Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
86636dc2
Commit
86636dc2
authored
Jan 14, 2014
by
Elena Gvozdeva
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added ocl_matchTemplate( without dft)
parent
ee88cc2c
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
929 additions
and
7 deletions
+929
-7
match_template.cl
modules/imgproc/src/opencl/match_template.cl
+428
-0
templmatch.cpp
modules/imgproc/src/templmatch.cpp
+370
-7
test_match_template.cpp
modules/imgproc/test/ocl/test_match_template.cpp
+131
-0
No files found.
modules/imgproc/src/opencl/match_template.cl
0 → 100644
View file @
86636dc2
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2012,
Institute
Of
Software
Chinese
Academy
Of
Science,
all
rights
reserved.
//
Copyright
(
C
)
2010-2012,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
as
is
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
#
define
DATA_TYPE
type
#
define
DATA_SIZE
((
int
)
sizeof
(
type
))
#
define
ELEM_TYPE
elem_type
#
define
ELEM_SIZE
((
int
)
sizeof
(
elem_type
))
#
define
CN
cn
#
define
SQSUMS_PTR
(
ox,
oy
)
mad24
(
gidy
+
oy,
img_sqsums_step,
(
gidx
+
img_sqsums_offset
+
ox
)
*
CN
)
#
define
SQSUMS
(
ox,
oy
)
mad24
(
gidy
+
oy,
img_sqsums_step,
(
gidx*CN
+
img_sqsums_offset
+
ox*CN
))
#
define
SUMS_PTR
(
ox,
oy
)
mad24
(
gidy
+
oy,
img_sums_step,
(
gidx*CN
+
img_sums_offset
+
ox*CN
))
inline
float
normAcc
(
float
num,
float
denum
)
{
if
(
fabs
(
num
)
<
denum
)
{
return
num
/
denum
;
}
if
(
fabs
(
num
)
<
denum
*
1.125f
)
{
return
num
>
0
?
1
:
-1
;
}
return
0
;
}
inline
float
normAcc_SQDIFF
(
float
num,
float
denum
)
{
if
(
fabs
(
num
)
<
denum
)
{
return
num
/
denum
;
}
if
(
fabs
(
num
)
<
denum
*
1.125f
)
{
return
num
>
0
?
1
:
-1
;
}
return
1
;
}
//////////////////////////////////////////CCORR/////////////////////////////////////////////////////////////////////////
__kernel
void
matchTemplate_Naive_CCORR
(
__global
const
uchar
*
img,int
img_step,int
img_offset,
__global
const
uchar
*
tpl,int
tpl_step,int
tpl_offset,int
tpl_rows,
int
tpl_cols,
__global
uchar
*
res,int
res_step,int
res_offset,int
res_rows,int
res_cols
)
{
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
int
i,j
;
float
sum
=
0
;
res_step
/=
sizeof
(
float
)
;
res_offset
/=
sizeof
(
float
)
;
int
res_idx
=
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
if
(
gidx
<
res_cols
&&
gidy
<
res_rows
)
{
for
(
i
=
0
; i < tpl_rows; i ++)
{
__global
const
ELEM_TYPE
*
img_ptr
=
(
__global
const
ELEM_TYPE
*
)(
img
+
mad24
(
gidy
+
i,
img_step,
gidx*DATA_SIZE
+
img_offset
))
;
__global
const
ELEM_TYPE
*
tpl_ptr
=
(
__global
const
ELEM_TYPE
*
)(
tpl
+
mad24
(
i,
tpl_step,
tpl_offset
))
;
for
(
j
=
0
; j < tpl_cols; j ++)
for
(
int
c
=
0
; c < CN; c++)
sum
+=
(
float
)(
img_ptr[j*CN+c]
*
tpl_ptr[j*CN+c]
)
;
}
__global
float
*
result
=
(
__global
float
*
)(
res
)
+res_idx
;
*result
=
sum
;
}
}
__kernel
void
matchTemplate_CCORR_NORMED
(
__global
const
uchar
*
img_sqsums,
int
img_sqsums_step,
int
img_sqsums_offset,
__global
uchar
*
res,
int
res_step,
int
res_offset,
int
res_rows,
int
res_cols,
int
tpl_rows,
int
tpl_cols,
ulong
tpl_sqsum
)
{
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
img_sqsums_step
/=
sizeof
(
float
)
;
img_sqsums_offset
/=
sizeof
(
float
)
;
res_step
/=
sizeof
(
float
)
;
res_offset
/=
sizeof
(
float
)
;
int
res_idx
=
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
if
(
gidx
<
res_cols
&&
gidy
<
res_rows
)
{
__global
float
*
sqsum
=
(
__global
float*
)(
img_sqsums
)
;
float
image_sqsum_
=
(
float
)(
(
sqsum[SQSUMS_PTR
(
tpl_cols,
tpl_rows
)
]
-
sqsum[SQSUMS_PTR
(
tpl_cols,
0
)
]
)
-
(
sqsum[SQSUMS_PTR
(
0
,
tpl_rows
)
]
-
sqsum[SQSUMS_PTR
(
0
,
0
)
]
))
;
__global
float
*
result
=
(
__global
float
*
)(
res
)
+res_idx
;
*result
=
normAcc
(
*result,
sqrt
(
image_sqsum_
*
tpl_sqsum
))
;
}
}
////////////////////////////////////////////SQDIFF////////////////////////////////////////////////////////////////////////
__kernel
void
matchTemplate_Naive_SQDIFF
(
__global
const
uchar
*
img,int
img_step,int
img_offset,
__global
const
uchar
*
tpl,int
tpl_step,int
tpl_offset,int
tpl_rows,
int
tpl_cols,
__global
uchar
*
res,int
res_step,int
res_offset,int
res_rows,int
res_cols
)
{
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
int
i,j
;
float
delta
;
float
sum
=
0
;
res_step
/=
sizeof
(
float
)
;
res_offset
/=
sizeof
(
float
)
;
int
res_idx
=
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
if
(
gidx
<
res_cols
&&
gidy
<
res_rows
)
{
for
(
i
=
0
; i < tpl_rows; i ++)
{
__global
const
ELEM_TYPE
*
img_ptr
=
(
__global
const
ELEM_TYPE
*
)(
img
+
mad24
(
gidy
+
i,
img_step,
gidx*DATA_SIZE
+
img_offset
))
;
__global
const
ELEM_TYPE
*
tpl_ptr
=
(
__global
const
ELEM_TYPE
*
)(
tpl
+
mad24
(
i,
tpl_step,
tpl_offset
))
;
for
(
j
=
0
; j < tpl_cols; j ++)
for
(
int
c
=
0
; c < CN; c++)
{
delta
=
(
float
)(
img_ptr[j*CN+c]
-
tpl_ptr[j*CN+c]
)
;
sum
+=
delta*delta
;
}
}
__global
float
*
result
=
(
__global
float
*
)(
res
)
+res_idx
;
*result
=
sum
;
}
}
__kernel
void
matchTemplate_SQDIFF_NORMED
(
__global
const
uchar
*
img_sqsums,
int
img_sqsums_step,
int
img_sqsums_offset,
__global
uchar
*
res,
int
res_step,
int
res_offset,
int
res_rows,
int
res_cols,
int
tpl_rows,
int
tpl_cols,
ulong
tpl_sqsum
)
{
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
img_sqsums_step
/=
sizeof
(
float
)
;
img_sqsums_offset
/=
sizeof
(
float
)
;
res_step
/=
sizeof
(
float
)
;
res_offset
/=
sizeof
(
float
)
;
int
res_idx
=
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
if
(
gidx
<
res_cols
&&
gidy
<
res_rows
)
{
__global
float
*
sqsum
=
(
__global
float*
)(
img_sqsums
)
;
float
image_sqsum_
=
(
float
)(
(
sqsum[SQSUMS_PTR
(
tpl_cols,
tpl_rows
)
]
-
sqsum[SQSUMS_PTR
(
tpl_cols,
0
)
]
)
-
(
sqsum[SQSUMS_PTR
(
0
,
tpl_rows
)
]
-
sqsum[SQSUMS_PTR
(
0
,
0
)
]
))
;
__global
float
*
result
=
(
__global
float
*
)(
res
)
+res_idx
;
*result
=
normAcc_SQDIFF
(
image_sqsum_
-
2.f
*
result[0]
+
tpl_sqsum,
sqrt
(
image_sqsum_
*
tpl_sqsum
))
;
}
}
////////////////////////////////////////////CCOEFF/////////////////////////////////////////////////////////////////
__kernel
void
matchTemplate_Prepared_CCOEFF_C1
(
__global
const
uchar
*
img_sums,
int
img_sums_step,
int
img_sums_offset,
__global
uchar
*
res,
int
res_step,
int
res_offset,
int
res_rows,
int
res_cols,
int
tpl_rows,
int
tpl_cols,
float
tpl_sum
)
{
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
img_sums_step
/=
ELEM_SIZE
;
img_sums_offset
/=
ELEM_SIZE
;
res_step
/=
sizeof
(
float
)
;
res_offset
/=
sizeof
(
float
)
;
int
res_idx
=
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
float
image_sum_
=
0
;
if
(
gidx
<
res_cols
&&
gidy
<
res_rows
)
{
__global
ELEM_TYPE*
sum
=
(
__global
ELEM_TYPE*
)(
img_sums
)
;
image_sum_
+=
(
float
)((
sum[SUMS_PTR
(
tpl_cols,
tpl_rows
)
]
-
sum[SUMS_PTR
(
tpl_cols,
0
)
]
)
-
(
sum[SUMS_PTR
(
0
,
tpl_rows
)
]
-
sum[SUMS_PTR
(
0
,
0
)
]
))
*
tpl_sum
;
__global
float
*
result
=
(
__global
float
*
)(
res
)
+res_idx
;
*result
-=
image_sum_
;
}
}
__kernel
void
matchTemplate_Prepared_CCOEFF_C2
(
__global
const
uchar
*
img_sums,
int
img_sums_step,
int
img_sums_offset,
__global
uchar
*
res,
int
res_step,
int
res_offset,
int
res_rows,
int
res_cols,
int
tpl_rows,
int
tpl_cols,
float
tpl_sum_0,float
tpl_sum_1
)
{
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
img_sums_step
/=
ELEM_SIZE
;
img_sums_offset
/=
ELEM_SIZE
;
res_step
/=
sizeof
(
float
)
;
res_offset
/=
sizeof
(
float
)
;
int
res_idx
=
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
float
image_sum_
=
0
;
if
(
gidx
<
res_cols
&&
gidy
<
res_rows
)
{
__global
ELEM_TYPE*
sum
=
(
__global
ELEM_TYPE*
)(
img_sums
)
;
image_sum_
+=
tpl_sum_0
*
(
float
)((
sum[SUMS_PTR
(
tpl_cols,
tpl_rows
)
]
-
sum[SUMS_PTR
(
tpl_cols,
0
)
]
)
-
(
sum[SUMS_PTR
(
0
,
tpl_rows
)
]
-
sum[SUMS_PTR
(
0
,
0
)
]
))
;
image_sum_
+=
tpl_sum_1
*
(
float
)((
sum[SUMS_PTR
(
tpl_cols,
tpl_rows
)
+1]
-
sum[SUMS_PTR
(
tpl_cols,
0
)
+1]
)
-
(
sum[SUMS_PTR
(
0
,
tpl_rows
)
+1]
-
sum[SUMS_PTR
(
0
,
0
)
+1]
))
;
__global
float
*
result
=
(
__global
float
*
)(
res
)
+res_idx
;
*result
-=
image_sum_
;
}
}
__kernel
void
matchTemplate_Prepared_CCOEFF_C4
(
__global
const
uchar
*
img_sums,
int
img_sums_step,
int
img_sums_offset,
__global
uchar
*
res,
int
res_step,
int
res_offset,
int
res_rows,
int
res_cols,
int
tpl_rows,
int
tpl_cols,
float
tpl_sum_0,float
tpl_sum_1,float
tpl_sum_2,float
tpl_sum_3
)
{
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
img_sums_step
/=
ELEM_SIZE
;
img_sums_offset
/=
ELEM_SIZE
;
res_step
/=
sizeof
(
float
)
;
res_offset
/=
sizeof
(
float
)
;
int
res_idx
=
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
float
image_sum_
=
0
;
if
(
gidx
<
res_cols
&&
gidy
<
res_rows
)
{
__global
ELEM_TYPE*
sum
=
(
__global
ELEM_TYPE*
)(
img_sums
)
;
image_sum_
+=
tpl_sum_0
*
(
float
)((
sum[SUMS_PTR
(
tpl_cols,
tpl_rows
)
]
-
sum[SUMS_PTR
(
tpl_cols,
0
)
]
)
-
(
sum[SUMS_PTR
(
0
,
tpl_rows
)
]
-
sum[SUMS_PTR
(
0
,
0
)
]
))
;
image_sum_
+=
tpl_sum_1
*
(
float
)((
sum[SUMS_PTR
(
tpl_cols,
tpl_rows
)
+1]
-
sum[SUMS_PTR
(
tpl_cols,
0
)
+1]
)
-
(
sum[SUMS_PTR
(
0
,
tpl_rows
)
+1]
-
sum[SUMS_PTR
(
0
,
0
)
+1]
))
;
image_sum_
+=
tpl_sum_2
*
(
float
)((
sum[SUMS_PTR
(
tpl_cols,
tpl_rows
)
+2]
-
sum[SUMS_PTR
(
tpl_cols,
0
)
+2]
)
-
(
sum[SUMS_PTR
(
0
,
tpl_rows
)
+2]
-
sum[SUMS_PTR
(
0
,
0
)
+2]
))
;
image_sum_
+=
tpl_sum_3
*
(
float
)((
sum[SUMS_PTR
(
tpl_cols,
tpl_rows
)
+3]
-
sum[SUMS_PTR
(
tpl_cols,
0
)
+3]
)
-
(
sum[SUMS_PTR
(
0
,
tpl_rows
)
+3]
-
sum[SUMS_PTR
(
0
,
0
)
+3]
))
;
__global
float
*
result
=
(
__global
float
*
)(
res
)
+res_idx
;
*result
-=
image_sum_
;
}
}
__kernel
void
matchTemplate_CCOEFF_NORMED_C1
(
__global
const
uchar
*
img_sums,
int
img_sums_step,
int
img_sums_offset,
__global
const
uchar
*
img_sqsums,
int
img_sqsums_step,
int
img_sqsums_offset,
__global
float
*
res,
int
res_step,
int
res_offset,
int
res_rows,
int
res_cols,
int
t_rows,
int
t_cols,
float
weight,
float
tpl_sum,
float
tpl_sqsum
)
{
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
img_sums_offset
/=
ELEM_SIZE
;
img_sums_step
/=
ELEM_SIZE
;
img_sqsums_step
/=
sizeof
(
float
)
;
img_sqsums_offset
/=
sizeof
(
float
)
;
res_step
/=
sizeof
(
*res
)
;
res_offset
/=
sizeof
(
*res
)
;
int
res_idx
=
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
if
(
gidx
<
res_cols
&&
gidy
<
res_rows
)
{
__global
ELEM_TYPE*
sum
=
(
__global
ELEM_TYPE*
)(
img_sums
)
;
__global
float
*
sqsum
=
(
__global
float*
)(
img_sqsums
)
;
float
image_sum_
=
(
float
)((
sum[SUMS_PTR
(
t_cols,
t_rows
)
]
-
sum[SUMS_PTR
(
t_cols,
0
)
]
)
-
(
sum[SUMS_PTR
(
0
,
t_rows
)
]
-
sum[SUMS_PTR
(
0
,
0
)
]
))
;
float
image_sqsum_
=
(
float
)((
sqsum[SQSUMS_PTR
(
t_cols,
t_rows
)
]
-
sqsum[SQSUMS_PTR
(
t_cols,
0
)
]
)
-
(
sqsum[SQSUMS_PTR
(
0
,
t_rows
)
]
-
sqsum[SQSUMS_PTR
(
0
,
0
)
]
))
;
__global
float
*
result
=
(
__global
float
*
)(
res
)
+res_idx
;
*result
=
normAcc
((
*result
)
-
image_sum_
*
tpl_sum,
sqrt
(
tpl_sqsum
*
(
image_sqsum_
-
weight
*
image_sum_
*
image_sum_
)))
;
}
}
__kernel
void
matchTemplate_CCOEFF_NORMED_C2
(
__global
const
uchar
*
img_sums,
int
img_sums_step,
int
img_sums_offset,
__global
const
uchar
*
img_sqsums,
int
img_sqsums_step,
int
img_sqsums_offset,
__global
float
*
res,
int
res_step,
int
res_offset,
int
res_rows,
int
res_cols,
int
t_rows,
int
t_cols,
float
weight,
float
tpl_sum_0,
float
tpl_sum_1,
float
tpl_sqsum
)
{
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
img_sums_offset
/=
ELEM_SIZE
;
img_sums_step
/=
ELEM_SIZE
;
img_sqsums_step
/=
sizeof
(
float
)
;
img_sqsums_offset
/=
sizeof
(
float
)
;
res_step
/=
sizeof
(
*res
)
;
res_offset
/=
sizeof
(
*res
)
;
int
res_idx
=
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
float
sum_[2]
;
float
sqsum_[2]
;
if
(
gidx
<
res_cols
&&
gidy
<
res_rows
)
{
__global
ELEM_TYPE*
sum
=
(
__global
ELEM_TYPE*
)(
img_sums
)
;
__global
float
*
sqsum
=
(
__global
float*
)(
img_sqsums
)
;
sum_[0]
=
(
float
)((
sum[SUMS_PTR
(
t_cols,
t_rows
)
]
-
sum[SUMS_PTR
(
t_cols,
0
)
]
)
-
(
sum[SUMS_PTR
(
0
,
t_rows
)
]
-
sum[SUMS_PTR
(
0
,
0
)
]
))
;
sum_[1]
=
(
float
)((
sum[SUMS_PTR
(
t_cols,
t_rows
)
+1]
-
sum[SUMS_PTR
(
t_cols,
0
)
+1]
)
-
(
sum[SUMS_PTR
(
0
,
t_rows
)
+1]
-
sum[SUMS_PTR
(
0
,
0
)
+1]
))
;
sqsum_[0]
=
(
float
)((
sqsum[SQSUMS
(
t_cols,
t_rows
)
]
-
sqsum[SQSUMS
(
t_cols,
0
)
]
)
-
(
sqsum[SQSUMS
(
0
,
t_rows
)
]
-
sqsum[SQSUMS
(
0
,
0
)
]
))
;
sqsum_[1]
=
(
float
)((
sqsum[SQSUMS
(
t_cols,
t_rows
)
+1]
-
sqsum[SQSUMS
(
t_cols,
0
)
+1]
)
-
(
sqsum[SQSUMS
(
0
,
t_rows
)
+1]
-
sqsum[SQSUMS
(
0
,
0
)
+1]
))
;
float
num
=
sum_[0]*tpl_sum_0
+
sum_[1]*tpl_sum_1
;
float
denum
=
sqrt
(
tpl_sqsum
*
(
sqsum_[0]
-
weight
*
sum_[0]*
sum_[0]
+
sqsum_[1]
-
weight
*
sum_[1]*
sum_[1]
))
;
__global
float
*
result
=
(
__global
float
*
)(
res
)
+res_idx
;
*result
=
normAcc
((
*result
)
-
num,
denum
)
;
}
}
__kernel
void
matchTemplate_CCOEFF_NORMED_C4
(
__global
const
uchar
*
img_sums,
int
img_sums_step,
int
img_sums_offset,
__global
const
uchar
*
img_sqsums,
int
img_sqsums_step,
int
img_sqsums_offset,
__global
float
*
res,
int
res_step,
int
res_offset,
int
res_rows,
int
res_cols,
int
t_rows,
int
t_cols,
float
weight,
float
tpl_sum_0,float
tpl_sum_1,float
tpl_sum_2,float
tpl_sum_3,
float
tpl_sqsum
)
{
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
img_sums_offset
/=
ELEM_SIZE
;
img_sums_step
/=
ELEM_SIZE
;
img_sqsums_step
/=
sizeof
(
float
)
;
img_sqsums_offset
/=
sizeof
(
float
)
;
res_step
/=
sizeof
(
*res
)
;
res_offset
/=
sizeof
(
*res
)
;
int
res_idx
=
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
float
sum_[4]
;
float
sqsum_[4]
;
if
(
gidx
<
res_cols
&&
gidy
<
res_rows
)
{
__global
ELEM_TYPE*
sum
=
(
__global
ELEM_TYPE*
)(
img_sums
)
;
__global
float
*
sqsum
=
(
__global
float*
)(
img_sqsums
)
;
sum_[0]
=
(
float
)((
sum[SUMS_PTR
(
t_cols,
t_rows
)
]
-
sum[SUMS_PTR
(
t_cols,
0
)
]
)
-
(
sum[SUMS_PTR
(
0
,
t_rows
)
]
-
sum[SUMS_PTR
(
0
,
0
)
]
))
;
sum_[1]
=
(
float
)((
sum[SUMS_PTR
(
t_cols,
t_rows
)
+1]
-
sum[SUMS_PTR
(
t_cols,
0
)
+1]
)
-
(
sum[SUMS_PTR
(
0
,
t_rows
)
+1]
-
sum[SUMS_PTR
(
0
,
0
)
+1]
))
;
sum_[2]
=
(
float
)((
sum[SUMS_PTR
(
t_cols,
t_rows
)
+2]
-
sum[SUMS_PTR
(
t_cols,
0
)
+2]
)
-
(
sum[SUMS_PTR
(
0
,
t_rows
)
+2]
-
sum[SUMS_PTR
(
0
,
0
)
+2]
))
;
sum_[3]
=
(
float
)((
sum[SUMS_PTR
(
t_cols,
t_rows
)
+3]
-
sum[SUMS_PTR
(
t_cols,
0
)
+3]
)
-
(
sum[SUMS_PTR
(
0
,
t_rows
)
+3]
-
sum[SUMS_PTR
(
0
,
0
)
+3]
))
;
sqsum_[0]
=
(
float
)((
sqsum[SQSUMS
(
t_cols,
t_rows
)
]
-
sqsum[SQSUMS
(
t_cols,
0
)
]
)
-
(
sqsum[SQSUMS
(
0
,
t_rows
)
]
-
sqsum[SQSUMS
(
0
,
0
)
]
))
;
sqsum_[1]
=
(
float
)((
sqsum[SQSUMS
(
t_cols,
t_rows
)
+1]
-
sqsum[SQSUMS
(
t_cols,
0
)
+1]
)
-
(
sqsum[SQSUMS
(
0
,
t_rows
)
+1]
-
sqsum[SQSUMS
(
0
,
0
)
+1]
))
;
sqsum_[2]
=
(
float
)((
sqsum[SQSUMS
(
t_cols,
t_rows
)
+2]
-
sqsum[SQSUMS
(
t_cols,
0
)
+2]
)
-
(
sqsum[SQSUMS
(
0
,
t_rows
)
+2]
-
sqsum[SQSUMS
(
0
,
0
)
+2]
))
;
sqsum_[3]
=
(
float
)((
sqsum[SQSUMS
(
t_cols,
t_rows
)
+3]
-
sqsum[SQSUMS
(
t_cols,
0
)
+3]
)
-
(
sqsum[SQSUMS
(
0
,
t_rows
)
+3]
-
sqsum[SQSUMS
(
0
,
0
)
+3]
))
;
float
num
=
sum_[0]*tpl_sum_0
+
sum_[1]*tpl_sum_1
+
sum_[2]*tpl_sum_2
+
sum_[3]*tpl_sum_3
;
float
denum
=
sqrt
(
tpl_sqsum
*
(
sqsum_[0]
-
weight
*
sum_[0]*
sum_[0]
+
sqsum_[1]
-
weight
*
sum_[1]*
sum_[1]
+
sqsum_[2]
-
weight
*
sum_[2]*
sum_[2]
+
sqsum_[3]
-
weight
*
sum_[3]*
sum_[3]
))
;
__global
float
*
result
=
(
__global
float
*
)(
res
)
+res_idx
;
*result
=
normAcc
((
*result
)
-
num,
denum
)
;
}
}
////////////////////////////////////////////
extractFirstChannel/////////////////////////////
__kernel
void
extractFirstChannel
(
const
__global
float4*
img,
int
img_step,
int
img_offset,
__global
float*
res,
int
res_step,
int
res_offset,
int
rows,
int
cols
)
{
img_step
/=
sizeof
(
float4
)
;
img_offset
/=
sizeof
(
float4
)
;
res_step
/=
sizeof
(
float
)
;
res_offset
/=
sizeof
(
float
)
;
int
gidx
=
get_global_id
(
0
)
;
int
gidy
=
get_global_id
(
1
)
;
if
(
gidx
<
cols
&&
gidy
<
rows
)
{
__global
const
float4
*
image
=
(
__global
const
float4
*
)(
img
)
+
mad24
(
gidy,
img_step,
img_offset
+
gidx
)
;
__global
float
*
result
=
(
__global
float
*
)(
res
)
+
mad24
(
gidy,
res_step,
res_offset
+
gidx
)
;
*result
=
image[0].x
;
}
}
\ No newline at end of file
modules/imgproc/src/templmatch.cpp
View file @
86636dc2
...
...
@@ -40,6 +40,365 @@
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
//////////////////////////////////////////////////matchTemplate//////////////////////////////////////////////////////////
namespace
cv
{
struct
MatchTemplateBuf
{
Size
user_block_size
;
UMat
imagef
,
templf
;
UMat
image_sums
;
UMat
image_sqsums
;
};
static
bool
matchTemplate_CCORR
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
);
static
bool
matchTemplate_CCORR_NORMED
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
);
static
bool
matchTemplate_SQDIFF
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
);
static
bool
matchTemplate_SQDIFF_NORMED
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
);
static
bool
matchTemplate_CCOEFF
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
);
static
bool
matchTemplate_CCOEFF_NORMED
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
);
static
bool
matchTemplateNaive_CCORR
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
int
cn
);
static
bool
matchTemplateNaive_SQDIFF
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
int
cn
);
static
bool
useNaive
(
int
method
,
int
depth
,
Size
size
)
{
#ifdef HAVE_CLAMDFFT
if
(
method
==
TM_SQDIFF
&&
depth
==
CV_32F
)
return
true
;
else
if
(
method
==
TM_CCORR
||
(
method
==
TM_SQDIFF
&&
depth
==
CV_8U
))
return
size
.
height
<
18
&&
size
.
width
<
18
;
else
return
false
;
#else
#define UNUSED(x) (void)(x);
UNUSED
(
method
)
UNUSED
(
depth
)
UNUSED
(
size
)
#undef UNUSED
return
true
;
#endif
}
///////////////////////////////////////////////////CCORR//////////////////////////////////////////////////////////////
static
bool
extractFirstChannel_32F
(
const
UMat
&
image
,
UMat
&
result
)
{
const
char
*
kernelName
=
"extractFirstChannel"
;
int
type
=
image
.
type
();
int
depth
=
CV_MAT_DEPTH
(
type
);
int
cn
=
CV_MAT_CN
(
type
);
ocl
::
Kernel
k
(
kernelName
,
ocl
::
imgproc
::
match_template_oclsrc
,
format
(
"-D type=%s -D elem_type=%s -D cn=%d"
,
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
depth
),
cn
));
if
(
k
.
empty
())
return
false
;
size_t
globalsize
[
2
]
=
{
result
.
cols
,
result
.
rows
};
size_t
localsize
[
2
]
=
{
16
,
16
};
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
image
),
ocl
::
KernelArg
::
WriteOnly
(
result
)).
run
(
2
,
globalsize
,
localsize
,
true
);
}
static
bool
matchTemplate_CCORR
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
)
{
if
(
useNaive
(
TM_CCORR
,
image
.
depth
(),
templ
.
size
())
)
return
matchTemplateNaive_CCORR
(
image
,
templ
,
result
,
image
.
channels
());
else
return
false
;
}
static
bool
matchTemplateNaive_CCORR
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
int
cn
)
{
int
type
=
image
.
type
();
int
depth
=
CV_MAT_DEPTH
(
type
);
CV_Assert
(
result
.
channels
()
==
1
);
const
char
*
kernelName
=
"matchTemplate_Naive_CCORR"
;
ocl
::
Kernel
k
(
kernelName
,
ocl
::
imgproc
::
match_template_oclsrc
,
format
(
"-D type=%s -D elem_type=%s -D cn=%d"
,
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
depth
),
cn
));
if
(
k
.
empty
())
return
false
;
size_t
globalsize
[
2
]
=
{
result
.
cols
,
result
.
rows
};
size_t
localsize
[
2
]
=
{
16
,
16
};
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
image
),
ocl
::
KernelArg
::
ReadOnly
(
templ
),
ocl
::
KernelArg
::
WriteOnly
(
result
)).
run
(
2
,
globalsize
,
localsize
,
true
);
}
static
bool
matchTemplate_CCORR_NORMED
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
)
{
if
(
!
matchTemplate_CCORR
(
image
,
templ
,
result
,
buf
))
return
false
;
int
type
=
image
.
type
();
int
depth
=
CV_MAT_DEPTH
(
type
),
cn
=
CV_MAT_CN
(
type
);
const
char
*
kernelName
=
"matchTemplate_CCORR_NORMED"
;
ocl
::
Kernel
k
(
kernelName
,
ocl
::
imgproc
::
match_template_oclsrc
,
format
(
"-D type=%s -D elem_type=%s -D cn=%d"
,
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
depth
),
cn
));
if
(
k
.
empty
())
return
false
;
UMat
temp
;
integral
(
image
.
reshape
(
1
),
buf
.
image_sums
,
temp
);
if
(
temp
.
depth
()
==
CV_64F
)
temp
.
convertTo
(
buf
.
image_sqsums
,
CV_32F
);
else
buf
.
image_sqsums
=
temp
;
UMat
templ_resh
;
templ
.
reshape
(
1
).
convertTo
(
templ_resh
,
CV_32F
);
multiply
(
templ_resh
,
templ_resh
,
temp
);
unsigned
long
long
templ_sqsum
=
(
unsigned
long
long
)
sum
(
temp
)[
0
];
size_t
globalsize
[
2
]
=
{
result
.
cols
,
result
.
rows
};
size_t
localsize
[
2
]
=
{
16
,
16
};
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sqsums
),
ocl
::
KernelArg
::
WriteOnly
(
result
),
templ
.
rows
,
templ
.
cols
,
templ_sqsum
).
run
(
2
,
globalsize
,
localsize
,
true
);
}
//////////////////////////////////////SQDIFF//////////////////////////////////////////////////////////////
static
bool
matchTemplate_SQDIFF
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
)
{
if
(
useNaive
(
TM_SQDIFF
,
image
.
depth
(),
templ
.
size
()))
{
return
matchTemplateNaive_SQDIFF
(
image
,
templ
,
result
,
image
.
channels
());;
}
else
return
false
;
}
static
bool
matchTemplateNaive_SQDIFF
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
int
cn
)
{
int
type
=
image
.
type
();
int
depth
=
CV_MAT_DEPTH
(
type
);
CV_Assert
(
result
.
channels
()
==
1
);
const
char
*
kernelName
=
"matchTemplate_Naive_SQDIFF"
;
ocl
::
Kernel
k
(
kernelName
,
ocl
::
imgproc
::
match_template_oclsrc
,
format
(
"-D type=%s -D elem_type=%s -D cn=%d"
,
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
depth
),
cn
));
if
(
k
.
empty
())
return
false
;
size_t
globalsize
[
2
]
=
{
result
.
cols
,
result
.
rows
};
size_t
localsize
[
2
]
=
{
16
,
16
};
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
image
),
ocl
::
KernelArg
::
ReadOnly
(
templ
),
ocl
::
KernelArg
::
WriteOnly
(
result
)).
run
(
2
,
globalsize
,
localsize
,
true
);
}
static
bool
matchTemplate_SQDIFF_NORMED
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
)
{
if
(
!
matchTemplate_CCORR
(
image
,
templ
,
result
,
buf
))
return
false
;
int
type
=
image
.
type
();
int
depth
=
CV_MAT_DEPTH
(
type
),
cn
=
CV_MAT_CN
(
type
);
const
char
*
kernelName
=
"matchTemplate_SQDIFF_NORMED"
;
ocl
::
Kernel
k
(
kernelName
,
ocl
::
imgproc
::
match_template_oclsrc
,
format
(
"-D type=%s -D elem_type=%s -D cn=%d"
,
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
depth
),
cn
));
if
(
k
.
empty
())
return
false
;
UMat
temp
;
integral
(
image
.
reshape
(
1
),
buf
.
image_sums
,
temp
);
if
(
temp
.
depth
()
==
CV_64F
)
temp
.
convertTo
(
buf
.
image_sqsums
,
CV_32F
);
else
buf
.
image_sqsums
=
temp
;
UMat
templ_resh
;
templ
.
reshape
(
1
).
convertTo
(
templ_resh
,
CV_32F
);
multiply
(
templ_resh
,
templ_resh
,
temp
);
unsigned
long
long
templ_sqsum
=
(
unsigned
long
long
)
sum
(
temp
)[
0
];
size_t
globalsize
[
2
]
=
{
result
.
cols
,
result
.
rows
};
size_t
localsize
[
2
]
=
{
16
,
16
};
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sqsums
),
ocl
::
KernelArg
::
WriteOnly
(
result
),
templ
.
rows
,
templ
.
cols
,
templ_sqsum
).
run
(
2
,
globalsize
,
localsize
,
true
);
}
/////////////////////////////////////CCOEFF/////////////////////////////////////////////////////////////////
static
bool
matchTemplate_CCOEFF
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
)
{
if
(
!
matchTemplate_CCORR
(
image
,
templ
,
result
,
buf
))
return
false
;
integral
(
image
,
buf
.
image_sums
);
int
type
=
buf
.
image_sums
.
type
();
int
depth
=
CV_MAT_DEPTH
(
type
),
cn
=
CV_MAT_CN
(
type
);
const
char
*
kernelName
;
if
(
cn
==
1
)
kernelName
=
"matchTemplate_Prepared_CCOEFF_C1"
;
else
if
(
cn
==
2
)
kernelName
=
"matchTemplate_Prepared_CCOEFF_C2"
;
else
kernelName
=
"matchTemplate_Prepared_CCOEFF_C4"
;
ocl
::
Kernel
k
(
kernelName
,
ocl
::
imgproc
::
match_template_oclsrc
,
format
(
"-D type=%s -D elem_type=%s -D cn=%d"
,
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
depth
),
cn
));
if
(
k
.
empty
())
return
false
;
size_t
globalsize
[
2
]
=
{
result
.
cols
,
result
.
rows
};
size_t
localsize
[
2
]
=
{
16
,
16
};
if
(
cn
==
1
)
{
float
templ_sum
=
(
float
)
sum
(
templ
)[
0
]
/
templ
.
size
().
area
();
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sums
),
ocl
::
KernelArg
::
WriteOnly
(
result
),
templ
.
rows
,
templ
.
cols
,
templ_sum
).
run
(
2
,
globalsize
,
localsize
,
true
);
}
else
{
Vec4f
templ_sum
=
Vec4f
::
all
(
0
);
templ_sum
=
sum
(
templ
)
/
templ
.
size
().
area
();
if
(
cn
==
2
)
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sums
),
ocl
::
KernelArg
::
WriteOnly
(
result
),
templ
.
rows
,
templ
.
cols
,
templ_sum
[
0
],
templ_sum
[
1
]).
run
(
2
,
globalsize
,
localsize
,
true
);
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sums
),
ocl
::
KernelArg
::
WriteOnly
(
result
),
templ
.
rows
,
templ
.
cols
,
templ_sum
[
0
],
templ_sum
[
1
],
templ_sum
[
2
],
templ_sum
[
3
]).
run
(
2
,
globalsize
,
localsize
,
true
);
}
}
static
bool
matchTemplate_CCOEFF_NORMED
(
const
UMat
&
image
,
const
UMat
&
templ
,
UMat
&
result
,
MatchTemplateBuf
&
buf
)
{
image
.
convertTo
(
buf
.
imagef
,
CV_32F
);
templ
.
convertTo
(
buf
.
templf
,
CV_32F
);
if
(
!
matchTemplate_CCORR
(
buf
.
imagef
,
buf
.
templf
,
result
,
buf
))
return
false
;
const
char
*
kernelName
;
UMat
temp
;
integral
(
image
,
buf
.
image_sums
,
temp
);
int
type
=
buf
.
image_sums
.
type
();
int
depth
=
CV_MAT_DEPTH
(
type
),
cn
=
CV_MAT_CN
(
type
);
if
(
cn
==
1
)
kernelName
=
"matchTemplate_CCOEFF_NORMED_C1"
;
else
if
(
cn
==
2
)
kernelName
=
"matchTemplate_CCOEFF_NORMED_C2"
;
else
kernelName
=
"matchTemplate_CCOEFF_NORMED_C4"
;
ocl
::
Kernel
k
(
kernelName
,
ocl
::
imgproc
::
match_template_oclsrc
,
format
(
"-D type=%s -D elem_type=%s -D cn=%d"
,
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
depth
),
cn
));
if
(
k
.
empty
())
return
false
;
if
(
temp
.
depth
()
==
CV_64F
)
temp
.
convertTo
(
buf
.
image_sqsums
,
CV_32F
);
else
buf
.
image_sqsums
=
temp
;
size_t
globalsize
[
2
]
=
{
result
.
cols
,
result
.
rows
};
size_t
localsize
[
2
]
=
{
16
,
16
};
float
scale
=
1.
f
/
templ
.
size
().
area
();
if
(
cn
==
1
)
{
float
templ_sum
=
(
float
)
sum
(
templ
)[
0
];
multiply
(
buf
.
templf
,
buf
.
templf
,
temp
);
float
templ_sqsum
=
(
float
)
sum
(
temp
)[
0
];
templ_sqsum
-=
scale
*
templ_sum
*
templ_sum
;
templ_sum
*=
scale
;
if
(
templ_sqsum
<
DBL_EPSILON
)
{
result
=
Scalar
::
all
(
1
);
return
true
;
}
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sums
),
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sqsums
),
ocl
::
KernelArg
::
WriteOnly
(
result
),
templ
.
rows
,
templ
.
cols
,
scale
,
templ_sum
,
templ_sqsum
)
.
run
(
2
,
globalsize
,
localsize
,
true
);
}
else
{
Vec4f
templ_sum
=
Vec4f
::
all
(
0
);
Vec4f
templ_sqsum
=
Vec4f
::
all
(
0
);
templ_sum
=
sum
(
templ
);
multiply
(
buf
.
templf
,
buf
.
templf
,
temp
);
templ_sqsum
=
sum
(
temp
);
float
templ_sqsum_sum
=
0
;
for
(
int
i
=
0
;
i
<
cn
;
i
++
)
{
templ_sqsum_sum
+=
templ_sqsum
[
i
]
-
scale
*
templ_sum
[
i
]
*
templ_sum
[
i
];
}
templ_sum
*=
scale
;
if
(
templ_sqsum_sum
<
DBL_EPSILON
)
{
result
=
Scalar
::
all
(
1
);
return
true
;
}
if
(
cn
==
2
)
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sums
),
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sqsums
),
ocl
::
KernelArg
::
WriteOnly
(
result
),
templ
.
rows
,
templ
.
cols
,
scale
,
templ_sum
[
0
],
templ_sum
[
1
],
templ_sqsum_sum
)
.
run
(
2
,
globalsize
,
localsize
,
true
);
return
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sums
),
ocl
::
KernelArg
::
ReadOnlyNoSize
(
buf
.
image_sqsums
),
ocl
::
KernelArg
::
WriteOnly
(
result
),
templ
.
rows
,
templ
.
cols
,
scale
,
templ_sum
[
0
],
templ_sum
[
1
],
templ_sum
[
2
],
templ_sum
[
3
],
templ_sqsum_sum
)
.
run
(
2
,
globalsize
,
localsize
,
true
);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////
static
bool
ocl_matchTemplate
(
InputArray
_img
,
InputArray
_templ
,
OutputArray
_result
,
int
method
)
{
int
type
=
_img
.
type
();
int
cn
=
CV_MAT_CN
(
type
);
CV_Assert
(
cn
==
_templ
.
channels
()
&&
cn
!=
3
&&
cn
<=
4
);
typedef
bool
(
*
Caller
)(
const
UMat
&
,
const
UMat
&
,
UMat
&
,
MatchTemplateBuf
&
);
const
Caller
callers
[]
=
{
matchTemplate_SQDIFF
,
matchTemplate_SQDIFF_NORMED
,
matchTemplate_CCORR
,
matchTemplate_CCORR_NORMED
,
matchTemplate_CCOEFF
,
matchTemplate_CCOEFF_NORMED
};
Caller
caller
;
if
(
!
(
caller
=
callers
[
method
]))
return
false
;
MatchTemplateBuf
buf
;
UMat
image
=
_img
.
getUMat
();
UMat
templ
=
_templ
.
getUMat
(),
result
;
_result
.
create
(
image
.
rows
-
templ
.
rows
+
1
,
image
.
cols
-
templ
.
cols
+
1
,
CV_32F
);
result
=
_result
.
getUMat
();
return
caller
(
image
,
templ
,
result
,
buf
);
}
}
namespace
cv
{
...
...
@@ -226,15 +585,24 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
}
}
}
}
/
*****************************************************************************************
/
/
//////////////////////////////////////////////////////////////////////////////////////////////////////
/
void
cv
::
matchTemplate
(
InputArray
_img
,
InputArray
_templ
,
OutputArray
_result
,
int
method
)
{
CV_Assert
(
CV_TM_SQDIFF
<=
method
&&
method
<=
CV_TM_CCOEFF_NORMED
);
CV_Assert
(
(
_img
.
depth
()
==
CV_8U
||
_img
.
depth
()
==
CV_32F
)
&&
_img
.
type
()
==
_templ
.
type
()
);
CV_Assert
(
_img
.
size
().
height
>=
_templ
.
size
().
height
&&
_img
.
size
().
width
>=
_templ
.
size
().
width
);
CV_Assert
(
_img
.
dims
()
<=
2
);
bool
use_opencl
=
ocl
::
useOpenCL
()
&&
_result
.
isUMat
();
if
(
use_opencl
&&
ocl_matchTemplate
(
_img
,
_templ
,
_result
,
method
))
return
;
int
numType
=
method
==
CV_TM_CCORR
||
method
==
CV_TM_CCORR_NORMED
?
0
:
method
==
CV_TM_CCOEFF
||
method
==
CV_TM_CCOEFF_NORMED
?
1
:
2
;
bool
isNormed
=
method
==
CV_TM_CCORR_NORMED
||
...
...
@@ -245,11 +613,6 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
if
(
img
.
rows
<
templ
.
rows
||
img
.
cols
<
templ
.
cols
)
std
::
swap
(
img
,
templ
);
CV_Assert
(
(
img
.
depth
()
==
CV_8U
||
img
.
depth
()
==
CV_32F
)
&&
img
.
type
()
==
templ
.
type
()
);
CV_Assert
(
img
.
rows
>=
templ
.
rows
&&
img
.
cols
>=
templ
.
cols
);
Size
corrSize
(
img
.
cols
-
templ
.
cols
+
1
,
img
.
rows
-
templ
.
rows
+
1
);
_result
.
create
(
corrSize
,
CV_32F
);
Mat
result
=
_result
.
getMat
();
...
...
modules/imgproc/test/ocl/test_match_template.cpp
0 → 100644
View file @
86636dc2
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#include "iostream"
#include "fstream"
#ifdef HAVE_OPENCL
namespace
cvtest
{
namespace
ocl
{
/////////////////////////////////////////////matchTemplate//////////////////////////////////////////////////////////
PARAM_TEST_CASE
(
MatchTemplate
,
MatDepth
,
Channels
,
int
,
bool
)
{
int
type
;
int
depth
;
int
method
;
bool
use_roi
;
TEST_DECLARE_INPUT_PARAMETER
(
image
)
TEST_DECLARE_INPUT_PARAMETER
(
templ
)
TEST_DECLARE_OUTPUT_PARAMETER
(
result
)
virtual
void
SetUp
()
{
type
=
CV_MAKE_TYPE
(
GET_PARAM
(
0
),
GET_PARAM
(
1
));
depth
=
GET_PARAM
(
0
);
method
=
GET_PARAM
(
2
);
use_roi
=
GET_PARAM
(
3
);
}
virtual
void
generateTestData
()
{
Size
image_roiSize
=
randomSize
(
2
,
20
);
Size
templ_roiSize
=
Size
(
randomInt
(
1
,
image_roiSize
.
width
),
randomInt
(
1
,
image_roiSize
.
height
));
Size
result_roiSize
=
Size
(
image_roiSize
.
width
-
templ_roiSize
.
width
+
1
,
image_roiSize
.
height
-
templ_roiSize
.
height
+
1
);
const
double
upValue
=
256
;
const
double
max_val
=
100
;
Border
imageBorder
=
randomBorder
(
0
,
use_roi
?
max_val
:
0
);
randomSubMat
(
image
,
image_roi
,
image_roiSize
,
imageBorder
,
type
,
-
upValue
,
upValue
);
Border
templBorder
=
randomBorder
(
0
,
use_roi
?
max_val
:
0
);
randomSubMat
(
templ
,
templ_roi
,
templ_roiSize
,
templBorder
,
type
,
-
upValue
,
upValue
);
Border
resultBorder
=
randomBorder
(
0
,
use_roi
?
max_val
:
0
);
randomSubMat
(
result
,
result_roi
,
result_roiSize
,
resultBorder
,
CV_32F
,
-
upValue
,
upValue
);
UMAT_UPLOAD_INPUT_PARAMETER
(
image
)
UMAT_UPLOAD_INPUT_PARAMETER
(
templ
)
UMAT_UPLOAD_OUTPUT_PARAMETER
(
result
)
}
void
Near
(
double
threshold
=
0.0
)
{
EXPECT_MAT_NEAR
(
result
,
uresult
,
threshold
);
EXPECT_MAT_NEAR
(
result_roi
,
uresult_roi
,
threshold
);
}
};
OCL_TEST_P
(
MatchTemplate
,
Mat
)
{
for
(
int
j
=
0
;
j
<
test_loop_times
;
j
++
)
{
generateTestData
();
OCL_OFF
(
cv
::
matchTemplate
(
image_roi
,
templ_roi
,
result_roi
,
method
));
OCL_ON
(
cv
::
matchTemplate
(
uimage_roi
,
utempl_roi
,
uresult_roi
,
method
));
if
(
method
==
0
)
Near
(
10.0
f
);
else
Near
(
method
%
2
==
1
?
0.001
f
:
1.0
f
);
}
}
OCL_INSTANTIATE_TEST_CASE_P
(
ImageProc
,
MatchTemplate
,
Combine
(
Values
(
CV_8U
,
CV_32F
),
Values
(
1
,
2
,
4
),
Values
(
0
,
1
,
2
,
3
,
4
,
5
),
Bool
())
);
}
}
// namespace cvtest::ocl
#endif
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment