Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
84336202
Commit
84336202
authored
Mar 21, 2020
by
Dmitry Kurtaev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Bidirectional LSTM
parent
11d565ca
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
116 additions
and
94 deletions
+116
-94
recurrent_layers.cpp
modules/dnn/src/layers/recurrent_layers.cpp
+86
-76
onnx_importer.cpp
modules/dnn/src/onnx/onnx_importer.cpp
+25
-18
test_onnx_importer.cpp
modules/dnn/test/test_onnx_importer.cpp
+5
-0
No files found.
modules/dnn/src/layers/recurrent_layers.cpp
View file @
84336202
...
...
@@ -93,6 +93,7 @@ class LSTMLayerImpl CV_FINAL : public LSTMLayer
float
forgetBias
,
cellClip
;
bool
useCellClip
,
usePeephole
;
bool
reverse
;
// If true, go in negative direction along the time axis
bool
bidirectional
;
// If true, produces both forward and reversed directions along time axis
public
:
...
...
@@ -101,6 +102,7 @@ public:
{
setParamsFrom
(
params
);
bidirectional
=
params
.
get
<
bool
>
(
"bidirectional"
,
false
);
if
(
!
blobs
.
empty
())
{
CV_Assert
(
blobs
.
size
()
>=
3
);
...
...
@@ -113,7 +115,7 @@ public:
CV_CheckEQ
(
Wh
.
dims
,
2
,
""
);
CV_CheckEQ
(
Wx
.
dims
,
2
,
""
);
CV_CheckEQ
(
Wh
.
rows
,
Wx
.
rows
,
""
);
CV_CheckEQ
(
Wh
.
rows
,
4
*
Wh
.
cols
,
""
);
CV_CheckEQ
(
Wh
.
rows
,
(
1
+
static_cast
<
int
>
(
bidirectional
))
*
4
*
Wh
.
cols
,
""
);
CV_CheckEQ
(
Wh
.
rows
,
(
int
)
bias
.
total
(),
""
);
CV_Assert
(
Wh
.
type
()
==
Wx
.
type
()
&&
Wx
.
type
()
==
bias
.
type
());
...
...
@@ -136,6 +138,7 @@ public:
useCellClip
=
params
.
get
<
bool
>
(
"use_cell_clip"
,
false
);
usePeephole
=
params
.
get
<
bool
>
(
"use_peephole"
,
false
);
reverse
=
params
.
get
<
bool
>
(
"reverse"
,
false
);
CV_Assert
(
!
reverse
||
!
bidirectional
);
allocated
=
false
;
outTailShape
.
clear
();
...
...
@@ -207,6 +210,7 @@ public:
outResShape
.
push_back
(
_numSamples
);
outResShape
.
insert
(
outResShape
.
end
(),
outTailShape_
.
begin
(),
outTailShape_
.
end
());
outResShape
.
back
()
*=
(
1
+
static_cast
<
int
>
(
bidirectional
));
size_t
noutputs
=
produceCellOutput
?
2
:
1
;
outputs
.
assign
(
noutputs
,
outResShape
);
...
...
@@ -253,6 +257,7 @@ public:
outTsShape
.
clear
();
outTsShape
.
push_back
(
numSamples
);
outTsShape
.
insert
(
outTsShape
.
end
(),
outTailShape
.
begin
(),
outTailShape
.
end
());
outTsShape
.
back
()
*=
(
1
+
static_cast
<
int
>
(
bidirectional
));
allocated
=
true
;
}
...
...
@@ -273,91 +278,96 @@ public:
outputs_arr
.
getMatVector
(
output
);
internals_arr
.
getMatVector
(
internals
);
const
Mat
&
Wh
=
blobs
[
0
];
const
Mat
&
Wx
=
blobs
[
1
];
const
Mat
&
bias
=
blobs
[
2
];
int
numOut
=
Wh
.
size
[
1
];
Mat
hInternal
=
internals
[
0
],
cInternal
=
internals
[
1
],
dummyOnes
=
internals
[
2
],
gates
=
internals
[
3
];
hInternal
.
setTo
(
0.
);
cInternal
.
setTo
(
0.
);
dummyOnes
.
setTo
(
1.
);
int
numSamplesTotal
=
numTimeStamps
*
numSamples
;
Mat
xTs
=
input
[
0
].
reshape
(
1
,
numSamplesTotal
);
Mat
hOutTs
=
output
[
0
].
reshape
(
1
,
numSamplesTotal
);
Mat
cOutTs
=
produceCellOutput
?
output
[
1
].
reshape
(
1
,
numSamplesTotal
)
:
Mat
();
int
tsStart
,
tsEnd
,
tsInc
;
if
(
reverse
)
{
tsStart
=
numTimeStamps
-
1
;
tsEnd
=
-
1
;
tsInc
=
-
1
;
}
else
{
tsStart
=
0
;
tsEnd
=
numTimeStamps
;
tsInc
=
1
;
}
for
(
int
ts
=
tsStart
;
ts
!=
tsEnd
;
ts
+=
tsInc
)
const
int
numDirs
=
1
+
static_cast
<
int
>
(
bidirectional
);
for
(
int
i
=
0
;
i
<
numDirs
;
++
i
)
{
Range
curRowRange
(
ts
*
numSamples
,
(
ts
+
1
)
*
numSamples
);
Mat
xCurr
=
xTs
.
rowRange
(
curRowRange
);
const
Mat
&
Wh
=
blobs
[
0
].
rowRange
(
i
*
blobs
[
0
].
rows
/
numDirs
,
(
i
+
1
)
*
blobs
[
0
].
rows
/
numDirs
);
const
Mat
&
Wx
=
blobs
[
1
].
rowRange
(
i
*
blobs
[
1
].
rows
/
numDirs
,
(
i
+
1
)
*
blobs
[
1
].
rows
/
numDirs
);
const
Mat
&
bias
=
blobs
[
2
].
colRange
(
i
*
blobs
[
2
].
cols
/
numDirs
,
(
i
+
1
)
*
blobs
[
2
].
cols
/
numDirs
);
int
numOut
=
Wh
.
size
[
1
];
Mat
hInternal
=
internals
[
0
],
cInternal
=
internals
[
1
],
dummyOnes
=
internals
[
2
],
gates
=
internals
[
3
];
hInternal
.
setTo
(
0.
);
cInternal
.
setTo
(
0.
);
dummyOnes
.
setTo
(
1.
);
int
numSamplesTotal
=
numTimeStamps
*
numSamples
;
Mat
xTs
=
input
[
0
].
reshape
(
1
,
numSamplesTotal
);
Mat
hOutTs
=
output
[
0
].
reshape
(
1
,
numSamplesTotal
);
hOutTs
=
hOutTs
.
colRange
(
i
*
hOutTs
.
cols
/
numDirs
,
(
i
+
1
)
*
hOutTs
.
cols
/
numDirs
);
Mat
cOutTs
=
produceCellOutput
?
output
[
1
].
reshape
(
1
,
numSamplesTotal
)
:
Mat
();
int
tsStart
,
tsEnd
,
tsInc
;
if
(
reverse
||
i
==
1
)
{
tsStart
=
numTimeStamps
-
1
;
tsEnd
=
-
1
;
tsInc
=
-
1
;
}
else
{
tsStart
=
0
;
tsEnd
=
numTimeStamps
;
tsInc
=
1
;
}
for
(
int
ts
=
tsStart
;
ts
!=
tsEnd
;
ts
+=
tsInc
)
{
Range
curRowRange
(
ts
*
numSamples
,
(
ts
+
1
)
*
numSamples
);
Mat
xCurr
=
xTs
.
rowRange
(
curRowRange
);
gemm
(
xCurr
,
Wx
,
1
,
gates
,
0
,
gates
,
GEMM_2_T
);
// Wx * x_t
gemm
(
hInternal
,
Wh
,
1
,
gates
,
1
,
gates
,
GEMM_2_T
);
//+Wh * h_{t-1}
gemm
(
dummyOnes
,
bias
,
1
,
gates
,
1
,
gates
);
//+b
gemm
(
xCurr
,
Wx
,
1
,
gates
,
0
,
gates
,
GEMM_2_T
);
// Wx * x_t
gemm
(
hInternal
,
Wh
,
1
,
gates
,
1
,
gates
,
GEMM_2_T
);
//+Wh * h_{t-1}
gemm
(
dummyOnes
,
bias
,
1
,
gates
,
1
,
gates
);
//+b
Mat
gateI
=
gates
.
colRange
(
0
*
numOut
,
1
*
numOut
);
Mat
gateF
=
gates
.
colRange
(
1
*
numOut
,
2
*
numOut
);
Mat
gateO
=
gates
.
colRange
(
2
*
numOut
,
3
*
numOut
);
Mat
gateG
=
gates
.
colRange
(
3
*
numOut
,
4
*
numOut
);
Mat
gateI
=
gates
.
colRange
(
0
*
numOut
,
1
*
numOut
);
Mat
gateF
=
gates
.
colRange
(
1
*
numOut
,
2
*
numOut
);
Mat
gateO
=
gates
.
colRange
(
2
*
numOut
,
3
*
numOut
);
Mat
gateG
=
gates
.
colRange
(
3
*
numOut
,
4
*
numOut
);
if
(
forgetBias
)
add
(
gateF
,
forgetBias
,
gateF
);
if
(
forgetBias
)
add
(
gateF
,
forgetBias
,
gateF
);
if
(
usePeephole
)
{
Mat
gatesIF
=
gates
.
colRange
(
0
,
2
*
numOut
);
gemm
(
cInternal
,
blobs
[
3
],
1
,
gateI
,
1
,
gateI
);
gemm
(
cInternal
,
blobs
[
4
],
1
,
gateF
,
1
,
gateF
);
sigmoid
(
gatesIF
,
gatesIF
);
}
else
{
Mat
gatesIFO
=
gates
.
colRange
(
0
,
3
*
numOut
);
sigmoid
(
gatesIFO
,
gatesIFO
);
}
if
(
usePeephole
)
{
Mat
gatesIF
=
gates
.
colRange
(
0
,
2
*
numOut
);
gemm
(
cInternal
,
blobs
[
3
],
1
,
gateI
,
1
,
gateI
);
gemm
(
cInternal
,
blobs
[
4
],
1
,
gateF
,
1
,
gateF
);
sigmoid
(
gatesIF
,
gatesIF
);
}
else
{
Mat
gatesIFO
=
gates
.
colRange
(
0
,
3
*
numOut
);
sigmoid
(
gatesIFO
,
gatesIFO
);
}
tanh
(
gateG
,
gateG
);
tanh
(
gateG
,
gateG
);
//compute c_t
multiply
(
gateF
,
cInternal
,
gateF
);
// f_t (*) c_{t-1}
multiply
(
gateI
,
gateG
,
gateI
);
// i_t (*) g_t
add
(
gateF
,
gateI
,
cInternal
);
// c_t = f_t (*) c_{t-1} + i_t (*) g_t
//compute c_t
multiply
(
gateF
,
cInternal
,
gateF
);
// f_t (*) c_{t-1}
multiply
(
gateI
,
gateG
,
gateI
);
// i_t (*) g_t
add
(
gateF
,
gateI
,
cInternal
);
// c_t = f_t (*) c_{t-1} + i_t (*) g_t
if
(
useCellClip
)
{
min
(
cInternal
,
cellClip
,
cInternal
);
max
(
cInternal
,
-
cellClip
,
cInternal
);
}
if
(
usePeephole
)
{
gemm
(
cInternal
,
blobs
[
5
],
1
,
gateO
,
1
,
gateO
);
sigmoid
(
gateO
,
gateO
);
}
if
(
useCellClip
)
{
min
(
cInternal
,
cellClip
,
cInternal
);
max
(
cInternal
,
-
cellClip
,
cInternal
);
}
if
(
usePeephole
)
{
gemm
(
cInternal
,
blobs
[
5
],
1
,
gateO
,
1
,
gateO
);
sigmoid
(
gateO
,
gateO
);
}
//compute h_t
tanh
(
cInternal
,
hInternal
);
multiply
(
gateO
,
hInternal
,
hInternal
);
//compute h_t
tanh
(
cInternal
,
hInternal
);
multiply
(
gateO
,
hInternal
,
hInternal
);
//save results in output blobs
hInternal
.
copyTo
(
hOutTs
.
rowRange
(
curRowRange
));
if
(
produceCellOutput
)
cInternal
.
copyTo
(
cOutTs
.
rowRange
(
curRowRange
));
//save results in output blobs
hInternal
.
copyTo
(
hOutTs
.
rowRange
(
curRowRange
));
if
(
produceCellOutput
)
cInternal
.
copyTo
(
cOutTs
.
rowRange
(
curRowRange
));
}
}
}
};
...
...
modules/dnn/src/onnx/onnx_importer.cpp
View file @
84336202
...
...
@@ -630,37 +630,44 @@ void ONNXImporter::populateNet(Net dstNet)
Mat
Wx
=
getBlob
(
node_proto
,
constBlobs
,
1
);
Mat
Wh
=
getBlob
(
node_proto
,
constBlobs
,
2
);
Mat
b
=
getBlob
(
node_proto
,
constBlobs
,
3
);
b
=
b
.
reshape
(
1
,
b
.
size
[
0
]);
const
int
numHidden
=
lstmParams
.
get
<
int
>
(
"hidden_size"
);
Wx
=
Wx
.
reshape
(
1
,
Wx
.
size
[
1
])
;
Wh
=
Wh
.
reshape
(
1
,
Wh
.
size
[
1
]
);
b
=
b
.
reshape
(
1
,
2
);
reduce
(
b
,
b
,
0
,
REDUCE_SUM
)
;
const
int
numDirs
=
Wx
.
size
[
0
];
// Is 1 for forward only and 2 for bidirectional LSTM.
const
int
numFeatures
=
Wx
.
size
[
2
]
;
Mat
bx
=
b
.
colRange
(
0
,
b
.
cols
/
2
);
Mat
bh
=
b
.
colRange
(
b
.
cols
/
2
,
b
.
cols
);
b
=
bx
+
bh
;
// IFGO->IGFO
float
*
WxData
=
(
float
*
)
Wx
.
data
;
float
*
WhData
=
(
float
*
)
Wh
.
data
;
float
*
biasData
=
(
float
*
)
b
.
data
;
for
(
int
j
=
0
;
j
<
numHidden
;
++
j
)
for
(
int
k
=
0
;
k
<
numDirs
;
++
k
)
{
for
(
int
i
=
0
;
i
<
Wx
.
cols
;
++
i
)
{
std
::
swap
(
WxData
[(
numHidden
+
j
)
*
Wx
.
cols
+
i
],
WxData
[(
numHidden
*
2
+
j
)
*
Wx
.
cols
+
i
]);
}
for
(
int
i
=
0
;
i
<
Wh
.
cols
;
++
i
)
float
*
WxData
=
Wx
.
ptr
<
float
>
(
k
);
float
*
WhData
=
Wh
.
ptr
<
float
>
(
k
);
float
*
biasData
=
b
.
ptr
<
float
>
(
k
);
for
(
int
j
=
0
;
j
<
numHidden
;
++
j
)
{
std
::
swap
(
WhData
[(
numHidden
+
j
)
*
Wh
.
cols
+
i
],
WhData
[(
numHidden
*
2
+
j
)
*
Wh
.
cols
+
i
]);
for
(
int
i
=
0
;
i
<
numFeatures
;
++
i
)
{
std
::
swap
(
WxData
[(
numHidden
+
j
)
*
numFeatures
+
i
],
WxData
[(
numHidden
*
2
+
j
)
*
numFeatures
+
i
]);
}
for
(
int
i
=
0
;
i
<
numHidden
;
++
i
)
{
std
::
swap
(
WhData
[(
numHidden
+
j
)
*
numHidden
+
i
],
WhData
[(
numHidden
*
2
+
j
)
*
numHidden
+
i
]);
}
std
::
swap
(
biasData
[
numHidden
+
j
],
biasData
[
numHidden
*
2
+
j
]);
}
std
::
swap
(
biasData
[
numHidden
+
j
],
biasData
[
numHidden
*
2
+
j
]);
}
Wx
=
Wx
.
reshape
(
1
,
Wx
.
size
[
0
]
*
Wx
.
size
[
1
]);
Wh
=
Wh
.
reshape
(
1
,
Wh
.
size
[
0
]
*
Wh
.
size
[
1
]);
lstmParams
.
blobs
.
resize
(
3
);
lstmParams
.
blobs
[
0
]
=
Wh
;
lstmParams
.
blobs
[
1
]
=
Wx
;
lstmParams
.
blobs
[
2
]
=
b
;
lstmParams
.
set
(
"bidirectional"
,
lstmParams
.
get
<
String
>
(
"direction"
,
""
)
==
"bidirectional"
);
node_proto
.
set_output
(
0
,
lstmParams
.
name
);
// set different name so output shapes will be registered on that name
addLayer
(
dstNet
,
lstmParams
,
node_proto
,
layer_id
,
outShapes
);
...
...
modules/dnn/test/test_onnx_importer.cpp
View file @
84336202
...
...
@@ -456,6 +456,11 @@ TEST_P(Test_ONNX_layers, LSTM)
testONNXModels
(
"lstm"
);
}
TEST_P
(
Test_ONNX_layers
,
LSTM_bidirectional
)
{
testONNXModels
(
"lstm_bidirectional"
);
}
INSTANTIATE_TEST_CASE_P
(
/*nothing*/
,
Test_ONNX_layers
,
dnnBackendsAndTargets
());
class
Test_ONNX_nets
:
public
Test_ONNX_layers
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment