0f)
{
std::cerr << "TemplateBuffer::TemplateBuffer<type>::normalizeGrayOutputCentredSigmoide error: 2nd parameter (sensitivity) must not equal 0, copying original data..." << std::endl;
in.copyTo(out);
return;
}
float X0 = maxValue / (sensitivity - 1.0f);
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {in.cols, out.rows, 1};
size_t localSize[] = {16, 16, 1};
int elements_per_row = static_cast<int>(out.step / out.elemSize());
args.push_back(std::make_pair(sizeof(cl_mem), &in.data));
args.push_back(std::make_pair(sizeof(cl_mem), &out.data));
args.push_back(std::make_pair(sizeof(cl_int), &in.cols));
args.push_back(std::make_pair(sizeof(cl_int), &in.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_float), &meanValue));
args.push_back(std::make_pair(sizeof(cl_float), &X0));
openCLExecuteKernel(ctx, &retina_kernel, "normalizeGrayOutputCentredSigmoide", globalSize, localSize, args, -1, -1);
}
void normalizeGrayOutputNearZeroCentreredSigmoide(oclMat &inputPicture, oclMat &outputBuffer, const float sensitivity, const float maxOutputValue)
{
float X0cube = sensitivity * sensitivity * sensitivity;
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {inputPicture.cols, inputPicture.rows, 1};
size_t localSize[] = {16, 16, 1};
int elements_per_row = static_cast<int>(inputPicture.step / inputPicture.elemSize());
args.push_back(std::make_pair(sizeof(cl_mem), &inputPicture.data));
args.push_back(std::make_pair(sizeof(cl_mem), &outputBuffer.data));
args.push_back(std::make_pair(sizeof(cl_int), &inputPicture.cols));
args.push_back(std::make_pair(sizeof(cl_int), &inputPicture.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_float), &maxOutputValue));
args.push_back(std::make_pair(sizeof(cl_float), &X0cube));
openCLExecuteKernel(ctx, &retina_kernel, "normalizeGrayOutputNearZeroCentreredSigmoide", globalSize, localSize, args, -1, -1);
}
void centerReductImageLuminance(oclMat &inputoutput)
{
Scalar mean, stddev;
cv::meanStdDev((Mat)inputoutput, mean, stddev);
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {inputoutput.cols, inputoutput.rows, 1};
size_t localSize[] = {16, 16, 1};
float f_mean = static_cast<float>(mean[0]);
float f_stddev = static_cast<float>(stddev[0]);
int elements_per_row = static_cast<int>(inputoutput.step / inputoutput.elemSize());
args.push_back(std::make_pair(sizeof(cl_mem), &inputoutput.data));
args.push_back(std::make_pair(sizeof(cl_int), &inputoutput.cols));
args.push_back(std::make_pair(sizeof(cl_int), &inputoutput.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_float), &f_mean));
args.push_back(std::make_pair(sizeof(cl_float), &f_stddev));
openCLExecuteKernel(ctx, &retina_kernel, "centerReductImageLuminance", globalSize, localSize, args, -1, -1);
}
///////////////////////////////////////
///////// ParvoRetinaFilter ///////////
///////////////////////////////////////
ParvoRetinaFilter::ParvoRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns)
: BasicRetinaFilter(NBrows, NBcolumns, 3),
_photoreceptorsOutput(NBrows, NBcolumns, CV_32FC1),
_horizontalCellsOutput(NBrows, NBcolumns, CV_32FC1),
_parvocellularOutputON(NBrows, NBcolumns, CV_32FC1),
_parvocellularOutputOFF(NBrows, NBcolumns, CV_32FC1),
_bipolarCellsOutputON(NBrows, NBcolumns, CV_32FC1),
_bipolarCellsOutputOFF(NBrows, NBcolumns, CV_32FC1),
_localAdaptationOFF(NBrows, NBcolumns, CV_32FC1)
{
// link to the required local parent adaptation buffers
_localAdaptationON = _localBuffer;
_parvocellularOutputONminusOFF = _filterOutput;
// init: set all the values to 0
clearAllBuffers();
}
ParvoRetinaFilter::~ParvoRetinaFilter()
{
}
void ParvoRetinaFilter::clearAllBuffers()
{
BasicRetinaFilter::clearAllBuffers();
_photoreceptorsOutput = 0;
_horizontalCellsOutput = 0;
_parvocellularOutputON = 0;
_parvocellularOutputOFF = 0;
_bipolarCellsOutputON = 0;
_bipolarCellsOutputOFF = 0;
_localAdaptationOFF = 0;
}
void ParvoRetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
BasicRetinaFilter::resize(NBrows, NBcolumns);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _photoreceptorsOutput);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _horizontalCellsOutput);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _parvocellularOutputON);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _parvocellularOutputOFF);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _bipolarCellsOutputON);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _bipolarCellsOutputOFF);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _localAdaptationOFF);
// link to the required local parent adaptation buffers
_localAdaptationON = _localBuffer;
_parvocellularOutputONminusOFF = _filterOutput;
// clean buffers
clearAllBuffers();
}
void ParvoRetinaFilter::setOPLandParvoFiltersParameters(const float beta1, const float tau1, const float k1, const float beta2, const float tau2, const float k2)
{
// init photoreceptors low pass filter
setLPfilterParameters(beta1, tau1, k1);
// init horizontal cells low pass filter
setLPfilterParameters(beta2, tau2, k2, 1);
// init parasol ganglion cells low pass filter (default parameters)
setLPfilterParameters(0, tau1, k1, 2);
}
const oclMat &ParvoRetinaFilter::runFilter(const oclMat &inputFrame, const bool useParvoOutput)
{
_spatiotemporalLPfilter(inputFrame, _photoreceptorsOutput);
_spatiotemporalLPfilter(_photoreceptorsOutput, _horizontalCellsOutput, 1);
_OPL_OnOffWaysComputing();
if (useParvoOutput)
{
// local adaptation processes on ON and OFF ways
_spatiotemporalLPfilter(_bipolarCellsOutputON, _localAdaptationON, 2);
_localLuminanceAdaptation(_parvocellularOutputON, _localAdaptationON);
_spatiotemporalLPfilter(_bipolarCellsOutputOFF, _localAdaptationOFF, 2);
_localLuminanceAdaptation(_parvocellularOutputOFF, _localAdaptationOFF);
ocl::subtract(_parvocellularOutputON, _parvocellularOutputOFF, _parvocellularOutputONminusOFF);
}
return _parvocellularOutputONminusOFF;
}
void ParvoRetinaFilter::_OPL_OnOffWaysComputing()
{
int elements_per_row = static_cast<int>(_photoreceptorsOutput.step / _photoreceptorsOutput.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {(_photoreceptorsOutput.cols + 3) / 4, _photoreceptorsOutput.rows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &_photoreceptorsOutput.data));
args.push_back(std::make_pair(sizeof(cl_mem), &_horizontalCellsOutput.data));
args.push_back(std::make_pair(sizeof(cl_mem), &_bipolarCellsOutputON.data));
args.push_back(std::make_pair(sizeof(cl_mem), &_bipolarCellsOutputOFF.data));
args.push_back(std::make_pair(sizeof(cl_mem), &_parvocellularOutputON.data));
args.push_back(std::make_pair(sizeof(cl_mem), &_parvocellularOutputOFF.data));
args.push_back(std::make_pair(sizeof(cl_int), &_photoreceptorsOutput.cols));
args.push_back(std::make_pair(sizeof(cl_int), &_photoreceptorsOutput.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
openCLExecuteKernel(ctx, &retina_kernel, "OPL_OnOffWaysComputing", globalSize, localSize, args, -1, -1);
}
///////////////////////////////////////
//////////// MagnoFilter //////////////
///////////////////////////////////////
MagnoRetinaFilter::MagnoRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns)
: BasicRetinaFilter(NBrows, NBcolumns, 2),
_previousInput_ON(NBrows, NBcolumns, CV_32FC1),
_previousInput_OFF(NBrows, NBcolumns, CV_32FC1),
_amacrinCellsTempOutput_ON(NBrows, NBcolumns, CV_32FC1),
_amacrinCellsTempOutput_OFF(NBrows, NBcolumns, CV_32FC1),
_magnoXOutputON(NBrows, NBcolumns, CV_32FC1),
_magnoXOutputOFF(NBrows, NBcolumns, CV_32FC1),
_localProcessBufferON(NBrows, NBcolumns, CV_32FC1),
_localProcessBufferOFF(NBrows, NBcolumns, CV_32FC1)
{
_magnoYOutput = _filterOutput;
_magnoYsaturated = _localBuffer;
clearAllBuffers();
}
MagnoRetinaFilter::~MagnoRetinaFilter()
{
}
void MagnoRetinaFilter::clearAllBuffers()
{
BasicRetinaFilter::clearAllBuffers();
_previousInput_ON = 0;
_previousInput_OFF = 0;
_amacrinCellsTempOutput_ON = 0;
_amacrinCellsTempOutput_OFF = 0;
_magnoXOutputON = 0;
_magnoXOutputOFF = 0;
_localProcessBufferON = 0;
_localProcessBufferOFF = 0;
}
void MagnoRetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
BasicRetinaFilter::resize(NBrows, NBcolumns);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _previousInput_ON);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _previousInput_OFF);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _amacrinCellsTempOutput_ON);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _amacrinCellsTempOutput_OFF);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _magnoXOutputON);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _magnoXOutputOFF);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _localProcessBufferON);
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _localProcessBufferOFF);
// to be sure, relink buffers
_magnoYOutput = _filterOutput;
_magnoYsaturated = _localBuffer;
// reset all buffers
clearAllBuffers();
}
void MagnoRetinaFilter::setCoefficientsTable(const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float localAdaptIntegration_tau, const float localAdaptIntegration_k )
{
_temporalCoefficient = (float)std::exp(-1.0f / amacrinCellsTemporalCutFrequency);
// the first set of parameters is dedicated to the low pass filtering property of the ganglion cells
BasicRetinaFilter::setLPfilterParameters(parasolCells_beta, parasolCells_tau, parasolCells_k, 0);
// the second set of parameters is dedicated to the ganglion cells output intergartion for their local adaptation property
BasicRetinaFilter::setLPfilterParameters(0, localAdaptIntegration_tau, localAdaptIntegration_k, 1);
}
void MagnoRetinaFilter::_amacrineCellsComputing(
const oclMat &OPL_ON,
const oclMat &OPL_OFF
)
{
int elements_per_row = static_cast<int>(OPL_ON.step / OPL_ON.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {OPL_ON.cols, OPL_ON.rows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &OPL_ON.data));
args.push_back(std::make_pair(sizeof(cl_mem), &OPL_OFF.data));
args.push_back(std::make_pair(sizeof(cl_mem), &_previousInput_ON.data));
args.push_back(std::make_pair(sizeof(cl_mem), &_previousInput_OFF.data));
args.push_back(std::make_pair(sizeof(cl_mem), &_amacrinCellsTempOutput_ON.data));
args.push_back(std::make_pair(sizeof(cl_mem), &_amacrinCellsTempOutput_OFF.data));
args.push_back(std::make_pair(sizeof(cl_int), &OPL_ON.cols));
args.push_back(std::make_pair(sizeof(cl_int), &OPL_ON.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_float), &_temporalCoefficient));
openCLExecuteKernel(ctx, &retina_kernel, "amacrineCellsComputing", globalSize, localSize, args, -1, -1);
}
const oclMat &MagnoRetinaFilter::runFilter(const oclMat &OPL_ON, const oclMat &OPL_OFF)
{
// Compute the high pass temporal filter
_amacrineCellsComputing(OPL_ON, OPL_OFF);
// apply low pass filtering on ON and OFF ways after temporal high pass filtering
_spatiotemporalLPfilter(_amacrinCellsTempOutput_ON, _magnoXOutputON, 0);
_spatiotemporalLPfilter(_amacrinCellsTempOutput_OFF, _magnoXOutputOFF, 0);
// local adaptation of the ganglion cells to the local contrast of the moving contours
_spatiotemporalLPfilter(_magnoXOutputON, _localProcessBufferON, 1);
_localLuminanceAdaptation(_magnoXOutputON, _localProcessBufferON);
_spatiotemporalLPfilter(_magnoXOutputOFF, _localProcessBufferOFF, 1);
_localLuminanceAdaptation(_magnoXOutputOFF, _localProcessBufferOFF);
_magnoYOutput = _magnoXOutputON + _magnoXOutputOFF;
return _magnoYOutput;
}
///////////////////////////////////////
//////////// RetinaColor //////////////
///////////////////////////////////////
// define an array of ROI headers of input x
#define MAKE_OCLMAT_SLICES(x, n) \
oclMat x##_slices[n];\
for(int _SLICE_INDEX_ = 0; _SLICE_INDEX_ < n; _SLICE_INDEX_ ++)\
{\
x##_slices[_SLICE_INDEX_] = x(getROI(_SLICE_INDEX_));\
}
static float _LMStoACr1Cr2[] = {1.0, 1.0, 0.0, 1.0, -1.0, 0.0, -0.5, -0.5, 1.0};
static float _LMStoLab[] = {0.5774f, 0.5774f, 0.5774f, 0.4082f, 0.4082f, -0.8165f, 0.7071f, -0.7071f, 0.f};
RetinaColor::RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const int samplingMethod)
: BasicRetinaFilter(NBrows, NBcolumns, 3),
_RGBmosaic(NBrows * 3, NBcolumns, CV_32FC1),
_tempMultiplexedFrame(NBrows, NBcolumns, CV_32FC1),
_demultiplexedTempBuffer(NBrows * 3, NBcolumns, CV_32FC1),
_demultiplexedColorFrame(NBrows * 3, NBcolumns, CV_32FC1),
_chrominance(NBrows * 3, NBcolumns, CV_32FC1),
_colorLocalDensity(NBrows * 3, NBcolumns, CV_32FC1),
_imageGradient(NBrows * 3, NBcolumns, CV_32FC1)
{
// link to parent buffers (let's recycle !)
_luminance = _filterOutput;
_multiplexedFrame = _localBuffer;
_objectInit = false;
_samplingMethod = samplingMethod;
_saturateColors = false;
_colorSaturationValue = 4.0;
// set default spatio-temporal filter parameters
setLPfilterParameters(0.0, 0.0, 1.5);
setLPfilterParameters(0.0, 0.0, 10.5, 1);// for the low pass filter dedicated to contours energy extraction (demultiplexing process)
setLPfilterParameters(0.f, 0.f, 0.9f, 2);
// init default value on image Gradient
_imageGradient = 0.57f;
// init color sampling map
_initColorSampling();
// flush all buffers
clearAllBuffers();
}
RetinaColor::~RetinaColor()
{
}
void RetinaColor::clearAllBuffers()
{
BasicRetinaFilter::clearAllBuffers();
_tempMultiplexedFrame = 0.f;
_demultiplexedTempBuffer = 0.f;
_demultiplexedColorFrame = 0.f;
_chrominance = 0.f;
_imageGradient = 0.57f;
}
void RetinaColor::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
BasicRetinaFilter::clearAllBuffers();
ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _tempMultiplexedFrame);
ensureSizeIsEnough(NBrows * 2, NBcolumns, CV_32FC1, _imageGradient);
ensureSizeIsEnough(NBrows * 3, NBcolumns, CV_32FC1, _RGBmosaic);
ensureSizeIsEnough(NBrows * 3, NBcolumns, CV_32FC1, _demultiplexedTempBuffer);
ensureSizeIsEnough(NBrows * 3, NBcolumns, CV_32FC1, _demultiplexedColorFrame);
ensureSizeIsEnough(NBrows * 3, NBcolumns, CV_32FC1, _chrominance);
ensureSizeIsEnough(NBrows * 3, NBcolumns, CV_32FC1, _colorLocalDensity);
// link to parent buffers (let's recycle !)
_luminance = _filterOutput;
_multiplexedFrame = _localBuffer;
// init color sampling map
_initColorSampling();
// clean buffers
clearAllBuffers();
}
static void inverseValue(oclMat &input)
{
int elements_per_row = static_cast<int>(input.step / input.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {input.cols, input.rows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &input.data));
args.push_back(std::make_pair(sizeof(cl_int), &input.cols));
args.push_back(std::make_pair(sizeof(cl_int), &input.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
openCLExecuteKernel(ctx, &retina_kernel, "inverseValue", globalSize, localSize, args, -1, -1);
}
void RetinaColor::_initColorSampling()
{
CV_Assert(_samplingMethod == RETINA_COLOR_BAYER);
_pR = _pB = 0.25;
_pG = 0.5;
// filling the mosaic buffer:
_RGBmosaic = 0;
Mat tmp_mat(_NBrows * 3, _NBcols, CV_32FC1);
float * tmp_mat_ptr = tmp_mat.ptr<float>();
tmp_mat.setTo(0);
for (unsigned int index = 0 ; index < getNBpixels(); ++index)
{
tmp_mat_ptr[bayerSampleOffset(index)] = 1.0;
}
_RGBmosaic.upload(tmp_mat);
// computing photoreceptors local density
MAKE_OCLMAT_SLICES(_RGBmosaic, 3);
MAKE_OCLMAT_SLICES(_colorLocalDensity, 3);
_spatiotemporalLPfilter(_RGBmosaic_slices[0], _colorLocalDensity_slices[0]);
_spatiotemporalLPfilter(_RGBmosaic_slices[1], _colorLocalDensity_slices[1]);
_spatiotemporalLPfilter(_RGBmosaic_slices[2], _colorLocalDensity_slices[2]);
//_colorLocalDensity = oclMat(_colorLocalDensity.size(), _colorLocalDensity.type(), 1.f) / _colorLocalDensity;
inverseValue(_colorLocalDensity);
_objectInit = true;
}
static void demultiplex(const oclMat &input, oclMat &ouput)
{
int elements_per_row = static_cast<int>(input.step / input.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {input.cols, input.rows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &input.data));
args.push_back(std::make_pair(sizeof(cl_mem), &ouput.data));
args.push_back(std::make_pair(sizeof(cl_int), &input.cols));
args.push_back(std::make_pair(sizeof(cl_int), &input.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
openCLExecuteKernel(ctx, &retina_kernel, "runColorDemultiplexingBayer", globalSize, localSize, args, -1, -1);
}
static void normalizePhotoDensity(
const oclMat &chroma,
const oclMat &colorDensity,
const oclMat &multiplex,
oclMat &ocl_luma,
oclMat &demultiplex,
const float pG
)
{
int elements_per_row = static_cast<int>(ocl_luma.step / ocl_luma.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {ocl_luma.cols, ocl_luma.rows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &chroma.data));
args.push_back(std::make_pair(sizeof(cl_mem), &colorDensity.data));
args.push_back(std::make_pair(sizeof(cl_mem), &multiplex.data));
args.push_back(std::make_pair(sizeof(cl_mem), &ocl_luma.data));
args.push_back(std::make_pair(sizeof(cl_mem), &demultiplex.data));
args.push_back(std::make_pair(sizeof(cl_int), &ocl_luma.cols));
args.push_back(std::make_pair(sizeof(cl_int), &ocl_luma.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_float), &pG));
openCLExecuteKernel(ctx, &retina_kernel, "normalizePhotoDensity", globalSize, localSize, args, -1, -1);
}
static void substractResidual(
oclMat &colorDemultiplex,
float pR,
float pG,
float pB
)
{
int elements_per_row = static_cast<int>(colorDemultiplex.step / colorDemultiplex.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
int rows = colorDemultiplex.rows / 3, cols = colorDemultiplex.cols;
size_t globalSize[] = {cols, rows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &colorDemultiplex.data));
args.push_back(std::make_pair(sizeof(cl_int), &cols));
args.push_back(std::make_pair(sizeof(cl_int), &rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_float), &pR));
args.push_back(std::make_pair(sizeof(cl_float), &pG));
args.push_back(std::make_pair(sizeof(cl_float), &pB));
openCLExecuteKernel(ctx, &retina_kernel, "substractResidual", globalSize, localSize, args, -1, -1);
}
static void demultiplexAssign(const oclMat& input, const oclMat& output)
{
// only supports bayer
int elements_per_row = static_cast<int>(input.step / input.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
int rows = input.rows / 3, cols = input.cols;
size_t globalSize[] = {cols, rows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &input.data));
args.push_back(std::make_pair(sizeof(cl_mem), &output.data));
args.push_back(std::make_pair(sizeof(cl_int), &cols));
args.push_back(std::make_pair(sizeof(cl_int), &rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
openCLExecuteKernel(ctx, &retina_kernel, "demultiplexAssign", globalSize, localSize, args, -1, -1);
}
void RetinaColor::runColorDemultiplexing(
const oclMat &ocl_multiplexed_input,
const bool adaptiveFiltering,
const float maxInputValue
)
{
MAKE_OCLMAT_SLICES(_demultiplexedTempBuffer, 3);
MAKE_OCLMAT_SLICES(_chrominance, 3);
MAKE_OCLMAT_SLICES(_RGBmosaic, 3);
MAKE_OCLMAT_SLICES(_demultiplexedColorFrame, 3);
MAKE_OCLMAT_SLICES(_colorLocalDensity, 3);
_demultiplexedTempBuffer.setTo(0);
demultiplex(ocl_multiplexed_input, _demultiplexedTempBuffer);
// interpolate the demultiplexed frame depending on the color sampling method
if (!adaptiveFiltering)
{
CV_Assert(adaptiveFiltering == false);
}
_spatiotemporalLPfilter(_demultiplexedTempBuffer_slices[0], _chrominance_slices[0]);
_spatiotemporalLPfilter(_demultiplexedTempBuffer_slices[1], _chrominance_slices[1]);
_spatiotemporalLPfilter(_demultiplexedTempBuffer_slices[2], _chrominance_slices[2]);
if (!adaptiveFiltering)// compute the gradient on the luminance
{
// TODO: implement me!
CV_Assert(adaptiveFiltering == false);
}
else
{
normalizePhotoDensity(_chrominance, _colorLocalDensity, ocl_multiplexed_input, _luminance, _demultiplexedTempBuffer, _pG);
// compute the gradient of the luminance
_computeGradient(_luminance, _imageGradient);
_adaptiveSpatialLPfilter(_RGBmosaic_slices[0], _imageGradient, _chrominance_slices[0]);
_adaptiveSpatialLPfilter(_RGBmosaic_slices[1], _imageGradient, _chrominance_slices[1]);
_adaptiveSpatialLPfilter(_RGBmosaic_slices[2], _imageGradient, _chrominance_slices[2]);
_adaptiveSpatialLPfilter(_demultiplexedTempBuffer_slices[0], _imageGradient, _demultiplexedColorFrame_slices[0]);
_adaptiveSpatialLPfilter(_demultiplexedTempBuffer_slices[1], _imageGradient, _demultiplexedColorFrame_slices[1]);
_adaptiveSpatialLPfilter(_demultiplexedTempBuffer_slices[2], _imageGradient, _demultiplexedColorFrame_slices[2]);
_demultiplexedColorFrame /= _chrominance; // per element division
substractResidual(_demultiplexedColorFrame, _pR, _pG, _pB);
runColorMultiplexing(_demultiplexedColorFrame, _tempMultiplexedFrame);
_demultiplexedTempBuffer.setTo(0);
_luminance = ocl_multiplexed_input - _tempMultiplexedFrame;
demultiplexAssign(_demultiplexedColorFrame, _demultiplexedTempBuffer);
for(int i = 0; i < 3; i ++)
{
_spatiotemporalLPfilter(_demultiplexedTempBuffer_slices[i], _demultiplexedTempBuffer_slices[i]);
_demultiplexedColorFrame_slices[i] = _demultiplexedTempBuffer_slices[i] * _colorLocalDensity_slices[i] + _luminance;
}
}
// eliminate saturated colors by simple clipping values to the input range
clipRGBOutput_0_maxInputValue(_demultiplexedColorFrame, maxInputValue);
if (_saturateColors)
{
ocl::normalizeGrayOutputCentredSigmoide(128, maxInputValue, _demultiplexedColorFrame, _demultiplexedColorFrame);
}
}
void RetinaColor::runColorMultiplexing(const oclMat &demultiplexedInputFrame, oclMat &multiplexedFrame)
{
int elements_per_row = static_cast<int>(multiplexedFrame.step / multiplexedFrame.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {multiplexedFrame.cols, multiplexedFrame.rows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &demultiplexedInputFrame.data));
args.push_back(std::make_pair(sizeof(cl_mem), &multiplexedFrame.data));
args.push_back(std::make_pair(sizeof(cl_int), &multiplexedFrame.cols));
args.push_back(std::make_pair(sizeof(cl_int), &multiplexedFrame.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
openCLExecuteKernel(ctx, &retina_kernel, "runColorMultiplexingBayer", globalSize, localSize, args, -1, -1);
}
void RetinaColor::clipRGBOutput_0_maxInputValue(oclMat &inputOutputBuffer, const float maxInputValue)
{
// the kernel is equivalent to:
//ocl::threshold(inputOutputBuffer, inputOutputBuffer, maxInputValue, maxInputValue, THRESH_TRUNC);
//ocl::threshold(inputOutputBuffer, inputOutputBuffer, 0, 0, THRESH_TOZERO);
int elements_per_row = static_cast<int>(inputOutputBuffer.step / inputOutputBuffer.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {_NBcols, inputOutputBuffer.rows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &inputOutputBuffer.data));
args.push_back(std::make_pair(sizeof(cl_int), &_NBcols));
args.push_back(std::make_pair(sizeof(cl_int), &inputOutputBuffer.rows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_float), &maxInputValue));
openCLExecuteKernel(ctx, &retina_kernel, "clipRGBOutput_0_maxInputValue", globalSize, localSize, args, -1, -1);
}
void RetinaColor::_adaptiveSpatialLPfilter(const oclMat &inputFrame, const oclMat &gradient, oclMat &outputFrame)
{
/**********/
_gain = (1 - 0.57f) * (1 - 0.57f) * (1 - 0.06f) * (1 - 0.06f);
// launch the serie of 1D directional filters in order to compute the 2D low pass filter
// -> horizontal filters work with the first layer of imageGradient
_adaptiveHorizontalCausalFilter_addInput(inputFrame, gradient, outputFrame);
_horizontalAnticausalFilter_Irregular(outputFrame, gradient);
// -> horizontal filters work with the second layer of imageGradient
_verticalCausalFilter_Irregular(outputFrame, gradient(getROI(1)));
_adaptiveVerticalAnticausalFilter_multGain(gradient, outputFrame);
}
void RetinaColor::_adaptiveHorizontalCausalFilter_addInput(const oclMat &inputFrame, const oclMat &gradient, oclMat &outputFrame)
{
int elements_per_row = static_cast<int>(inputFrame.step / inputFrame.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {_NBrows, 1, 1};
size_t localSize[] = {256, 1, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &inputFrame.data));
args.push_back(std::make_pair(sizeof(cl_mem), &gradient.data));
args.push_back(std::make_pair(sizeof(cl_mem), &outputFrame.data));
args.push_back(std::make_pair(sizeof(cl_int), &_NBcols));
args.push_back(std::make_pair(sizeof(cl_int), &_NBrows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_int), &inputFrame.offset));
args.push_back(std::make_pair(sizeof(cl_int), &gradient.offset));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.offset));
openCLExecuteKernel(ctx, &retina_kernel, "adaptiveHorizontalCausalFilter_addInput", globalSize, localSize, args, -1, -1);
}
void RetinaColor::_adaptiveVerticalAnticausalFilter_multGain(const oclMat &gradient, oclMat &outputFrame)
{
int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {_NBcols, 1, 1};
size_t localSize[] = {256, 1, 1};
int gradOffset = gradient.offset + static_cast<int>(gradient.step * _NBrows);
args.push_back(std::make_pair(sizeof(cl_mem), &gradient.data));
args.push_back(std::make_pair(sizeof(cl_mem), &outputFrame.data));
args.push_back(std::make_pair(sizeof(cl_int), &_NBcols));
args.push_back(std::make_pair(sizeof(cl_int), &_NBrows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_int), &gradOffset));
args.push_back(std::make_pair(sizeof(cl_int), &outputFrame.offset));
args.push_back(std::make_pair(sizeof(cl_float), &_gain));
openCLExecuteKernel(ctx, &retina_kernel, "adaptiveVerticalAnticausalFilter_multGain", globalSize, localSize, args, -1, -1);
}
void RetinaColor::_computeGradient(const oclMat &luminance, oclMat &gradient)
{
int elements_per_row = static_cast<int>(luminance.step / luminance.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {_NBcols, _NBrows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &luminance.data));
args.push_back(std::make_pair(sizeof(cl_mem), &gradient.data));
args.push_back(std::make_pair(sizeof(cl_int), &_NBcols));
args.push_back(std::make_pair(sizeof(cl_int), &_NBrows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
openCLExecuteKernel(ctx, &retina_kernel, "computeGradient", globalSize, localSize, args, -1, -1);
}
///////////////////////////////////////
//////////// RetinaFilter /////////////
///////////////////////////////////////
RetinaFilter::RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode, const int samplingMethod, const bool useRetinaLogSampling, const double, const double)
:
_photoreceptorsPrefilter(sizeRows, sizeColumns, 4),
_ParvoRetinaFilter(sizeRows, sizeColumns),
_MagnoRetinaFilter(sizeRows, sizeColumns),
_colorEngine(sizeRows, sizeColumns, samplingMethod)
{
CV_Assert(!useRetinaLogSampling);
// set default processing activities
_useParvoOutput = true;
_useMagnoOutput = true;
_useColorMode = colorMode;
// set default parameters
setGlobalParameters();
// stability controls values init
_setInitPeriodCount();
_globalTemporalConstant = 25;
// reset all buffers
clearAllBuffers();
}
RetinaFilter::~RetinaFilter()
{
}
void RetinaFilter::clearAllBuffers()
{
_photoreceptorsPrefilter.clearAllBuffers();
_ParvoRetinaFilter.clearAllBuffers();
_MagnoRetinaFilter.clearAllBuffers();
_colorEngine.clearAllBuffers();
// stability controls value init
_setInitPeriodCount();
}
void RetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
unsigned int rows = NBrows, cols = NBcolumns;
// resize optionnal member and adjust other modules size if required
_photoreceptorsPrefilter.resize(rows, cols);
_ParvoRetinaFilter.resize(rows, cols);
_MagnoRetinaFilter.resize(rows, cols);
_colorEngine.resize(rows, cols);
// clean buffers
clearAllBuffers();
}
void RetinaFilter::_setInitPeriodCount()
{
// find out the maximum temporal constant value and apply a security factor
// false value (obviously too long) but appropriate for simple use
_globalTemporalConstant = (unsigned int)(_ParvoRetinaFilter.getPhotoreceptorsTemporalConstant() + _ParvoRetinaFilter.getHcellsTemporalConstant() + _MagnoRetinaFilter.getTemporalConstant());
// reset frame counter
_ellapsedFramesSinceLastReset = 0;
}
void RetinaFilter::setGlobalParameters(const float OPLspatialResponse1, const float OPLtemporalresponse1, const float OPLassymetryGain, const float OPLspatialResponse2, const float OPLtemporalresponse2, const float LPfilterSpatialResponse, const float LPfilterGain, const float LPfilterTemporalresponse, const float MovingContoursExtractorCoefficient, const bool normalizeParvoOutput_0_maxOutputValue, const bool normalizeMagnoOutput_0_maxOutputValue, const float maxOutputValue, const float maxInputValue, const float meanValue)
{
_normalizeParvoOutput_0_maxOutputValue = normalizeParvoOutput_0_maxOutputValue;
_normalizeMagnoOutput_0_maxOutputValue = normalizeMagnoOutput_0_maxOutputValue;
_maxOutputValue = maxOutputValue;
_photoreceptorsPrefilter.setV0CompressionParameter(0.9f, maxInputValue, meanValue);
_photoreceptorsPrefilter.setLPfilterParameters(0, 0, 10, 3); // keeps low pass filter with low cut frequency in memory (usefull for the tone mapping function)
_ParvoRetinaFilter.setOPLandParvoFiltersParameters(0, OPLtemporalresponse1, OPLspatialResponse1, OPLassymetryGain, OPLtemporalresponse2, OPLspatialResponse2);
_ParvoRetinaFilter.setV0CompressionParameter(0.9f, maxInputValue, meanValue);
_MagnoRetinaFilter.setCoefficientsTable(LPfilterGain, LPfilterTemporalresponse, LPfilterSpatialResponse, MovingContoursExtractorCoefficient, 0, 2.0f * LPfilterSpatialResponse);
_MagnoRetinaFilter.setV0CompressionParameter(0.7f, maxInputValue, meanValue);
// stability controls value init
_setInitPeriodCount();
}
bool RetinaFilter::checkInput(const oclMat &input, const bool)
{
BasicRetinaFilter *inputTarget = &_photoreceptorsPrefilter;
bool test = (input.rows == static_cast<int>(inputTarget->getNBrows())
|| input.rows == static_cast<int>(inputTarget->getNBrows()) * 3
|| input.rows == static_cast<int>(inputTarget->getNBrows()) * 4)
&& input.cols == static_cast<int>(inputTarget->getNBcolumns());
if (!test)
{
std::cerr << "RetinaFilter::checkInput: input buffer does not match retina buffer size, conversion aborted" << std::endl;
return false;
}
return true;
}
// main function that runs the filter for a given input frame
bool RetinaFilter::runFilter(const oclMat &imageInput, const bool useAdaptiveFiltering, const bool processRetinaParvoMagnoMapping, const bool useColorMode, const bool inputIsColorMultiplexed)
{
// preliminary check
bool processSuccess = true;
if (!checkInput(imageInput, useColorMode))
{
return false;
}
// run the color multiplexing if needed and compute each suub filter of the retina:
// -> local adaptation
// -> contours OPL extraction
// -> moving contours extraction
// stability controls value update
++_ellapsedFramesSinceLastReset;
_useColorMode = useColorMode;
oclMat selectedPhotoreceptorsLocalAdaptationInput = imageInput;
oclMat selectedPhotoreceptorsColorInput = imageInput;
//********** Following is input data specific photoreceptors processing
if (useColorMode && (!inputIsColorMultiplexed)) // not multiplexed color input case
{
_colorEngine.runColorMultiplexing(selectedPhotoreceptorsColorInput);
selectedPhotoreceptorsLocalAdaptationInput = _colorEngine.getMultiplexedFrame();
}
//********** Following is generic Retina processing
// photoreceptors local adaptation
_photoreceptorsPrefilter.runFilter_LocalAdapdation(selectedPhotoreceptorsLocalAdaptationInput, _ParvoRetinaFilter.getHorizontalCellsOutput());
// run parvo filter
_ParvoRetinaFilter.runFilter(_photoreceptorsPrefilter.getOutput(), _useParvoOutput);
if (_useParvoOutput)
{
_ParvoRetinaFilter.normalizeGrayOutputCentredSigmoide(); // models the saturation of the cells, usefull for visualisation of the ON-OFF Parvo Output, Bipolar cells outputs do not change !!!
_ParvoRetinaFilter.centerReductImageLuminance(); // best for further spectrum analysis
if (_normalizeParvoOutput_0_maxOutputValue)
{
_ParvoRetinaFilter.normalizeGrayOutput_0_maxOutputValue(_maxOutputValue);
}
}
if (_useParvoOutput && _useMagnoOutput)
{
_MagnoRetinaFilter.runFilter(_ParvoRetinaFilter.getBipolarCellsON(), _ParvoRetinaFilter.getBipolarCellsOFF());
if (_normalizeMagnoOutput_0_maxOutputValue)
{
_MagnoRetinaFilter.normalizeGrayOutput_0_maxOutputValue(_maxOutputValue);
}
_MagnoRetinaFilter.normalizeGrayOutputNearZeroCentreredSigmoide();
}
if (_useParvoOutput && _useMagnoOutput && processRetinaParvoMagnoMapping)
{
_processRetinaParvoMagnoMapping();
if (_useColorMode)
{
_colorEngine.runColorDemultiplexing(_retinaParvoMagnoMappedFrame, useAdaptiveFiltering, _maxOutputValue);
}
return processSuccess;
}
if (_useParvoOutput && _useColorMode)
{
_colorEngine.runColorDemultiplexing(_ParvoRetinaFilter.getOutput(), useAdaptiveFiltering, _maxOutputValue);
}
return processSuccess;
}
const oclMat &RetinaFilter::getContours()
{
if (_useColorMode)
{
return _colorEngine.getLuminance();
}
else
{
return _ParvoRetinaFilter.getOutput();
}
}
void RetinaFilter::_processRetinaParvoMagnoMapping()
{
oclMat parvo = _ParvoRetinaFilter.getOutput();
oclMat magno = _MagnoRetinaFilter.getOutput();
int halfRows = parvo.rows / 2;
int halfCols = parvo.cols / 2;
float minDistance = MIN(halfRows, halfCols) * 0.7f;
int elements_per_row = static_cast<int>(parvo.step / parvo.elemSize());
Context * ctx = Context::getContext();
std::vector<std::pair<size_t, const void *> > args;
size_t globalSize[] = {parvo.cols, parvo.rows, 1};
size_t localSize[] = {16, 16, 1};
args.push_back(std::make_pair(sizeof(cl_mem), &parvo.data));
args.push_back(std::make_pair(sizeof(cl_mem), &magno.data));
args.push_back(std::make_pair(sizeof(cl_int), &parvo.cols));
args.push_back(std::make_pair(sizeof(cl_int), &parvo.rows));
args.push_back(std::make_pair(sizeof(cl_int), &halfCols));
args.push_back(std::make_pair(sizeof(cl_int), &halfRows));
args.push_back(std::make_pair(sizeof(cl_int), &elements_per_row));
args.push_back(std::make_pair(sizeof(cl_float), &minDistance));
openCLExecuteKernel(ctx, &retina_kernel, "processRetinaParvoMagnoMapping", globalSize, localSize, args, -1, -1);
}
} /* namespace ocl */
Ptr<Retina> createRetina_OCL(Size getInputSize){ return new ocl::RetinaOCLImpl(getInputSize); }
Ptr<Retina> createRetina_OCL(Size getInputSize, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
return new ocl::RetinaOCLImpl(getInputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
}
} /* namespace bioinspired */
} /* namespace cv */
#endif /* #ifdef HAVE_OPENCV_OCL */
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OCL_RETINA_HPP__
#define __OCL_RETINA_HPP__
#include "precomp.hpp"
#ifdef HAVE_OPENCV_OCL
// please refer to c++ headers for API comments
namespace cv
{
namespace bioinspired
{
namespace ocl
{
void normalizeGrayOutputCentredSigmoide(const float meanValue, const float sensitivity, cv::ocl::oclMat &in, cv::ocl::oclMat &out, const float maxValue = 255.f);
void normalizeGrayOutput_0_maxOutputValue(cv::ocl::oclMat &inputOutputBuffer, const float maxOutputValue = 255.0);
void normalizeGrayOutputNearZeroCentreredSigmoide(cv::ocl::oclMat &inputPicture, cv::ocl::oclMat &outputBuffer, const float sensitivity = 40, const float maxOutputValue = 255.0f);
void centerReductImageLuminance(cv::ocl::oclMat &inputOutputBuffer);
class BasicRetinaFilter
{
public:
BasicRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns, const unsigned int parametersListSize = 1, const bool useProgressiveFilter = false);
~BasicRetinaFilter();
inline void clearOutputBuffer()
{
_filterOutput = 0;
};
inline void clearSecondaryBuffer()
{
_localBuffer = 0;
};
inline void clearAllBuffers()
{
clearOutputBuffer();
clearSecondaryBuffer();
};
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
const cv::ocl::oclMat &runFilter_LPfilter(const cv::ocl::oclMat &inputFrame, const unsigned int filterIndex = 0);
void runFilter_LPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const unsigned int filterIndex = 0);
void runFilter_LPfilter_Autonomous(cv::ocl::oclMat &inputOutputFrame, const unsigned int filterIndex = 0);
const cv::ocl::oclMat &runFilter_LocalAdapdation(const cv::ocl::oclMat &inputOutputFrame, const cv::ocl::oclMat &localLuminance);
void runFilter_LocalAdapdation(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &localLuminance, cv::ocl::oclMat &outputFrame);
const cv::ocl::oclMat &runFilter_LocalAdapdation_autonomous(const cv::ocl::oclMat &inputFrame);
void runFilter_LocalAdapdation_autonomous(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame);
void setLPfilterParameters(const float beta, const float tau, const float k, const unsigned int filterIndex = 0);
inline void setV0CompressionParameter(const float v0, const float maxInputValue, const float)
{
_v0 = v0 * maxInputValue;
_localLuminanceFactor = v0;
_localLuminanceAddon = maxInputValue * (1.0f - v0);
_maxInputValue = maxInputValue;
};
inline void setV0CompressionParameter(const float v0, const float meanLuminance)
{
this->setV0CompressionParameter(v0, _maxInputValue, meanLuminance);
};
inline void setV0CompressionParameter(const float v0)
{
_v0 = v0 * _maxInputValue;
_localLuminanceFactor = v0;
_localLuminanceAddon = _maxInputValue * (1.0f - v0);
};
inline void setV0CompressionParameterToneMapping(const float v0, const float maxInputValue, const float meanLuminance = 128.0f)
{
_v0 = v0 * maxInputValue;
_localLuminanceFactor = 1.0f;
_localLuminanceAddon = meanLuminance * _v0;
_maxInputValue = maxInputValue;
};
inline void updateCompressionParameter(const float meanLuminance)
{
_localLuminanceFactor = 1;
_localLuminanceAddon = meanLuminance * _v0;
};
inline float getV0CompressionParameter()
{
return _v0 / _maxInputValue;
};
inline const cv::ocl::oclMat &getOutput() const
{
return _filterOutput;
};
inline unsigned int getNBrows()
{
return _filterOutput.rows;
};
inline unsigned int getNBcolumns()
{
return _filterOutput.cols;
};
inline unsigned int getNBpixels()
{
return _filterOutput.size().area();
};
inline void normalizeGrayOutput_0_maxOutputValue(const float maxValue)
{
ocl::normalizeGrayOutput_0_maxOutputValue(_filterOutput, maxValue);
};
inline void normalizeGrayOutputCentredSigmoide()
{
ocl::normalizeGrayOutputCentredSigmoide(0.0, 2.0, _filterOutput, _filterOutput);
};
inline void centerReductImageLuminance()
{
ocl::centerReductImageLuminance(_filterOutput);
};
inline float getMaxInputValue()
{
return this->_maxInputValue;
};
inline void setMaxInputValue(const float newMaxInputValue)
{
this->_maxInputValue = newMaxInputValue;
};
protected:
cv::ocl::oclMat _filterOutput;
cv::ocl::oclMat _localBuffer;
int _NBrows;
int _NBcols;
unsigned int _halfNBrows;
unsigned int _halfNBcolumns;
std::valarray <float>_filteringCoeficientsTable;
float _v0;
float _maxInputValue;
float _meanInputValue;
float _localLuminanceFactor;
float _localLuminanceAddon;
float _a;
float _tau;
float _gain;
void _spatiotemporalLPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &LPfilterOutput, const unsigned int coefTableOffset = 0);
float _squaringSpatiotemporalLPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const unsigned int filterIndex = 0);
void _spatiotemporalLPfilter_Irregular(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const unsigned int filterIndex = 0);
void _localSquaringSpatioTemporalLPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &LPfilterOutput, const unsigned int *integrationAreas, const unsigned int filterIndex = 0);
void _localLuminanceAdaptation(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &localLuminance, cv::ocl::oclMat &outputFrame, const bool updateLuminanceMean = true);
void _localLuminanceAdaptation(cv::ocl::oclMat &inputOutputFrame, const cv::ocl::oclMat &localLuminance);
void _localLuminanceAdaptationPosNegValues(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &localLuminance, float *outputFrame);
void _horizontalCausalFilter_addInput(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame);
void _horizontalAnticausalFilter(cv::ocl::oclMat &outputFrame);
void _verticalCausalFilter(cv::ocl::oclMat &outputFrame);
void _horizontalAnticausalFilter_Irregular(cv::ocl::oclMat &outputFrame, const cv::ocl::oclMat &spatialConstantBuffer);
void _verticalCausalFilter_Irregular(cv::ocl::oclMat &outputFrame, const cv::ocl::oclMat &spatialConstantBuffer);
void _verticalAnticausalFilter_multGain(cv::ocl::oclMat &outputFrame);
};
class MagnoRetinaFilter: public BasicRetinaFilter
{
public:
MagnoRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns);
virtual ~MagnoRetinaFilter();
void clearAllBuffers();
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
void setCoefficientsTable(const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float localAdaptIntegration_tau, const float localAdaptIntegration_k);
const cv::ocl::oclMat &runFilter(const cv::ocl::oclMat &OPL_ON, const cv::ocl::oclMat &OPL_OFF);
inline const cv::ocl::oclMat &getMagnoON() const
{
return _magnoXOutputON;
};
inline const cv::ocl::oclMat &getMagnoOFF() const
{
return _magnoXOutputOFF;
};
inline const cv::ocl::oclMat &getMagnoYsaturated() const
{
return _magnoYsaturated;
};
inline void normalizeGrayOutputNearZeroCentreredSigmoide()
{
ocl::normalizeGrayOutputNearZeroCentreredSigmoide(_magnoYOutput, _magnoYsaturated);
};
inline float getTemporalConstant()
{
return this->_filteringCoeficientsTable[2];
};
private:
cv::ocl::oclMat _previousInput_ON;
cv::ocl::oclMat _previousInput_OFF;
cv::ocl::oclMat _amacrinCellsTempOutput_ON;
cv::ocl::oclMat _amacrinCellsTempOutput_OFF;
cv::ocl::oclMat _magnoXOutputON;
cv::ocl::oclMat _magnoXOutputOFF;
cv::ocl::oclMat _localProcessBufferON;
cv::ocl::oclMat _localProcessBufferOFF;
cv::ocl::oclMat _magnoYOutput;
cv::ocl::oclMat _magnoYsaturated;
float _temporalCoefficient;
void _amacrineCellsComputing(const cv::ocl::oclMat &OPL_ON, const cv::ocl::oclMat &OPL_OFF);
};
class ParvoRetinaFilter: public BasicRetinaFilter
{
public:
ParvoRetinaFilter(const unsigned int NBrows = 480, const unsigned int NBcolumns = 640);
virtual ~ParvoRetinaFilter();
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
void clearAllBuffers();
void setOPLandParvoFiltersParameters(const float beta1, const float tau1, const float k1, const float beta2, const float tau2, const float k2);
inline void setGanglionCellsLocalAdaptationLPfilterParameters(const float tau, const float k)
{
BasicRetinaFilter::setLPfilterParameters(0, tau, k, 2);
};
const cv::ocl::oclMat &runFilter(const cv::ocl::oclMat &inputFrame, const bool useParvoOutput = true);
inline const cv::ocl::oclMat &getPhotoreceptorsLPfilteringOutput() const
{
return _photoreceptorsOutput;
};
inline const cv::ocl::oclMat &getHorizontalCellsOutput() const
{
return _horizontalCellsOutput;
};
inline const cv::ocl::oclMat &getParvoON() const
{
return _parvocellularOutputON;
};
inline const cv::ocl::oclMat &getParvoOFF() const
{
return _parvocellularOutputOFF;
};
inline const cv::ocl::oclMat &getBipolarCellsON() const
{
return _bipolarCellsOutputON;
};
inline const cv::ocl::oclMat &getBipolarCellsOFF() const
{
return _bipolarCellsOutputOFF;
};
inline float getPhotoreceptorsTemporalConstant()
{
return this->_filteringCoeficientsTable[2];
};
inline float getHcellsTemporalConstant()
{
return this->_filteringCoeficientsTable[5];
};
private:
cv::ocl::oclMat _photoreceptorsOutput;
cv::ocl::oclMat _horizontalCellsOutput;
cv::ocl::oclMat _parvocellularOutputON;
cv::ocl::oclMat _parvocellularOutputOFF;
cv::ocl::oclMat _bipolarCellsOutputON;
cv::ocl::oclMat _bipolarCellsOutputOFF;
cv::ocl::oclMat _localAdaptationOFF;
cv::ocl::oclMat _localAdaptationON;
cv::ocl::oclMat _parvocellularOutputONminusOFF;
void _OPL_OnOffWaysComputing();
};
class RetinaColor: public BasicRetinaFilter
{
public:
RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const int samplingMethod = RETINA_COLOR_DIAGONAL);
virtual ~RetinaColor();
void clearAllBuffers();
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
inline void runColorMultiplexing(const cv::ocl::oclMat &inputRGBFrame)
{
runColorMultiplexing(inputRGBFrame, _multiplexedFrame);
};
void runColorMultiplexing(const cv::ocl::oclMat &demultiplexedInputFrame, cv::ocl::oclMat &multiplexedFrame);
void runColorDemultiplexing(const cv::ocl::oclMat &multiplexedColorFrame, const bool adaptiveFiltering = false, const float maxInputValue = 255.0);
void setColorSaturation(const bool saturateColors = true, const float colorSaturationValue = 4.0)
{
_saturateColors = saturateColors;
_colorSaturationValue = colorSaturationValue;
};
void setChrominanceLPfilterParameters(const float beta, const float tau, const float k)
{
setLPfilterParameters(beta, tau, k);
};
bool applyKrauskopfLMS2Acr1cr2Transform(cv::ocl::oclMat &result);
bool applyLMS2LabTransform(cv::ocl::oclMat &result);
inline const cv::ocl::oclMat &getMultiplexedFrame() const
{
return _multiplexedFrame;
};
inline const cv::ocl::oclMat &getDemultiplexedColorFrame() const
{
return _demultiplexedColorFrame;
};
inline const cv::ocl::oclMat &getLuminance() const
{
return _luminance;
};
inline const cv::ocl::oclMat &getChrominance() const
{
return _chrominance;
};
void clipRGBOutput_0_maxInputValue(cv::ocl::oclMat &inputOutputBuffer, const float maxOutputValue = 255.0);
void normalizeRGBOutput_0_maxOutputValue(const float maxOutputValue = 255.0);
inline void setDemultiplexedColorFrame(const cv::ocl::oclMat &demultiplexedImage)
{
_demultiplexedColorFrame = demultiplexedImage;
};
protected:
inline unsigned int bayerSampleOffset(unsigned int index)
{
return index + ((index / getNBcolumns()) % 2) * getNBpixels() + ((index % getNBcolumns()) % 2) * getNBpixels();
}
inline Rect getROI(int idx)
{
return Rect(0, idx * _NBrows, _NBcols, _NBrows);
}
int _samplingMethod;
bool _saturateColors;
float _colorSaturationValue;
cv::ocl::oclMat _luminance;
cv::ocl::oclMat _multiplexedFrame;
cv::ocl::oclMat _RGBmosaic;
cv::ocl::oclMat _tempMultiplexedFrame;
cv::ocl::oclMat _demultiplexedTempBuffer;
cv::ocl::oclMat _demultiplexedColorFrame;
cv::ocl::oclMat _chrominance;
cv::ocl::oclMat _colorLocalDensity;
cv::ocl::oclMat _imageGradient;
float _pR, _pG, _pB;
bool _objectInit;
void _initColorSampling();
void _adaptiveSpatialLPfilter(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &gradient, cv::ocl::oclMat &outputFrame);
void _adaptiveHorizontalCausalFilter_addInput(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &gradient, cv::ocl::oclMat &outputFrame);
void _adaptiveVerticalAnticausalFilter_multGain(const cv::ocl::oclMat &gradient, cv::ocl::oclMat &outputFrame);
void _computeGradient(const cv::ocl::oclMat &luminance, cv::ocl::oclMat &gradient);
void _normalizeOutputs_0_maxOutputValue(void);
void _applyImageColorSpaceConversion(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const float *transformTable);
};
class RetinaFilter
{
public:
RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode = false, const int samplingMethod = RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0);
~RetinaFilter();
void clearAllBuffers();
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
bool checkInput(const cv::ocl::oclMat &input, const bool colorMode);
bool runFilter(const cv::ocl::oclMat &imageInput, const bool useAdaptiveFiltering = true, const bool processRetinaParvoMagnoMapping = false, const bool useColorMode = false, const bool inputIsColorMultiplexed = false);
void setGlobalParameters(const float OPLspatialResponse1 = 0.7, const float OPLtemporalresponse1 = 1, const float OPLassymetryGain = 0, const float OPLspatialResponse2 = 5, const float OPLtemporalresponse2 = 1, const float LPfilterSpatialResponse = 5, const float LPfilterGain = 0, const float LPfilterTemporalresponse = 0, const float MovingContoursExtractorCoefficient = 5, const bool normalizeParvoOutput_0_maxOutputValue = false, const bool normalizeMagnoOutput_0_maxOutputValue = false, const float maxOutputValue = 255.0, const float maxInputValue = 255.0, const float meanValue = 128.0);
inline void setPhotoreceptorsLocalAdaptationSensitivity(const float V0CompressionParameter)
{
_photoreceptorsPrefilter.setV0CompressionParameter(1 - V0CompressionParameter);
_setInitPeriodCount();
};
inline void setParvoGanglionCellsLocalAdaptationSensitivity(const float V0CompressionParameter)
{
_ParvoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
_setInitPeriodCount();
};
inline void setGanglionCellsLocalAdaptationLPfilterParameters(const float spatialResponse, const float temporalResponse)
{
_ParvoRetinaFilter.setGanglionCellsLocalAdaptationLPfilterParameters(temporalResponse, spatialResponse);
_setInitPeriodCount();
};
inline void setMagnoGanglionCellsLocalAdaptationSensitivity(const float V0CompressionParameter)
{
_MagnoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
_setInitPeriodCount();
};
void setOPLandParvoParameters(const float beta1, const float tau1, const float k1, const float beta2, const float tau2, const float k2, const float V0CompressionParameter)
{
_ParvoRetinaFilter.setOPLandParvoFiltersParameters(beta1, tau1, k1, beta2, tau2, k2);
_ParvoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
_setInitPeriodCount();
};
void setMagnoCoefficientsTable(const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float V0CompressionParameter, const float localAdaptintegration_tau, const float localAdaptintegration_k)
{
_MagnoRetinaFilter.setCoefficientsTable(parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, localAdaptintegration_tau, localAdaptintegration_k);
_MagnoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
_setInitPeriodCount();
};
inline void activateNormalizeParvoOutput_0_maxOutputValue(const bool normalizeParvoOutput_0_maxOutputValue)
{
_normalizeParvoOutput_0_maxOutputValue = normalizeParvoOutput_0_maxOutputValue;
};
inline void activateNormalizeMagnoOutput_0_maxOutputValue(const bool normalizeMagnoOutput_0_maxOutputValue)
{
_normalizeMagnoOutput_0_maxOutputValue = normalizeMagnoOutput_0_maxOutputValue;
};
inline void setMaxOutputValue(const float maxOutputValue)
{
_maxOutputValue = maxOutputValue;
};
void setColorMode(const bool desiredColorMode)
{
_useColorMode = desiredColorMode;
};
inline void setColorSaturation(const bool saturateColors = true, const float colorSaturationValue = 4.0)
{
_colorEngine.setColorSaturation(saturateColors, colorSaturationValue);
};
inline const cv::ocl::oclMat &getLocalAdaptation() const
{
return _photoreceptorsPrefilter.getOutput();
};
inline const cv::ocl::oclMat &getPhotoreceptors() const
{
return _ParvoRetinaFilter.getPhotoreceptorsLPfilteringOutput();
};
inline const cv::ocl::oclMat &getHorizontalCells() const
{
return _ParvoRetinaFilter.getHorizontalCellsOutput();
};
inline bool areContoursProcessed()
{
return _useParvoOutput;
};
bool getParvoFoveaResponse(cv::ocl::oclMat &parvoFovealResponse);
inline void activateContoursProcessing(const bool useParvoOutput)
{
_useParvoOutput = useParvoOutput;
};
const cv::ocl::oclMat &getContours();
inline const cv::ocl::oclMat &getContoursON() const
{
return _ParvoRetinaFilter.getParvoON();
};
inline const cv::ocl::oclMat &getContoursOFF() const
{
return _ParvoRetinaFilter.getParvoOFF();
};
inline bool areMovingContoursProcessed()
{
return _useMagnoOutput;
};
inline void activateMovingContoursProcessing(const bool useMagnoOutput)
{
_useMagnoOutput = useMagnoOutput;
};
inline const cv::ocl::oclMat &getMovingContours() const
{
return _MagnoRetinaFilter.getOutput();
};
inline const cv::ocl::oclMat &getMovingContoursSaturated() const
{
return _MagnoRetinaFilter.getMagnoYsaturated();
};
inline const cv::ocl::oclMat &getMovingContoursON() const
{
return _MagnoRetinaFilter.getMagnoON();
};
inline const cv::ocl::oclMat &getMovingContoursOFF() const
{
return _MagnoRetinaFilter.getMagnoOFF();
};
inline const cv::ocl::oclMat &getRetinaParvoMagnoMappedOutput() const
{
return _retinaParvoMagnoMappedFrame;
};
inline const cv::ocl::oclMat &getParvoContoursChannel() const
{
return _colorEngine.getLuminance();
};
inline const cv::ocl::oclMat &getParvoChrominance() const
{
return _colorEngine.getChrominance();
};
inline const cv::ocl::oclMat &getColorOutput() const
{
return _colorEngine.getDemultiplexedColorFrame();
};
inline bool isColorMode()
{
return _useColorMode;
};
bool getColorMode()
{
return _useColorMode;
};
inline bool isInitTransitionDone()
{
if (_ellapsedFramesSinceLastReset < _globalTemporalConstant)
{
return false;
}
return true;
};
inline float getRetinaSamplingBackProjection(const float projectedRadiusLength)
{
return projectedRadiusLength;
};
inline unsigned int getInputNBrows()
{
return _photoreceptorsPrefilter.getNBrows();
};
inline unsigned int getInputNBcolumns()
{
return _photoreceptorsPrefilter.getNBcolumns();
};
inline unsigned int getInputNBpixels()
{
return _photoreceptorsPrefilter.getNBpixels();
};
inline unsigned int getOutputNBrows()
{
return _photoreceptorsPrefilter.getNBrows();
};
inline unsigned int getOutputNBcolumns()
{
return _photoreceptorsPrefilter.getNBcolumns();
};
inline unsigned int getOutputNBpixels()
{
return _photoreceptorsPrefilter.getNBpixels();
};
private:
bool _useParvoOutput;
bool _useMagnoOutput;
unsigned int _ellapsedFramesSinceLastReset;
unsigned int _globalTemporalConstant;
cv::ocl::oclMat _retinaParvoMagnoMappedFrame;
BasicRetinaFilter _photoreceptorsPrefilter;
ParvoRetinaFilter _ParvoRetinaFilter;
MagnoRetinaFilter _MagnoRetinaFilter;
RetinaColor _colorEngine;
bool _useMinimalMemoryForToneMappingONLY;
bool _normalizeParvoOutput_0_maxOutputValue;
bool _normalizeMagnoOutput_0_maxOutputValue;
float _maxOutputValue;
bool _useColorMode;
void _setInitPeriodCount();
void _processRetinaParvoMagnoMapping();
void _runGrayToneMapping(const cv::ocl::oclMat &grayImageInput, cv::ocl::oclMat &grayImageOutput , const float PhotoreceptorsCompression = 0.6, const float ganglionCellsCompression = 0.6);
};
} /* namespace ocl */
} /* namespace bioinspired */
} /* namespace cv */
#endif /* HAVE_OPENCV_OCL */
#endif /* __OCL_RETINA_HPP__ */
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/opencv_modules.hpp"
#include "opencv2/bioinspired.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#if defined(HAVE_OPENCV_OCL) && defined(HAVE_OPENCL)
#include "opencv2/ocl.hpp"
#define RETINA_ITERATIONS 5
static double checkNear(const cv::Mat &m1, const cv::Mat &m2)
{
return cv::norm(m1, m2, cv::NORM_INF);
}
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
static int oclInit = false;
PARAM_TEST_CASE(Retina_OCL, bool, int, bool, double, double)
{
bool colorMode;
int colorSamplingMethod;
bool useLogSampling;
double reductionFactor;
double samplingStrength;
std::vector<cv::ocl::Info> infos;
virtual void SetUp()
{
colorMode = GET_PARAM(0);
colorSamplingMethod = GET_PARAM(1);
useLogSampling = GET_PARAM(2);
reductionFactor = GET_PARAM(3);
samplingStrength = GET_PARAM(4);
if(!oclInit)
{
cv::ocl::getDevice(infos);
std::cout << "Device name:" << infos[0].DeviceName[0] << std::endl;
oclInit = true;
}
}
};
TEST_P(Retina_OCL, Accuracy)
{
using namespace cv;
Mat input = imread(cvtest::TS::ptr()->get_data_path() + "shared/lena.png", colorMode);
CV_Assert(!input.empty());
ocl::oclMat ocl_input(input);
Ptr<bioinspired::Retina> ocl_retina = bioinspired::createRetina_OCL(
input.size(),
colorMode,
colorSamplingMethod,
useLogSampling,
reductionFactor,
samplingStrength);
Ptr<bioinspired::Retina> gold_retina = bioinspired::createRetina(
input.size(),
colorMode,
colorSamplingMethod,
useLogSampling,
reductionFactor,
samplingStrength);
Mat gold_parvo;
Mat gold_magno;
ocl::oclMat ocl_parvo;
ocl::oclMat ocl_magno;
for(int i = 0; i < RETINA_ITERATIONS; i ++)
{
ocl_retina->run(ocl_input);
gold_retina->run(input);
gold_retina->getParvo(gold_parvo);
gold_retina->getMagno(gold_magno);
ocl_retina->getParvo(ocl_parvo);
ocl_retina->getMagno(ocl_magno);
EXPECT_LE(checkNear(gold_parvo, (Mat)ocl_parvo), 1.0);
EXPECT_LE(checkNear(gold_magno, (Mat)ocl_magno), 1.0);
}
}
INSTANTIATE_TEST_CASE_P(Contrib, Retina_OCL, testing::Combine(
testing::Values(false, true),
testing::Values((int)cv::bioinspired::RETINA_COLOR_BAYER),
testing::Values(false/*,true*/),
testing::Values(1.0, 0.5),
testing::Values(10.0, 5.0)));
#endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment