Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
78788e1e
Commit
78788e1e
authored
Sep 22, 2017
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
dnn(perf): update perf tests
parent
b8af7c5f
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
162 additions
and
201 deletions
+162
-201
perf_convolution.cpp
modules/dnn/perf/perf_convolution.cpp
+8
-19
perf_halide_net.cpp
modules/dnn/perf/perf_halide_net.cpp
+0
-174
perf_net.cpp
modules/dnn/perf/perf_net.cpp
+149
-0
perf_precomp.hpp
modules/dnn/perf/perf_precomp.hpp
+5
-8
No files found.
modules/dnn/perf/perf_convolution.cpp
View file @
78788e1e
#include "perf_precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace
cvtest
namespace
{
using
std
::
tr1
::
tuple
;
using
std
::
tr1
::
get
;
using
std
::
tr1
::
make_tuple
;
using
std
::
make_pair
;
using
namespace
perf
;
using
namespace
testing
;
using
namespace
cv
;
using
namespace
cv
::
dnn
;
enum
{
STRIDE_OFF
=
1
,
STRIDE_ON
=
2
};
CV_ENUM
(
StrideSize
,
STRIDE_OFF
,
STRIDE_ON
);
enum
{
GROUP_OFF
=
1
,
GROUP_2
=
2
};
CV_ENUM
(
GroupSize
,
GROUP_OFF
,
GROUP_2
);
//Squared Size
#define SSZ(n) cv::Size(n, n)
typedef
std
::
pair
<
MatShape
,
int
>
InpShapeNumOut
;
typedef
tuple
<
Size
,
InpShapeNumOut
,
GroupSize
,
StrideSize
>
ConvParam
;
//kernel_size, inp shape, groups, stride
typedef
TestBaseWithParam
<
ConvParam
>
ConvolutionPerfTest
;
...
...
@@ -77,11 +65,11 @@ PERF_TEST_P( ConvolutionPerfTest, perf, Combine(
Ptr
<
Layer
>
layer
=
cv
::
dnn
::
LayerFactory
::
createLayerInstance
(
"Convolution"
,
lp
);
std
::
vector
<
MatShape
>
inputShapes
(
1
,
shape
(
inpBlob
)),
outShapes
,
internals
;
layer
->
getMemoryShapes
(
inputShapes
,
0
,
outShapes
,
internals
);
for
(
in
t
i
=
0
;
i
<
outShapes
.
size
();
i
++
)
for
(
size_
t
i
=
0
;
i
<
outShapes
.
size
();
i
++
)
{
outBlobs
.
push_back
(
Mat
(
outShapes
[
i
],
CV_32F
));
}
for
(
in
t
i
=
0
;
i
<
internals
.
size
();
i
++
)
for
(
size_
t
i
=
0
;
i
<
internals
.
size
();
i
++
)
{
internalBlobs
.
push_back
(
Mat
());
if
(
total
(
internals
[
i
]))
...
...
@@ -95,12 +83,13 @@ PERF_TEST_P( ConvolutionPerfTest, perf, Combine(
Mat
outBlob2D
=
outBlobs
[
0
].
reshape
(
1
,
outBlobs
[
0
].
size
[
0
]);
declare
.
in
(
inpBlob2D
,
wgtBlob2D
,
WARMUP_RNG
).
out
(
outBlob2D
).
tbb_threads
(
cv
::
getNumThreads
());
TEST_CYCLE_N
(
10
)
{
layer
->
forward
(
inpBlobs
,
outBlobs
,
internalBlobs
);
/// warmup
PERF_SAMPLE_BEGIN
()
layer
->
forward
(
inpBlobs
,
outBlobs
,
internalBlobs
);
}
PERF_SAMPLE_END
()
SANITY_CHECK_NOTHING
();
}
}
}
// namespace
modules/dnn/perf/perf_halide_net.cpp
deleted
100644 → 0
View file @
b8af7c5f
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "perf_precomp.hpp"
namespace
cvtest
{
#ifdef HAVE_HALIDE
using
namespace
cv
;
using
namespace
dnn
;
static
void
loadNet
(
std
::
string
weights
,
std
::
string
proto
,
std
::
string
scheduler
,
int
inWidth
,
int
inHeight
,
const
std
::
string
&
outputLayer
,
const
std
::
string
&
framework
,
int
targetId
,
Net
*
net
)
{
Mat
input
(
inHeight
,
inWidth
,
CV_32FC3
);
randu
(
input
,
0.0
f
,
1.0
f
);
weights
=
findDataFile
(
weights
,
false
);
if
(
!
proto
.
empty
())
proto
=
findDataFile
(
proto
,
false
);
if
(
!
scheduler
.
empty
())
scheduler
=
findDataFile
(
scheduler
,
false
);
if
(
framework
==
"caffe"
)
{
*
net
=
cv
::
dnn
::
readNetFromCaffe
(
proto
,
weights
);
}
else
if
(
framework
==
"torch"
)
{
*
net
=
cv
::
dnn
::
readNetFromTorch
(
weights
);
}
else
if
(
framework
==
"tensorflow"
)
{
*
net
=
cv
::
dnn
::
readNetFromTensorflow
(
weights
);
}
else
CV_Error
(
Error
::
StsNotImplemented
,
"Unknown framework "
+
framework
);
net
->
setInput
(
blobFromImage
(
input
,
1.0
,
Size
(),
Scalar
(),
false
));
net
->
setPreferableBackend
(
DNN_BACKEND_HALIDE
);
net
->
setPreferableTarget
(
targetId
);
net
->
setHalideScheduler
(
scheduler
);
net
->
forward
(
outputLayer
);
}
////////////////////////////////////////////////////////////////////////////////
// CPU target
////////////////////////////////////////////////////////////////////////////////
PERF_TEST
(
GoogLeNet
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/bvlc_googlenet.caffemodel"
,
"dnn/bvlc_googlenet.prototxt"
,
""
,
224
,
224
,
"prob"
,
"caffe"
,
DNN_TARGET_CPU
,
&
net
);
TEST_CYCLE
()
net
.
forward
();
SANITY_CHECK_NOTHING
();
}
PERF_TEST
(
AlexNet
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/bvlc_alexnet.caffemodel"
,
"dnn/bvlc_alexnet.prototxt"
,
"dnn/halide_scheduler_alexnet.yml"
,
227
,
227
,
"prob"
,
"caffe"
,
DNN_TARGET_CPU
,
&
net
);
TEST_CYCLE
()
net
.
forward
();
SANITY_CHECK_NOTHING
();
}
PERF_TEST
(
ResNet50
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/ResNet-50-model.caffemodel"
,
"dnn/ResNet-50-deploy.prototxt"
,
"dnn/halide_scheduler_resnet_50.yml"
,
224
,
224
,
"prob"
,
"caffe"
,
DNN_TARGET_CPU
,
&
net
);
TEST_CYCLE
()
net
.
forward
();
SANITY_CHECK_NOTHING
();
}
PERF_TEST
(
SqueezeNet_v1_1
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/squeezenet_v1.1.caffemodel"
,
"dnn/squeezenet_v1.1.prototxt"
,
"dnn/halide_scheduler_squeezenet_v1_1.yml"
,
227
,
227
,
"prob"
,
"caffe"
,
DNN_TARGET_CPU
,
&
net
);
TEST_CYCLE
()
net
.
forward
();
SANITY_CHECK_NOTHING
();
}
PERF_TEST
(
Inception_5h
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/tensorflow_inception_graph.pb"
,
""
,
"dnn/halide_scheduler_inception_5h.yml"
,
224
,
224
,
"softmax2"
,
"tensorflow"
,
DNN_TARGET_CPU
,
&
net
);
TEST_CYCLE
()
net
.
forward
(
"softmax2"
);
SANITY_CHECK_NOTHING
();
}
PERF_TEST
(
ENet
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/Enet-model-best.net"
,
""
,
"dnn/halide_scheduler_enet.yml"
,
512
,
256
,
"l367_Deconvolution"
,
"torch"
,
DNN_TARGET_CPU
,
&
net
);
TEST_CYCLE
()
net
.
forward
();
SANITY_CHECK_NOTHING
();
}
////////////////////////////////////////////////////////////////////////////////
// OpenCL target
////////////////////////////////////////////////////////////////////////////////
PERF_TEST
(
GoogLeNet_opencl
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/bvlc_googlenet.caffemodel"
,
"dnn/bvlc_googlenet.prototxt"
,
""
,
227
,
227
,
"prob"
,
"caffe"
,
DNN_TARGET_OPENCL
,
&
net
);
TEST_CYCLE
()
net
.
forward
();
SANITY_CHECK_NOTHING
();
}
PERF_TEST
(
AlexNet_opencl
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/bvlc_alexnet.caffemodel"
,
"dnn/bvlc_alexnet.prototxt"
,
"dnn/halide_scheduler_opencl_alexnet.yml"
,
227
,
227
,
"prob"
,
"caffe"
,
DNN_TARGET_OPENCL
,
&
net
);
TEST_CYCLE
()
net
.
forward
();
SANITY_CHECK_NOTHING
();
}
PERF_TEST
(
ResNet50_opencl
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/ResNet-50-model.caffemodel"
,
"dnn/ResNet-50-deploy.prototxt"
,
"dnn/halide_scheduler_opencl_resnet_50.yml"
,
224
,
224
,
"prob"
,
"caffe"
,
DNN_TARGET_OPENCL
,
&
net
);
TEST_CYCLE
()
net
.
forward
();
SANITY_CHECK_NOTHING
();
}
PERF_TEST
(
SqueezeNet_v1_1_opencl
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/squeezenet_v1.1.caffemodel"
,
"dnn/squeezenet_v1.1.prototxt"
,
"dnn/halide_scheduler_opencl_squeezenet_v1_1.yml"
,
227
,
227
,
"prob"
,
"caffe"
,
DNN_TARGET_OPENCL
,
&
net
);
TEST_CYCLE
()
net
.
forward
();
SANITY_CHECK_NOTHING
();
}
PERF_TEST
(
Inception_5h_opencl
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/tensorflow_inception_graph.pb"
,
""
,
"dnn/halide_scheduler_opencl_inception_5h.yml"
,
224
,
224
,
"softmax2"
,
"tensorflow"
,
DNN_TARGET_OPENCL
,
&
net
);
TEST_CYCLE
()
net
.
forward
(
"softmax2"
);
SANITY_CHECK_NOTHING
();
}
PERF_TEST
(
ENet_opencl
,
HalidePerfTest
)
{
Net
net
;
loadNet
(
"dnn/Enet-model-best.net"
,
""
,
"dnn/halide_scheduler_opencl_enet.yml"
,
512
,
256
,
"l367_Deconvolution"
,
"torch"
,
DNN_TARGET_OPENCL
,
&
net
);
TEST_CYCLE
()
net
.
forward
();
SANITY_CHECK_NOTHING
();
}
#endif // HAVE_HALIDE
}
// namespace cvtest
modules/dnn/perf/perf_net.cpp
0 → 100644
View file @
78788e1e
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "perf_precomp.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/dnn/shape_utils.hpp"
namespace
{
#ifdef HAVE_HALIDE
#define TEST_DNN_BACKEND DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE
#else
#define TEST_DNN_BACKEND DNN_BACKEND_DEFAULT
#endif
#define TEST_DNN_TARGET DNN_TARGET_CPU, DNN_TARGET_OPENCL
CV_ENUM
(
DNNBackend
,
DNN_BACKEND_DEFAULT
,
DNN_BACKEND_HALIDE
)
CV_ENUM
(
DNNTarget
,
DNN_TARGET_CPU
,
DNN_TARGET_OPENCL
)
class
DNNTestNetwork
:
public
::
perf
::
TestBaseWithParam
<
tuple
<
DNNBackend
,
DNNTarget
>
>
{
public
:
dnn
::
Backend
backend
;
dnn
::
Target
target
;
dnn
::
Net
net
;
void
processNet
(
std
::
string
weights
,
std
::
string
proto
,
std
::
string
halide_scheduler
,
int
inWidth
,
int
inHeight
,
const
std
::
string
&
outputLayer
,
const
std
::
string
&
framework
)
{
backend
=
(
dnn
::
Backend
)(
int
)
get
<
0
>
(
GetParam
());
target
=
(
dnn
::
Target
)(
int
)
get
<
1
>
(
GetParam
());
if
(
backend
==
DNN_BACKEND_DEFAULT
&&
target
==
DNN_TARGET_OPENCL
)
{
#if 0 //defined(HAVE_OPENCL)
if (!cv::ocl::useOpenCL())
#endif
{
throw
::
SkipTestException
(
"OpenCL is not available/disabled in OpenCV"
);
}
}
Mat
input
(
inHeight
,
inWidth
,
CV_32FC3
);
randu
(
input
,
0.0
f
,
1.0
f
);
weights
=
findDataFile
(
weights
,
false
);
if
(
!
proto
.
empty
())
proto
=
findDataFile
(
proto
,
false
);
if
(
!
halide_scheduler
.
empty
()
&&
backend
==
DNN_BACKEND_HALIDE
)
halide_scheduler
=
findDataFile
(
std
::
string
(
"dnn/halide_scheduler_"
)
+
(
target
==
DNN_TARGET_OPENCL
?
"opencl_"
:
""
)
+
halide_scheduler
,
true
);
if
(
framework
==
"caffe"
)
{
net
=
cv
::
dnn
::
readNetFromCaffe
(
proto
,
weights
);
}
else
if
(
framework
==
"torch"
)
{
net
=
cv
::
dnn
::
readNetFromTorch
(
weights
);
}
else
if
(
framework
==
"tensorflow"
)
{
net
=
cv
::
dnn
::
readNetFromTensorflow
(
weights
);
}
else
CV_Error
(
Error
::
StsNotImplemented
,
"Unknown framework "
+
framework
);
net
.
setInput
(
blobFromImage
(
input
,
1.0
,
Size
(),
Scalar
(),
false
));
net
.
setPreferableBackend
(
backend
);
net
.
setPreferableTarget
(
target
);
if
(
backend
==
DNN_BACKEND_HALIDE
)
{
net
.
setHalideScheduler
(
halide_scheduler
);
}
MatShape
netInputShape
=
shape
(
1
,
3
,
inHeight
,
inWidth
);
size_t
weightsMemory
=
0
,
blobsMemory
=
0
;
net
.
getMemoryConsumption
(
netInputShape
,
weightsMemory
,
blobsMemory
);
int64
flops
=
net
.
getFLOPS
(
netInputShape
);
net
.
forward
(
outputLayer
);
// warmup
std
::
cout
<<
"Memory consumption:"
<<
std
::
endl
;
std
::
cout
<<
" Weights(parameters): "
<<
divUp
(
weightsMemory
,
1u
<<
20
)
<<
" Mb"
<<
std
::
endl
;
std
::
cout
<<
" Blobs: "
<<
divUp
(
blobsMemory
,
1u
<<
20
)
<<
" Mb"
<<
std
::
endl
;
std
::
cout
<<
"Calculation complexity: "
<<
flops
*
1e-9
<<
" GFlops"
<<
std
::
endl
;
PERF_SAMPLE_BEGIN
()
net
.
forward
();
PERF_SAMPLE_END
()
SANITY_CHECK_NOTHING
();
}
};
PERF_TEST_P_
(
DNNTestNetwork
,
AlexNet
)
{
processNet
(
"dnn/bvlc_alexnet.caffemodel"
,
"dnn/bvlc_alexnet.prototxt"
,
"alexnet.yml"
,
227
,
227
,
"prob"
,
"caffe"
);
}
PERF_TEST_P_
(
DNNTestNetwork
,
GoogLeNet
)
{
processNet
(
"dnn/bvlc_googlenet.caffemodel"
,
"dnn/bvlc_googlenet.prototxt"
,
""
,
224
,
224
,
"prob"
,
"caffe"
);
}
PERF_TEST_P_
(
DNNTestNetwork
,
ResNet50
)
{
processNet
(
"dnn/ResNet-50-model.caffemodel"
,
"dnn/ResNet-50-deploy.prototxt"
,
"resnet_50.yml"
,
224
,
224
,
"prob"
,
"caffe"
);
}
PERF_TEST_P_
(
DNNTestNetwork
,
SqueezeNet_v1_1
)
{
processNet
(
"dnn/squeezenet_v1.1.caffemodel"
,
"dnn/squeezenet_v1.1.prototxt"
,
"squeezenet_v1_1.yml"
,
227
,
227
,
"prob"
,
"caffe"
);
}
PERF_TEST_P_
(
DNNTestNetwork
,
Inception_5h
)
{
processNet
(
"dnn/tensorflow_inception_graph.pb"
,
""
,
"inception_5h.yml"
,
224
,
224
,
"softmax2"
,
"tensorflow"
);
}
PERF_TEST_P_
(
DNNTestNetwork
,
ENet
)
{
processNet
(
"dnn/Enet-model-best.net"
,
""
,
"enet.yml"
,
512
,
256
,
"l367_Deconvolution"
,
"torch"
);
}
INSTANTIATE_TEST_CASE_P
(
/*nothing*/
,
DNNTestNetwork
,
testing
::
Combine
(
::
testing
::
Values
(
TEST_DNN_BACKEND
),
DNNTarget
::
all
()
)
);
}
// namespace
modules/dnn/perf/perf_precomp.hpp
View file @
78788e1e
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
...
...
@@ -14,4 +6,9 @@
#include <opencv2/highgui.hpp>
#include <opencv2/dnn.hpp>
using
namespace
cvtest
;
using
namespace
perf
;
using
namespace
cv
;
using
namespace
dnn
;
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment