Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
83ccdbd0
Commit
83ccdbd0
authored
Jul 02, 2012
by
Alexander Mordvintsev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
refactored digits_adjust.py (dataset preprocess in cloud)
parent
6977a895
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
94 additions
and
70 deletions
+94
-70
digits.py
samples/python2/digits.py
+2
-1
digits_adjust.py
samples/python2/digits_adjust.py
+92
-69
No files found.
samples/python2/digits.py
View file @
83ccdbd0
...
@@ -17,6 +17,7 @@ from common import clock, mosaic
...
@@ -17,6 +17,7 @@ from common import clock, mosaic
SZ
=
20
# size of each digit is SZ x SZ
SZ
=
20
# size of each digit is SZ x SZ
CLASS_N
=
10
CLASS_N
=
10
DIGITS_FN
=
'digits.png'
def
load_digits
(
fn
):
def
load_digits
(
fn
):
print
'loading "
%
s" ...'
%
fn
print
'loading "
%
s" ...'
%
fn
...
@@ -95,7 +96,7 @@ def evaluate_model(model, digits, samples, labels):
...
@@ -95,7 +96,7 @@ def evaluate_model(model, digits, samples, labels):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
print
__doc__
print
__doc__
digits
,
labels
=
load_digits
(
'digits.png'
)
digits
,
labels
=
load_digits
(
DIGITS_FN
)
print
'preprocessing...'
print
'preprocessing...'
# shuffle digits
# shuffle digits
...
...
samples/python2/digits_adjust.py
View file @
83ccdbd0
...
@@ -11,11 +11,10 @@ Usage:
...
@@ -11,11 +11,10 @@ Usage:
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>]
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>]
--model {svm|knearest} - select the classifier (SVM is the default)
--model {svm|knearest} - select the classifier (SVM is the default)
--cloud - use PiCloud computing platform
(for SVM only)
--cloud - use PiCloud computing platform
--env - cloud environment name
--env - cloud environment name
'''
'''
# TODO dataset preprocessing in cloud
# TODO cloud env setup tutorial
# TODO cloud env setup tutorial
import
numpy
as
np
import
numpy
as
np
...
@@ -24,6 +23,14 @@ from multiprocessing.pool import ThreadPool
...
@@ -24,6 +23,14 @@ from multiprocessing.pool import ThreadPool
from
digits
import
*
from
digits
import
*
try
:
import
cloud
have_cloud
=
True
except
ImportError
:
have_cloud
=
False
def
cross_validate
(
model_class
,
params
,
samples
,
labels
,
kfold
=
3
,
pool
=
None
):
def
cross_validate
(
model_class
,
params
,
samples
,
labels
,
kfold
=
3
,
pool
=
None
):
n
=
len
(
samples
)
n
=
len
(
samples
)
folds
=
np
.
array_split
(
np
.
arange
(
n
),
kfold
)
folds
=
np
.
array_split
(
np
.
arange
(
n
),
kfold
)
...
@@ -46,66 +53,88 @@ def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None)
...
@@ -46,66 +53,88 @@ def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None)
scores
=
pool
.
map
(
f
,
xrange
(
kfold
))
scores
=
pool
.
map
(
f
,
xrange
(
kfold
))
return
np
.
mean
(
scores
)
return
np
.
mean
(
scores
)
def
adjust_KNearest
(
samples
,
labels
):
print
'adjusting KNearest ...'
class
App
(
object
):
best_err
,
best_k
=
np
.
inf
,
-
1
def
__init__
(
self
,
usecloud
=
False
,
cloud_env
=
''
):
for
k
in
xrange
(
1
,
9
):
if
usecloud
and
not
have_cloud
:
err
=
cross_validate
(
KNearest
,
dict
(
k
=
k
),
samples
,
labels
)
print
'warning: cloud module is not installed, running locally'
if
err
<
best_err
:
best_err
,
best_k
=
err
,
k
print
'k =
%
d, error:
%.2
f
%%
'
%
(
k
,
err
*
100
)
best_params
=
dict
(
k
=
best_k
)
print
'best params:'
,
best_params
return
best_params
def
adjust_SVM
(
samples
,
labels
,
usecloud
=
False
,
cloud_env
=
''
):
Cs
=
np
.
logspace
(
0
,
5
,
10
,
base
=
2
)
gammas
=
np
.
logspace
(
-
7
,
-
2
,
10
,
base
=
2
)
scores
=
np
.
zeros
((
len
(
Cs
),
len
(
gammas
)))
scores
[:]
=
np
.
nan
if
usecloud
:
try
:
import
cloud
except
ImportError
:
print
'cloud module is not installed'
usecloud
=
False
usecloud
=
False
if
usecloud
:
self
.
usecloud
=
usecloud
print
'uploading dataset to cloud...'
self
.
cloud_env
=
cloud_env
np
.
savez
(
'train.npz'
,
samples
=
samples
,
labels
=
labels
)
cloud
.
files
.
put
(
'train.npz'
)
if
self
.
usecloud
:
print
'uploading dataset to cloud...'
print
'adjusting SVM (may take a long time) ...'
cloud
.
files
.
put
(
DIGITS_FN
)
def
f
(
job
):
self
.
preprocess_job
=
cloud
.
call
(
self
.
preprocess
,
_env
=
self
.
cloud_env
)
i
,
j
=
job
else
:
params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
self
.
_samples
,
self
.
_labels
=
self
.
preprocess
()
score
=
cross_validate
(
SVM
,
params
,
samples
,
labels
)
return
i
,
j
,
score
def
fcloud
(
job
):
i
,
j
=
job
cloud
.
files
.
get
(
'train.npz'
)
npz
=
np
.
load
(
'train.npz'
)
params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
score
=
cross_validate
(
SVM
,
params
,
npz
[
'samples'
],
npz
[
'labels'
])
return
i
,
j
,
score
if
usecloud
:
jids
=
cloud
.
map
(
fcloud
,
np
.
ndindex
(
*
scores
.
shape
),
_env
=
cloud_env
,
_profile
=
True
)
ires
=
cloud
.
iresult
(
jids
)
else
:
pool
=
ThreadPool
(
processes
=
cv2
.
getNumberOfCPUs
())
ires
=
pool
.
imap_unordered
(
f
,
np
.
ndindex
(
*
scores
.
shape
))
for
count
,
(
i
,
j
,
score
)
in
enumerate
(
ires
):
def
preprocess
(
self
):
scores
[
i
,
j
]
=
score
if
self
.
usecloud
:
print
'
%
d /
%
d (best error:
%.2
f
%%
, last:
%.2
f
%%
)'
%
(
count
+
1
,
scores
.
size
,
np
.
nanmin
(
scores
)
*
100
,
score
*
100
)
cloud
.
files
.
get
(
DIGITS_FN
)
print
scores
digits
,
labels
=
load_digits
(
DIGITS_FN
)
shuffle
=
np
.
random
.
permutation
(
len
(
digits
))
digits
,
labels
=
digits
[
shuffle
],
labels
[
shuffle
]
digits2
=
map
(
deskew
,
digits
)
samples
=
np
.
float32
(
digits2
)
.
reshape
(
-
1
,
SZ
*
SZ
)
/
255.0
return
samples
,
labels
def
get_dataset
(
self
):
if
self
.
usecloud
:
return
cloud
.
result
(
self
.
preprocess_job
)
else
:
return
self
.
_samples
,
self
.
_labels
def
run_jobs
(
self
,
f
,
jobs
):
if
self
.
usecloud
:
jids
=
cloud
.
map
(
f
,
jobs
,
_env
=
self
.
cloud_env
,
_profile
=
True
,
_depends_on
=
self
.
preprocess_job
)
ires
=
cloud
.
iresult
(
jids
)
else
:
pool
=
ThreadPool
(
processes
=
cv2
.
getNumberOfCPUs
())
ires
=
pool
.
imap_unordered
(
f
,
jobs
)
return
ires
def
adjust_SVM
(
self
):
Cs
=
np
.
logspace
(
0
,
5
,
10
,
base
=
2
)
gammas
=
np
.
logspace
(
-
7
,
-
2
,
10
,
base
=
2
)
scores
=
np
.
zeros
((
len
(
Cs
),
len
(
gammas
)))
scores
[:]
=
np
.
nan
print
'adjusting SVM (may take a long time) ...'
def
f
(
job
):
i
,
j
=
job
samples
,
labels
=
self
.
get_dataset
()
params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
score
=
cross_validate
(
SVM
,
params
,
samples
,
labels
)
return
i
,
j
,
score
ires
=
self
.
run_jobs
(
f
,
np
.
ndindex
(
*
scores
.
shape
))
for
count
,
(
i
,
j
,
score
)
in
enumerate
(
ires
):
scores
[
i
,
j
]
=
score
print
'
%
d /
%
d (best error:
%.2
f
%%
, last:
%.2
f
%%
)'
%
(
count
+
1
,
scores
.
size
,
np
.
nanmin
(
scores
)
*
100
,
score
*
100
)
print
scores
i
,
j
=
np
.
unravel_index
(
scores
.
argmin
(),
scores
.
shape
)
best_params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
print
'best params:'
,
best_params
print
'best error:
%.2
f
%%
'
%
(
scores
.
min
()
*
100
)
return
best_params
def
adjust_KNearest
(
self
):
print
'adjusting KNearest ...'
def
f
(
k
):
samples
,
labels
=
self
.
get_dataset
()
err
=
cross_validate
(
KNearest
,
dict
(
k
=
k
),
samples
,
labels
)
return
k
,
err
best_err
,
best_k
=
np
.
inf
,
-
1
for
k
,
err
in
self
.
run_jobs
(
f
,
xrange
(
1
,
9
)):
if
err
<
best_err
:
best_err
,
best_k
=
err
,
k
print
'k =
%
d, error:
%.2
f
%%
'
%
(
k
,
err
*
100
)
best_params
=
dict
(
k
=
best_k
)
print
'best params:'
,
best_params
,
'err:
%.2
f'
%
(
best_err
*
100
)
return
best_params
i
,
j
=
np
.
unravel_index
(
scores
.
argmin
(),
scores
.
shape
)
best_params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
print
'best params:'
,
best_params
print
'best error:
%.2
f
%%
'
%
(
scores
.
min
()
*
100
)
return
best_params
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
import
getopt
import
getopt
...
@@ -113,6 +142,7 @@ if __name__ == '__main__':
...
@@ -113,6 +142,7 @@ if __name__ == '__main__':
print
__doc__
print
__doc__
args
,
_
=
getopt
.
getopt
(
sys
.
argv
[
1
:],
''
,
[
'model='
,
'cloud'
,
'env='
])
args
,
_
=
getopt
.
getopt
(
sys
.
argv
[
1
:],
''
,
[
'model='
,
'cloud'
,
'env='
])
args
=
dict
(
args
)
args
=
dict
(
args
)
args
.
setdefault
(
'--model'
,
'svm'
)
args
.
setdefault
(
'--model'
,
'svm'
)
...
@@ -121,16 +151,10 @@ if __name__ == '__main__':
...
@@ -121,16 +151,10 @@ if __name__ == '__main__':
print
'unknown model "
%
s"'
%
args
[
'--model'
]
print
'unknown model "
%
s"'
%
args
[
'--model'
]
sys
.
exit
(
1
)
sys
.
exit
(
1
)
digits
,
labels
=
load_digits
(
'digits.png'
)
shuffle
=
np
.
random
.
permutation
(
len
(
digits
))
digits
,
labels
=
digits
[
shuffle
],
labels
[
shuffle
]
digits2
=
map
(
deskew
,
digits
)
samples
=
np
.
float32
(
digits2
)
.
reshape
(
-
1
,
SZ
*
SZ
)
/
255.0
t
=
clock
()
t
=
clock
()
app
=
App
(
usecloud
=
'--cloud'
in
args
,
cloud_env
=
args
[
'--env'
])
if
args
[
'--model'
]
==
'knearest'
:
if
args
[
'--model'
]
==
'knearest'
:
a
djust_KNearest
(
samples
,
labels
)
a
pp
.
adjust_KNearest
(
)
else
:
else
:
a
djust_SVM
(
samples
,
labels
,
usecloud
=
'--cloud'
in
args
,
cloud_env
=
args
[
'--env'
]
)
a
pp
.
adjust_SVM
(
)
print
'work time:
%
f s'
%
(
clock
()
-
t
)
print
'work time:
%
f s'
%
(
clock
()
-
t
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment