Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
8226bd25
Commit
8226bd25
authored
Jan 18, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #10625 from pengli:dnn
parents
42459cad
2124361f
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
187 additions
and
56 deletions
+187
-56
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+99
-0
col2im.cl
modules/dnn/src/opencl/col2im.cl
+73
-56
test_layers.cpp
modules/dnn/test/test_layers.cpp
+5
-0
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+5
-0
test_torch_importer.cpp
modules/dnn/test/test_torch_importer.cpp
+5
-0
No files found.
modules/dnn/src/layers/convolution_layer.cpp
View file @
8226bd25
...
@@ -46,6 +46,7 @@
...
@@ -46,6 +46,7 @@
#include "opencv2/core/hal/hal.hpp"
#include "opencv2/core/hal/hal.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include <iostream>
#include <iostream>
#include "opencl_kernels_dnn.hpp"
#ifdef HAVE_OPENCL
#ifdef HAVE_OPENCL
using
namespace
cv
::
dnn
::
ocl4dnn
;
using
namespace
cv
::
dnn
::
ocl4dnn
;
...
@@ -1051,6 +1052,8 @@ class DeConvolutionLayerImpl : public BaseConvolutionLayerImpl
...
@@ -1051,6 +1052,8 @@ class DeConvolutionLayerImpl : public BaseConvolutionLayerImpl
{
{
public
:
public
:
Mat
weightsMat
,
biasesMat
;
Mat
weightsMat
,
biasesMat
;
UMat
umat_weights
;
UMat
umat_biases
;
MatShape
computeColRowShape
(
const
MatShape
&
inpShape
,
const
MatShape
&
outShape
)
const
MatShape
computeColRowShape
(
const
MatShape
&
inpShape
,
const
MatShape
&
outShape
)
const
{
{
...
@@ -1341,11 +1344,107 @@ public:
...
@@ -1341,11 +1344,107 @@ public:
}
}
};
};
#ifdef HAVE_OPENCL
bool
forward_ocl
(
InputArrayOfArrays
inputs_
,
OutputArrayOfArrays
outputs_
,
OutputArrayOfArrays
internals_
)
{
std
::
vector
<
UMat
>
inputs
;
std
::
vector
<
UMat
>
outputs
;
std
::
vector
<
UMat
>
internals
;
inputs_
.
getUMatVector
(
inputs
);
outputs_
.
getUMatVector
(
outputs
);
internals_
.
getUMatVector
(
internals
);
int
outCn
=
numOutput
;
int
inpCn
=
inputs
[
0
].
size
[
1
];
if
(
is1x1
())
return
false
;
if
(
umat_weights
.
empty
())
{
transpose
(
blobs
[
0
].
reshape
(
1
,
inpCn
),
umat_weights
);
umat_biases
=
hasBias
()
?
blobs
[
1
].
reshape
(
1
,
outCn
).
getUMat
(
ACCESS_READ
)
:
UMat
::
zeros
(
outCn
,
1
,
CV_32F
);
}
String
buildopt
=
format
(
"-DT=%s "
,
ocl
::
typeToStr
(
inputs
[
0
].
type
()));
buildopt
+=
format
(
"-DPAD_H=%d -DPAD_W=%d -DKERNEL_H=%d -DKERNEL_W=%d -DSTRIDE_H=%d -DSTRIDE_W=%d "
,
pad
.
height
,
pad
.
width
,
kernel
.
height
,
kernel
.
width
,
stride
.
height
,
stride
.
width
);
for
(
size_t
ii
=
0
;
ii
<
outputs
.
size
();
ii
++
)
{
int
ngroups
=
outCn
/
blobs
[
0
].
size
[
1
];
int
inpGroupCn
=
inpCn
/
ngroups
;
int
outGroupCn
=
blobs
[
0
].
size
[
1
];
const
UMat
&
inp
=
inputs
[
ii
];
UMat
&
out
=
outputs
[
ii
];
int
numImg
=
inp
.
size
[
0
];
int
inpH
=
inp
.
size
[
2
],
inpW
=
inp
.
size
[
3
];
int
outH
=
out
.
size
[
2
],
outW
=
out
.
size
[
3
];
MatShape
inpshape
=
shape
(
numImg
*
inpCn
,
inpH
*
inpW
);
MatShape
outshape
=
shape
(
numImg
*
outCn
,
outH
*
outW
);
UMat
convBlob
=
inputs
[
ii
].
reshape
(
1
,
inpshape
.
size
(),
&
inpshape
[
0
]);
UMat
decnBlob
=
out
.
reshape
(
1
,
outshape
.
size
(),
&
outshape
[
0
]);
int
rows
=
internals
[
0
].
rows
/
ngroups
;
for
(
int
n
=
0
;
n
<
numImg
;
n
++
)
{
for
(
int
g
=
0
;
g
<
ngroups
;
g
++
)
{
UMat
colMat
=
internals
[
0
].
rowRange
(
_Range
(
g
*
rows
,
rows
));
UMat
convMat
=
convBlob
.
rowRange
(
_Range
((
g
+
n
*
ngroups
)
*
inpGroupCn
,
inpGroupCn
));
UMat
wghtMat
=
umat_weights
.
colRange
(
_Range
(
g
*
inpGroupCn
,
inpGroupCn
));
gemm
(
wghtMat
,
convMat
,
1
,
noArray
(),
0
,
colMat
,
0
);
}
for
(
int
g
=
0
;
g
<
ngroups
;
g
++
)
{
int
total
=
outGroupCn
*
decnBlob
.
cols
;
int
index
=
0
;
int
height_col
=
(
outH
+
2
*
pad
.
height
-
kernel
.
height
)
/
stride
.
height
+
1
;
int
width_col
=
(
outW
+
2
*
pad
.
width
-
kernel
.
width
)
/
stride
.
width
+
1
;
int
coeff_h
=
(
1
-
stride
.
height
*
kernel
.
width
*
height_col
)
*
width_col
;
int
coeff_w
=
(
1
-
stride
.
width
*
height_col
*
width_col
);
ocl
::
Kernel
k
(
"col2im"
,
ocl
::
dnn
::
col2im_oclsrc
,
buildopt
);
k
.
set
(
index
++
,
total
);
k
.
set
(
index
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
internals
[
0
]));
k
.
set
(
index
++
,
(
int
)(
g
*
rows
*
internals
[
0
].
cols
));
k
.
set
(
index
++
,
outGroupCn
);
k
.
set
(
index
++
,
outH
);
k
.
set
(
index
++
,
outW
);
k
.
set
(
index
++
,
height_col
);
k
.
set
(
index
++
,
width_col
);
k
.
set
(
index
++
,
coeff_h
);
k
.
set
(
index
++
,
coeff_w
);
k
.
set
(
index
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
umat_biases
));
k
.
set
(
index
++
,
(
int
)(
g
*
outGroupCn
*
umat_biases
.
cols
));
k
.
set
(
index
++
,
ocl
::
KernelArg
::
PtrWriteOnly
(
decnBlob
));
k
.
set
(
index
++
,
(
int
)((
g
+
n
*
ngroups
)
*
outGroupCn
*
decnBlob
.
cols
));
size_t
global
[]
=
{
(
size_t
)
total
};
bool
ret
=
k
.
run
(
1
,
global
,
NULL
,
false
);
if
(
!
ret
)
return
false
;
}
}
}
return
true
;
}
#endif
void
forward
(
InputArrayOfArrays
inputs_arr
,
OutputArrayOfArrays
outputs_arr
,
OutputArrayOfArrays
internals_arr
)
void
forward
(
InputArrayOfArrays
inputs_arr
,
OutputArrayOfArrays
outputs_arr
,
OutputArrayOfArrays
internals_arr
)
{
{
CV_TRACE_FUNCTION
();
CV_TRACE_FUNCTION
();
CV_TRACE_ARG_VALUE
(
name
,
"name"
,
name
.
c_str
());
CV_TRACE_ARG_VALUE
(
name
,
"name"
,
name
.
c_str
());
CV_OCL_RUN
((
preferableTarget
==
DNN_TARGET_OPENCL
)
&&
OCL_PERFORMANCE_CHECK
(
ocl
::
Device
::
getDefault
().
isIntel
()),
forward_ocl
(
inputs_arr
,
outputs_arr
,
internals_arr
))
Layer
::
forward_fallback
(
inputs_arr
,
outputs_arr
,
internals_arr
);
Layer
::
forward_fallback
(
inputs_arr
,
outputs_arr
,
internals_arr
);
}
}
...
...
modules/dnn/src/opencl/col2im.cl
View file @
8226bd25
/*************************************************************************************
/*M///////////////////////////////////////////////////////////////////////////////////////
*
Copyright
(
c
)
2015
,
Advanced
Micro
Devices,
Inc.
//
*
All
rights
reserved.
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
*
//
*
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
*
are
permitted
provided
that
the
following
conditions
are
met:
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
*
//
copy
or
use
the
software.
*
1.
Redistributions
of
source
code
must
retain
the
above
copyright
notice,
this
//
*
list
of
conditions
and
the
following
disclaimer.
//
*
//
License
Agreement
*
2.
Redistributions
in
binary
form
must
reproduce
the
above
copyright
notice,
//
For
Open
Source
Computer
Vision
Library
*
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
and/or
//
*
other
materials
provided
with
the
distribution.
//
Copyright
(
C
)
2017
,
Intel
Corporation,
all
rights
reserved.
*
//
Copyright
(
c
)
2016-2017
Fabian
David
Tschopp,
all
rights
reserved.
*
THIS
SOFTWARE
IS
PROVIDED
BY
THE
COPYRIGHT
HOLDERS
AND
CONTRIBUTORS
"AS IS"
AND
//
Third
party
copyrights
are
property
of
their
respective
owners.
*
ANY
EXPRESS
OR
IMPLIED
WARRANTIES,
INCLUDING,
BUT
NOT
LIMITED
TO,
THE
IMPLIED
//
*
WARRANTIES
OF
MERCHANTABILITY
AND
FITNESS
FOR
A
PARTICULAR
PURPOSE
ARE
DISCLAIMED.
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
*
IN
NO
EVENT
SHALL
THE
COPYRIGHT
HOLDER
OR
CONTRIBUTORS
BE
LIABLE
FOR
ANY
DIRECT,
//
are
permitted
provided
that
the
following
conditions
are
met:
*
INDIRECT,
INCIDENTAL,
SPECIAL,
EXEMPLARY,
OR
CONSEQUENTIAL
DAMAGES
(
INCLUDING,
//
*
BUT
NOT
LIMITED
TO,
PROCUREMENT
OF
SUBSTITUTE
GOODS
OR
SERVICES
; LOSS OF USE, DATA,
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
*
OR
PROFITS
; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
//
this
list
of
conditions
and
the
following
disclaimer.
*
WHETHER
IN
CONTRACT,
STRICT
LIABILITY,
OR
TORT
(
INCLUDING
NEGLIGENCE
OR
OTHERWISE
)
//
*
ARISING
IN
ANY
WAY
OUT
OF
THE
USE
OF
THIS
SOFTWARE,
EVEN
IF
ADVISED
OF
THE
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
*
POSSIBILITY
OF
SUCH
DAMAGE.
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
**************************************************************************************
/
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
"as is"
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
__kernel
void
col2im
(
const
int
n,
__global
const
T*
data_col,
const
int
col_offset,
__kernel
void
col2im
(
const
int
n,
__global
const
T*
data_col,
const
int
height,
const
int
width,
const
int
channels,
const
int
data_col_offset,
const
int
patch_h,
const
int
patch_w,
const
int
channels,
const
int
pad_h,
const
int
pad_w,
const
int
height,
const
int
width,
const
int
stride_h,
const
int
stride_w,
const
int
height_col,
const
int
width_col,
const
int
height_col,
const
int
width_col,
const
int
coeff_h,
const
int
coeff_w,
__global
T*
data_im,
const
int
img_offset
)
__global
const
T*
biasvec,
const
int
bias_offset,
__global
T*
data_im,
const
int
data_im_offset
)
{
{
data_col
=
data_col
+
col_offset
;
data_col
=
data_col
+
data_col_offset
;
data_im
=
data_im
+
img_offset
;
biasvec
=
biasvec
+
bias_offset
;
int
index
=
get_global_id
(
0
)
;
data_im
=
data_im
+
data_im_offset
;
if
(
index
<
n
)
{
int
index
=
get_global_id
(
0
)
;
T
val
=
0
;
int
w
=
index
%
width
+
pad_w
;
int
h
=
(
index
/
width
)
%
height
+
pad_h
;
int
c
=
index
/
(
width
*
height
)
;
//
compute
the
start
and
end
of
the
output
if
(
index
<
n
)
int
w_col_start
=
(
w
<
patch_w
)
?
0
:
(
w
-
patch_w
)
/
stride_w
+
1
;
{
int
w_col_end
=
min
(
w
/
stride_w
+
1
,
width_col
)
;
T
val
=
0.f
;
int
h_col_start
=
(
h
<
patch_h
)
?
0
:
(
h
-
patch_h
)
/
stride_h
+
1
;
int
w
=
index
%
width
+
PAD_W
;
int
h_col_end
=
min
(
h
/
stride_h
+
1
,
height_col
)
;
int
h
=
(
index
/
width
)
%
height
+
PAD_H
;
int
c
=
index
/
(
width
*
height
)
;
int
h_col_start
=
(
h
<
KERNEL_H
)
?
0
:
(
h
-
KERNEL_H
)
/
STRIDE_H
+
1
;
int
h_col_end
=
min
(
h
/
STRIDE_H
+
1
,
height_col
)
;
int
plane_size_col
=
height_col
*
width_col
;
int
offset
=
(
c
*
KERNEL_H
*
KERNEL_W
+
h
*
KERNEL_W
+
w
)
*
plane_size_col
;
//
equivalent
implementation
int
w_col_start
=
(
w
<
KERNEL_W
)
?
0
:
(
w
-
KERNEL_W
)
/
STRIDE_W
+
1
;
int
offset
=
int
w_col_end
=
min
(
w
/
STRIDE_W
+
1
,
width_col
)
;
(
c
*
patch_h
*
patch_w
+
h
*
patch_w
+
w
)
*
height_col
*
width_col
;
int
coeff_h_col
=
(
1
-
stride_h
*
patch_w
*
height_col
)
*
width_col
;
for
(
int
h_col
=
h_col_start
; h_col < h_col_end; ++h_col)
int
coeff_w_col
=
(
1
-
stride_w
*
height_col
*
width_col
)
;
for
(
int
w_col
=
w_col_start
; w_col < w_col_end; ++w_col)
for
(
int
h_col
=
h_col_start
; h_col < h_col_end; ++h_col) {
val
+=
data_col[offset
+
h_col
*
coeff_h
+
w_col
*
coeff_w]
;
for
(
int
w_col
=
w_col_start
; w_col < w_col_end; ++w_col) {
val
+=
data_col[offset
+
h_col
*
coeff_h_col
+
w_col
*
coeff_w_col]
;
data_im[index]
=
val
+
biasvec[c]
;
}
}
}
data_im[index]
=
val
;
}
}
}
modules/dnn/test/test_layers.cpp
View file @
8226bd25
...
@@ -167,6 +167,11 @@ TEST(Layer_Test_DeConvolution, Accuracy)
...
@@ -167,6 +167,11 @@ TEST(Layer_Test_DeConvolution, Accuracy)
testLayerUsingCaffeModels
(
"layer_deconvolution"
,
DNN_TARGET_CPU
,
true
,
false
);
testLayerUsingCaffeModels
(
"layer_deconvolution"
,
DNN_TARGET_CPU
,
true
,
false
);
}
}
OCL_TEST
(
Layer_Test_DeConvolution
,
Accuracy
)
{
testLayerUsingCaffeModels
(
"layer_deconvolution"
,
DNN_TARGET_OPENCL
,
true
,
false
);
}
TEST
(
Layer_Test_InnerProduct
,
Accuracy
)
TEST
(
Layer_Test_InnerProduct
,
Accuracy
)
{
{
testLayerUsingCaffeModels
(
"layer_inner_product"
,
DNN_TARGET_CPU
,
true
);
testLayerUsingCaffeModels
(
"layer_inner_product"
,
DNN_TARGET_CPU
,
true
);
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
8226bd25
...
@@ -171,6 +171,11 @@ TEST(Test_TensorFlow, deconvolution)
...
@@ -171,6 +171,11 @@ TEST(Test_TensorFlow, deconvolution)
runTensorFlowNet
(
"deconvolution"
);
runTensorFlowNet
(
"deconvolution"
);
}
}
OCL_TEST
(
Test_TensorFlow
,
deconvolution
)
{
runTensorFlowNet
(
"deconvolution"
,
DNN_TARGET_OPENCL
);
}
TEST
(
Test_TensorFlow
,
matmul
)
TEST
(
Test_TensorFlow
,
matmul
)
{
{
runTensorFlowNet
(
"matmul"
);
runTensorFlowNet
(
"matmul"
);
...
...
modules/dnn/test/test_torch_importer.cpp
View file @
8226bd25
...
@@ -165,6 +165,11 @@ TEST(Torch_Importer, run_deconv)
...
@@ -165,6 +165,11 @@ TEST(Torch_Importer, run_deconv)
runTorchNet
(
"net_deconv"
);
runTorchNet
(
"net_deconv"
);
}
}
OCL_TEST
(
Torch_Importer
,
run_deconv
)
{
runTorchNet
(
"net_deconv"
,
DNN_TARGET_OPENCL
);
}
TEST
(
Torch_Importer
,
run_batch_norm
)
TEST
(
Torch_Importer
,
run_batch_norm
)
{
{
runTorchNet
(
"net_batch_norm"
,
DNN_TARGET_CPU
,
""
,
false
,
true
);
runTorchNet
(
"net_batch_norm"
,
DNN_TARGET_CPU
,
""
,
false
,
true
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment