diff --git a/modules/core/include/opencv2/core.hpp b/modules/core/include/opencv2/core.hpp
index 31d325cc707de29cc5bc662dc9a48f4a94af3ace..e7271017dc62f5fd80214cfca4929aa7bc9f272c 100644
--- a/modules/core/include/opencv2/core.hpp
+++ b/modules/core/include/opencv2/core.hpp
@@ -657,9 +657,9 @@ or an absolute or relative difference norm if src2 is there:
 
 or
 
-\f[norm =  \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  \(\texttt{normType} = \texttt{NORM_RELATIVE_INF}\) }
-{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) }
-{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f]
+\f[norm =  \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_INF}\) }
+{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L1}\) }
+{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L2}\) }\f]
 
 The function cv::norm returns the calculated norm.
 
diff --git a/modules/core/include/opencv2/core/base.hpp b/modules/core/include/opencv2/core/base.hpp
index a445599946950ae6ebdce785461daa9b8b5a036d..8eea15c4f286c682547343fc6e60c7f4f7b2c652 100644
--- a/modules/core/include/opencv2/core/base.hpp
+++ b/modules/core/include/opencv2/core/base.hpp
@@ -163,9 +163,9 @@ enum DecompTypes {
 { \| \texttt{src1} - \texttt{src2} \| _{L_2} =  \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if  \(\texttt{normType} = \texttt{NORM_L2}\) }\f]
 
 - Relative norm for two arrays
-\f[norm =  \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  \(\texttt{normType} = \texttt{NORM_RELATIVE_INF}\) }
-{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) }
-{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f]
+\f[norm =  \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_INF}\) }
+{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L1}\) }
+{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L2}\) }\f]
 
 As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
 The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$