Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
800266dd
Commit
800266dd
authored
Mar 22, 2011
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
parallel training of a neural net using TBB (thanks to Konstantin Krivakin)
parent
d002c137
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
189 additions
and
93 deletions
+189
-93
ml.hpp
modules/ml/include/opencv2/ml/ml.hpp
+1
-1
ann_mlp.cpp
modules/ml/src/ann_mlp.cpp
+188
-92
No files found.
modules/ml/include/opencv2/ml/ml.hpp
View file @
800266dd
...
...
@@ -2001,6 +2001,7 @@ public:
return
layer_sizes
&&
weights
&&
(
unsigned
)
layer
<=
(
unsigned
)
layer_sizes
->
cols
?
weights
[
layer
]
:
0
;
}
virtual
void
calc_activ_func_deriv
(
CvMat
*
xf
,
CvMat
*
deriv
,
const
double
*
bias
)
const
;
protected
:
...
...
@@ -2015,7 +2016,6 @@ protected:
virtual
int
train_rprop
(
CvVectors
_ivecs
,
CvVectors
_ovecs
,
const
double
*
_sw
);
virtual
void
calc_activ_func
(
CvMat
*
xf
,
const
double
*
bias
)
const
;
virtual
void
calc_activ_func_deriv
(
CvMat
*
xf
,
CvMat
*
deriv
,
const
double
*
bias
)
const
;
virtual
void
set_activ_func
(
int
_activ_func
=
SIGMOID_SYM
,
double
_f_param1
=
0
,
double
_f_param2
=
0
);
virtual
void
init_weights
();
...
...
modules/ml/src/ann_mlp.cpp
View file @
800266dd
...
...
@@ -40,6 +40,10 @@
#include "precomp.hpp"
#ifdef HAVE_TBB
#include <tbb/tbb.h>
#endif
CvANN_MLP_TrainParams
::
CvANN_MLP_TrainParams
()
{
term_crit
=
cvTermCriteria
(
CV_TERMCRIT_ITER
+
CV_TERMCRIT_EPS
,
1000
,
0.01
);
...
...
@@ -1019,142 +1023,124 @@ int CvANN_MLP::train_backprop( CvVectors x0, CvVectors u, const double* sw )
return
iter
;
}
int
CvANN_MLP
::
train_rprop
(
CvVectors
x0
,
CvVectors
u
,
const
double
*
sw
)
{
const
int
max_buf_sz
=
1
<<
16
;
CvMat
*
dw
=
0
;
CvMat
*
dEdw
=
0
;
CvMat
*
prev_dEdw_sign
=
0
;
CvMat
*
buf
=
0
;
double
**
x
=
0
,
**
df
=
0
;
int
iter
=
-
1
,
count
=
x0
.
count
;
CV_FUNCNAME
(
"CvANN_MLP::train"
);
__BEGIN__
;
int
i
,
ivcount
,
ovcount
,
l_count
,
total
=
0
,
max_iter
,
buf_sz
,
dcount0
,
dcount
=
0
;
double
*
buf_ptr
;
double
prev_E
=
DBL_MAX
*
0.5
,
epsilon
;
double
dw_plus
,
dw_minus
,
dw_min
,
dw_max
;
struct
rprop_loop
{
rprop_loop
(
const
CvANN_MLP
*
_point
,
double
**&
_weights
,
int
&
_count
,
int
&
_ivcount
,
CvVectors
*
_x0
,
int
&
_l_count
,
CvMat
*&
_layer_sizes
,
int
&
_ovcount
,
int
&
_max_count
,
CvVectors
*
_u
,
const
double
*&
_sw
,
double
&
_inv_count
,
CvMat
*&
_dEdw
,
int
&
_dcount0
,
double
*
_E
,
int
_buf_sz
)
{
point
=
_point
;
weights
=
_weights
;
count
=
_count
;
ivcount
=
_ivcount
;
x0
=
_x0
;
l_count
=
_l_count
;
layer_sizes
=
_layer_sizes
;
ovcount
=
_ovcount
;
max_count
=
_max_count
;
u
=
_u
;
sw
=
_sw
;
inv_count
=
_inv_count
;
dEdw
=
_dEdw
;
dcount0
=
_dcount0
;
E
=
_E
;
buf_sz
=
_buf_sz
;
}
const
CvANN_MLP
*
point
;
double
**
weights
;
int
count
;
int
ivcount
;
CvVectors
*
x0
;
int
l_count
;
CvMat
*
layer_sizes
;
int
ovcount
;
int
max_count
;
CvVectors
*
u
;
const
double
*
sw
;
double
inv_count
;
CvMat
*
dEdw
;
int
dcount0
;
double
*
E
;
int
buf_sz
;
max_iter
=
params
.
term_crit
.
max_iter
;
epsilon
=
params
.
term_crit
.
epsilon
;
dw_plus
=
params
.
rp_dw_plus
;
dw_minus
=
params
.
rp_dw_minus
;
dw_min
=
params
.
rp_dw_min
;
dw_max
=
params
.
rp_dw_max
;
l_count
=
layer_sizes
->
cols
;
ivcount
=
layer_sizes
->
data
.
i
[
0
];
ovcount
=
layer_sizes
->
data
.
i
[
l_count
-
1
];
void
operator
()(
const
cv
::
BlockedRange
&
range
)
const
{
double
*
buf_ptr
;
double
**
x
=
0
;
double
**
df
=
0
;
int
total
=
0
;
// allocate buffers
for
(
i
=
0
;
i
<
l_count
;
i
++
)
for
(
int
i
=
0
;
i
<
l_count
;
i
++
)
total
+=
layer_sizes
->
data
.
i
[
i
];
CV_CALL
(
dw
=
cvCreateMat
(
wbuf
->
rows
,
wbuf
->
cols
,
wbuf
->
type
));
cvSet
(
dw
,
cvScalarAll
(
params
.
rp_dw0
)
);
CV_CALL
(
dEdw
=
cvCreateMat
(
wbuf
->
rows
,
wbuf
->
cols
,
wbuf
->
type
));
cvZero
(
dEdw
);
CV_CALL
(
prev_dEdw_sign
=
cvCreateMat
(
wbuf
->
rows
,
wbuf
->
cols
,
CV_8SC1
));
cvZero
(
prev_dEdw_sign
);
inv_count
=
1.
/
count
;
dcount0
=
max_buf_sz
/
(
2
*
total
);
dcount0
=
MAX
(
dcount0
,
1
);
dcount0
=
MIN
(
dcount0
,
count
);
buf_sz
=
dcount0
*
(
total
+
max_count
)
*
2
;
CV_CALL
(
buf
=
cvCreateMat
(
1
,
buf_sz
,
CV_64F
));
CV_CALL
(
x
=
(
double
**
)
cvAlloc
(
total
*
2
*
sizeof
(
x
[
0
])
));
CvMat
*
buf
;
buf
=
cvCreateMat
(
1
,
buf_sz
,
CV_64F
);
x
=
(
double
**
)
cvAlloc
(
total
*
2
*
sizeof
(
x
[
0
])
);
df
=
x
+
total
;
buf_ptr
=
buf
->
data
.
db
;
for
(
i
=
0
;
i
<
l_count
;
i
++
)
for
(
int
i
=
0
;
i
<
l_count
;
i
++
)
{
x
[
i
]
=
buf_ptr
;
df
[
i
]
=
x
[
i
]
+
layer_sizes
->
data
.
i
[
i
]
*
dcount0
;
buf_ptr
+=
(
df
[
i
]
-
x
[
i
])
*
2
;
}
// run rprop loop
/*
y_i(t) = w_i(t)*x_{i-1}(t)
x_i(t) = f(y_i(t))
E = sum_over_all_samples(1/2*||u - x_N||^2)
grad_N = (x_N - u)*f'(y_i)
MIN(dw_i{jk}(t)*dw_plus, dw_max), if dE/dw_i{jk}(t)*dE/dw_i{jk}(t-1) > 0
dw_i{jk}(t) = MAX(dw_i{jk}(t)*dw_minus, dw_min), if dE/dw_i{jk}(t)*dE/dw_i{jk}(t-1) < 0
dw_i{jk}(t-1) else
if (dE/dw_i{jk}(t)*dE/dw_i{jk}(t-1) < 0)
dE/dw_i{jk}(t)<-0
else
w_i{jk}(t+1) = w_i{jk}(t) + dw_i{jk}(t)
grad_{i-1}(t) = w_i^t(t)*grad_i(t)
*/
for
(
iter
=
0
;
iter
<
max_iter
;
iter
++
)
for
(
int
si
=
range
.
begin
();
si
<
range
.
end
();
si
++
)
{
int
n1
,
n2
,
si
,
j
,
k
;
if
(
si
%
dcount0
!=
0
)
continue
;
int
n1
,
n2
,
j
,
k
;
double
*
w
;
CvMat
_w
,
_dEdw
,
hdr1
,
hdr2
,
ghdr1
,
ghdr2
,
_df
;
CvMat
*
x1
,
*
x2
,
*
grad1
,
*
grad2
,
*
temp
;
double
E
=
0
;
int
dcount
=
0
;
// first, iterate through all the samples and compute dEdw
for
(
si
=
0
;
si
<
count
;
si
+=
dcount
)
{
dcount
=
MIN
(
count
-
si
,
dcount0
);
dcount
=
MIN
(
count
-
si
,
dcount0
);
w
=
weights
[
0
];
grad1
=
&
ghdr1
;
grad2
=
&
ghdr2
;
x1
=
&
hdr1
;
x2
=
&
hdr2
;
// grab and preprocess input data
if
(
x0
.
type
==
CV_32F
)
for
(
i
=
0
;
i
<
dcount
;
i
++
)
if
(
x0
->
type
==
CV_32F
)
{
const
float
*
x0data
=
x0
.
data
.
fl
[
si
+
i
];
for
(
int
i
=
0
;
i
<
dcount
;
i
++
)
{
const
float
*
x0data
=
x0
->
data
.
fl
[
si
+
i
];
double
*
xdata
=
x
[
0
]
+
i
*
ivcount
;
for
(
j
=
0
;
j
<
ivcount
;
j
++
)
xdata
[
j
]
=
x0data
[
j
]
*
w
[
j
*
2
]
+
w
[
j
*
2
+
1
];
}
}
else
for
(
i
=
0
;
i
<
dcount
;
i
++
)
for
(
int
i
=
0
;
i
<
dcount
;
i
++
)
{
const
double
*
x0data
=
x0
.
data
.
db
[
si
+
i
];
const
double
*
x0data
=
x0
->
data
.
db
[
si
+
i
];
double
*
xdata
=
x
[
0
]
+
i
*
ivcount
;
for
(
j
=
0
;
j
<
ivcount
;
j
++
)
xdata
[
j
]
=
x0data
[
j
]
*
w
[
j
*
2
]
+
w
[
j
*
2
+
1
];
}
cvInitMatHeader
(
x1
,
dcount
,
ivcount
,
CV_64F
,
x
[
0
]
);
// forward pass, compute y[i]=w*x[i-1], x[i]=f(y[i]), df[i]=f'(y[i])
for
(
i
=
1
;
i
<
l_count
;
i
++
)
for
(
int
i
=
1
;
i
<
l_count
;
i
++
)
{
cvInitMatHeader
(
x2
,
dcount
,
layer_sizes
->
data
.
i
[
i
],
CV_64F
,
x
[
i
]
);
cvInitMatHeader
(
&
_w
,
x1
->
cols
,
x2
->
cols
,
CV_64F
,
weights
[
i
]
);
cvGEMM
(
x1
,
&
_w
,
1
,
0
,
0
,
x2
);
_df
=
*
x2
;
_df
.
data
.
db
=
df
[
i
];
calc_activ_func_deriv
(
x2
,
&
_df
,
_w
.
data
.
db
+
_w
.
rows
*
_w
.
cols
);
point
->
calc_activ_func_deriv
(
x2
,
&
_df
,
_w
.
data
.
db
+
_w
.
rows
*
_w
.
cols
);
CV_SWAP
(
x1
,
x2
,
temp
);
}
cvInitMatHeader
(
grad1
,
dcount
,
ovcount
,
CV_64F
,
buf_ptr
);
w
=
weights
[
l_count
+
1
];
grad2
->
data
.
db
=
buf_ptr
+
max_count
*
dcount
;
// calculate error
if
(
u
.
type
==
CV_32F
)
for
(
i
=
0
;
i
<
dcount
;
i
++
)
if
(
u
->
type
==
CV_32F
)
for
(
int
i
=
0
;
i
<
dcount
;
i
++
)
{
const
float
*
udata
=
u
.
data
.
fl
[
si
+
i
];
const
float
*
udata
=
u
->
data
.
fl
[
si
+
i
];
const
double
*
xdata
=
x
[
l_count
-
1
]
+
i
*
ovcount
;
double
*
gdata
=
grad1
->
data
.
db
+
i
*
ovcount
;
double
sweight
=
sw
?
sw
[
si
+
i
]
:
inv_count
,
E1
=
0
;
...
...
@@ -1165,34 +1151,42 @@ int CvANN_MLP::train_rprop( CvVectors x0, CvVectors u, const double* sw )
gdata
[
j
]
=
t
*
sweight
;
E1
+=
t
*
t
;
}
E
+=
sweight
*
E1
;
*
E
+=
sweight
*
E1
;
}
else
for
(
i
=
0
;
i
<
dcount
;
i
++
)
for
(
int
i
=
0
;
i
<
dcount
;
i
++
)
{
const
double
*
udata
=
u
.
data
.
db
[
si
+
i
];
const
double
*
udata
=
u
->
data
.
db
[
si
+
i
];
const
double
*
xdata
=
x
[
l_count
-
1
]
+
i
*
ovcount
;
double
*
gdata
=
grad1
->
data
.
db
+
i
*
ovcount
;
double
sweight
=
sw
?
sw
[
si
+
i
]
:
inv_count
,
E1
=
0
;
for
(
j
=
0
;
j
<
ovcount
;
j
++
)
for
(
int
j
=
0
;
j
<
ovcount
;
j
++
)
{
double
t
=
udata
[
j
]
*
w
[
j
*
2
]
+
w
[
j
*
2
+
1
]
-
xdata
[
j
];
gdata
[
j
]
=
t
*
sweight
;
E1
+=
t
*
t
;
}
E
+=
sweight
*
E1
;
*
E
+=
sweight
*
E1
;
}
// backward pass, update dEdw
for
(
i
=
l_count
-
1
;
i
>
0
;
i
--
)
#ifdef HAVE_TBB
static
tbb
::
spin_mutex
mutex
;
tbb
::
spin_mutex
::
scoped_lock
lock
;
#endif
for
(
int
i
=
l_count
-
1
;
i
>
0
;
i
--
)
{
n1
=
layer_sizes
->
data
.
i
[
i
-
1
];
n2
=
layer_sizes
->
data
.
i
[
i
];
cvInitMatHeader
(
&
_df
,
dcount
,
n2
,
CV_64F
,
df
[
i
]
);
cvMul
(
grad1
,
&
_df
,
grad1
);
#ifdef HAVE_TBB
lock
.
acquire
(
mutex
);
#endif
cvInitMatHeader
(
&
_dEdw
,
n1
,
n2
,
CV_64F
,
dEdw
->
data
.
db
+
(
weights
[
i
]
-
weights
[
0
])
);
cvInitMatHeader
(
x1
,
dcount
,
n1
,
CV_64F
,
x
[
i
-
1
]
);
cvGEMM
(
x1
,
grad1
,
1
,
&
_dEdw
,
1
,
&
_dEdw
,
CV_GEMM_A_T
);
// update bias part of dEdw
for
(
k
=
0
;
k
<
dcount
;
k
++
)
{
...
...
@@ -1201,14 +1195,116 @@ int CvANN_MLP::train_rprop( CvVectors x0, CvVectors u, const double* sw )
for
(
j
=
0
;
j
<
n2
;
j
++
)
dst
[
j
]
+=
src
[
j
];
}
if
(
i
>
1
)
cvInitMatHeader
(
&
_w
,
n1
,
n2
,
CV_64F
,
weights
[
i
]
);
#ifdef HAVE_TBB
lock
.
release
();
#endif
cvInitMatHeader
(
grad2
,
dcount
,
n1
,
CV_64F
,
grad2
->
data
.
db
);
if
(
i
>
1
)
cvGEMM
(
grad1
,
&
_w
,
1
,
0
,
0
,
grad2
,
CV_GEMM_B_T
);
CV_SWAP
(
grad1
,
grad2
,
temp
);
}
}
cvFree
(
&
x
);
cvReleaseMat
(
&
buf
);
}
};
int
CvANN_MLP
::
train_rprop
(
CvVectors
x0
,
CvVectors
u
,
const
double
*
sw
)
{
const
int
max_buf_sz
=
1
<<
16
;
CvMat
*
dw
=
0
;
CvMat
*
dEdw
=
0
;
CvMat
*
prev_dEdw_sign
=
0
;
CvMat
*
buf
=
0
;
double
**
x
=
0
,
**
df
=
0
;
int
iter
=
-
1
,
count
=
x0
.
count
;
CV_FUNCNAME
(
"CvANN_MLP::train"
);
__BEGIN__
;
int
i
,
ivcount
,
ovcount
,
l_count
,
total
=
0
,
max_iter
,
buf_sz
,
dcount0
,
dcount
=
0
;
double
*
buf_ptr
;
double
prev_E
=
DBL_MAX
*
0.5
,
epsilon
;
double
dw_plus
,
dw_minus
,
dw_min
,
dw_max
;
double
inv_count
;
max_iter
=
params
.
term_crit
.
max_iter
;
epsilon
=
params
.
term_crit
.
epsilon
;
dw_plus
=
params
.
rp_dw_plus
;
dw_minus
=
params
.
rp_dw_minus
;
dw_min
=
params
.
rp_dw_min
;
dw_max
=
params
.
rp_dw_max
;
l_count
=
layer_sizes
->
cols
;
ivcount
=
layer_sizes
->
data
.
i
[
0
];
ovcount
=
layer_sizes
->
data
.
i
[
l_count
-
1
];
// allocate buffers
for
(
i
=
0
;
i
<
l_count
;
i
++
)
total
+=
layer_sizes
->
data
.
i
[
i
];
CV_CALL
(
dw
=
cvCreateMat
(
wbuf
->
rows
,
wbuf
->
cols
,
wbuf
->
type
));
cvSet
(
dw
,
cvScalarAll
(
params
.
rp_dw0
)
);
CV_CALL
(
dEdw
=
cvCreateMat
(
wbuf
->
rows
,
wbuf
->
cols
,
wbuf
->
type
));
cvZero
(
dEdw
);
CV_CALL
(
prev_dEdw_sign
=
cvCreateMat
(
wbuf
->
rows
,
wbuf
->
cols
,
CV_8SC1
));
cvZero
(
prev_dEdw_sign
);
inv_count
=
1.
/
count
;
dcount0
=
max_buf_sz
/
(
2
*
total
);
dcount0
=
MAX
(
dcount0
,
1
);
dcount0
=
MIN
(
dcount0
,
count
);
buf_sz
=
dcount0
*
(
total
+
max_count
)
*
2
;
CV_CALL
(
buf
=
cvCreateMat
(
1
,
buf_sz
,
CV_64F
));
CV_CALL
(
x
=
(
double
**
)
cvAlloc
(
total
*
2
*
sizeof
(
x
[
0
])
));
df
=
x
+
total
;
buf_ptr
=
buf
->
data
.
db
;
for
(
i
=
0
;
i
<
l_count
;
i
++
)
{
x
[
i
]
=
buf_ptr
;
df
[
i
]
=
x
[
i
]
+
layer_sizes
->
data
.
i
[
i
]
*
dcount0
;
buf_ptr
+=
(
df
[
i
]
-
x
[
i
])
*
2
;
}
// run rprop loop
/*
y_i(t) = w_i(t)*x_{i-1}(t)
x_i(t) = f(y_i(t))
E = sum_over_all_samples(1/2*||u - x_N||^2)
grad_N = (x_N - u)*f'(y_i)
MIN(dw_i{jk}(t)*dw_plus, dw_max), if dE/dw_i{jk}(t)*dE/dw_i{jk}(t-1) > 0
dw_i{jk}(t) = MAX(dw_i{jk}(t)*dw_minus, dw_min), if dE/dw_i{jk}(t)*dE/dw_i{jk}(t-1) < 0
dw_i{jk}(t-1) else
if (dE/dw_i{jk}(t)*dE/dw_i{jk}(t-1) < 0)
dE/dw_i{jk}(t)<-0
else
w_i{jk}(t+1) = w_i{jk}(t) + dw_i{jk}(t)
grad_{i-1}(t) = w_i^t(t)*grad_i(t)
*/
for
(
iter
=
0
;
iter
<
max_iter
;
iter
++
)
{
int
n1
,
n2
,
si
,
j
,
k
;
double
*
w
;
CvMat
_w
,
_dEdw
,
hdr1
,
hdr2
,
ghdr1
,
ghdr2
,
_df
;
CvMat
*
x1
,
*
x2
,
*
grad1
,
*
grad2
,
*
temp
;
double
E
=
0
;
// first, iterate through all the samples and compute dEdw
cv
::
parallel_for
(
cv
::
BlockedRange
(
0
,
count
),
rprop_loop
(
this
,
weights
,
count
,
ivcount
,
&
x0
,
l_count
,
layer_sizes
,
ovcount
,
max_count
,
&
u
,
sw
,
inv_count
,
dEdw
,
dcount0
,
&
E
,
buf_sz
)
);
// now update weights
for
(
i
=
1
;
i
<
l_count
;
i
++
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment