Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
7839dbd2
Commit
7839dbd2
authored
Aug 27, 2013
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
used new device layer for cv::gpu::integral
parent
224f18b0
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
167 additions
and
614 deletions
+167
-614
perf_arithm.cpp
modules/cudaarithm/perf/perf_arithm.cpp
+0
-57
perf_reductions.cpp
modules/cudaarithm/perf/perf_reductions.cpp
+57
-0
integral.cu
modules/cudaarithm/src/cuda/integral.cu
+36
-408
reductions.cpp
modules/cudaarithm/src/reductions.cpp
+0
-112
test_arithm.cpp
modules/cudaarithm/test/test_arithm.cpp
+0
-37
test_reductions.cpp
modules/cudaarithm/test/test_reductions.cpp
+74
-0
No files found.
modules/cudaarithm/perf/perf_arithm.cpp
View file @
7839dbd2
...
...
@@ -248,60 +248,3 @@ PERF_TEST_P(Sz_KernelSz_Ccorr, Convolve,
CPU_SANITY_CHECK
(
dst
);
}
}
//////////////////////////////////////////////////////////////////////
// Integral
PERF_TEST_P
(
Sz
,
Integral
,
CUDA_TYPICAL_MAT_SIZES
)
{
const
cv
::
Size
size
=
GetParam
();
cv
::
Mat
src
(
size
,
CV_8UC1
);
declare
.
in
(
src
,
WARMUP_RNG
);
if
(
PERF_RUN_CUDA
())
{
const
cv
::
cuda
::
GpuMat
d_src
(
src
);
cv
::
cuda
::
GpuMat
dst
;
cv
::
cuda
::
GpuMat
d_buf
;
TEST_CYCLE
()
cv
::
cuda
::
integral
(
d_src
,
dst
,
d_buf
);
CUDA_SANITY_CHECK
(
dst
);
}
else
{
cv
::
Mat
dst
;
TEST_CYCLE
()
cv
::
integral
(
src
,
dst
);
CPU_SANITY_CHECK
(
dst
);
}
}
//////////////////////////////////////////////////////////////////////
// IntegralSqr
PERF_TEST_P
(
Sz
,
IntegralSqr
,
CUDA_TYPICAL_MAT_SIZES
)
{
const
cv
::
Size
size
=
GetParam
();
cv
::
Mat
src
(
size
,
CV_8UC1
);
declare
.
in
(
src
,
WARMUP_RNG
);
if
(
PERF_RUN_CUDA
())
{
const
cv
::
cuda
::
GpuMat
d_src
(
src
);
cv
::
cuda
::
GpuMat
dst
,
buf
;
TEST_CYCLE
()
cv
::
cuda
::
sqrIntegral
(
d_src
,
dst
,
buf
);
CUDA_SANITY_CHECK
(
dst
);
}
else
{
FAIL_NO_CPU
();
}
}
modules/cudaarithm/perf/perf_reductions.cpp
View file @
7839dbd2
...
...
@@ -465,3 +465,60 @@ PERF_TEST_P(Sz, MeanStdDev,
SANITY_CHECK
(
cpu_stddev
);
}
}
//////////////////////////////////////////////////////////////////////
// Integral
PERF_TEST_P
(
Sz
,
Integral
,
CUDA_TYPICAL_MAT_SIZES
)
{
const
cv
::
Size
size
=
GetParam
();
cv
::
Mat
src
(
size
,
CV_8UC1
);
declare
.
in
(
src
,
WARMUP_RNG
);
if
(
PERF_RUN_CUDA
())
{
const
cv
::
cuda
::
GpuMat
d_src
(
src
);
cv
::
cuda
::
GpuMat
dst
;
cv
::
cuda
::
GpuMat
d_buf
;
TEST_CYCLE
()
cv
::
cuda
::
integral
(
d_src
,
dst
,
d_buf
);
CUDA_SANITY_CHECK
(
dst
);
}
else
{
cv
::
Mat
dst
;
TEST_CYCLE
()
cv
::
integral
(
src
,
dst
);
CPU_SANITY_CHECK
(
dst
);
}
}
//////////////////////////////////////////////////////////////////////
// IntegralSqr
PERF_TEST_P
(
Sz
,
IntegralSqr
,
CUDA_TYPICAL_MAT_SIZES
)
{
const
cv
::
Size
size
=
GetParam
();
cv
::
Mat
src
(
size
,
CV_8UC1
);
declare
.
in
(
src
,
WARMUP_RNG
);
if
(
PERF_RUN_CUDA
())
{
const
cv
::
cuda
::
GpuMat
d_src
(
src
);
cv
::
cuda
::
GpuMat
dst
,
buf
;
TEST_CYCLE
()
cv
::
cuda
::
sqrIntegral
(
d_src
,
dst
,
buf
);
CUDA_SANITY_CHECK
(
dst
);
}
else
{
FAIL_NO_CPU
();
}
}
modules/cudaarithm/src/cuda/integral.cu
View file @
7839dbd2
...
...
@@ -40,433 +40,61 @@
//
//M*/
#i
f !defined CUDA_DISABLER
#i
nclude "opencv2/opencv_modules.hpp"
#i
nclude "opencv2/core/cuda/common.hpp"
#i
fndef HAVE_OPENCV_CUDEV
namespace cv { namespace cuda { namespace device
{
namespace imgproc
{
// Utility function to extract unsigned chars from an unsigned integer
__device__ uchar4 int_to_uchar4(unsigned int in)
{
uchar4 bytes;
bytes.x = (in & 0x000000ff) >> 0;
bytes.y = (in & 0x0000ff00) >> 8;
bytes.z = (in & 0x00ff0000) >> 16;
bytes.w = (in & 0xff000000) >> 24;
return bytes;
}
__global__ void shfl_integral_horizontal(const PtrStep<uint4> img, PtrStep<uint4> integral)
{
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
__shared__ int sums[128];
const int id = threadIdx.x;
const int lane_id = id % warpSize;
const int warp_id = id / warpSize;
const uint4 data = img(blockIdx.x, id);
const uchar4 a = int_to_uchar4(data.x);
const uchar4 b = int_to_uchar4(data.y);
const uchar4 c = int_to_uchar4(data.z);
const uchar4 d = int_to_uchar4(data.w);
int result[16];
result[0] = a.x;
result[1] = result[0] + a.y;
result[2] = result[1] + a.z;
result[3] = result[2] + a.w;
result[4] = result[3] + b.x;
result[5] = result[4] + b.y;
result[6] = result[5] + b.z;
result[7] = result[6] + b.w;
result[8] = result[7] + c.x;
result[9] = result[8] + c.y;
result[10] = result[9] + c.z;
result[11] = result[10] + c.w;
result[12] = result[11] + d.x;
result[13] = result[12] + d.y;
result[14] = result[13] + d.z;
result[15] = result[14] + d.w;
int sum = result[15];
// the prefix sum for each thread's 16 value is computed,
// now the final sums (result[15]) need to be shared
// with the other threads and add. To do this,
// the __shfl_up() instruction is used and a shuffle scan
// operation is performed to distribute the sums to the correct
// threads
#pragma unroll
for (int i = 1; i < 32; i *= 2)
{
const int n = __shfl_up(sum, i, 32);
if (lane_id >= i)
{
#pragma unroll
for (int i = 0; i < 16; ++i)
result[i] += n;
sum += n;
}
}
// Now the final sum for the warp must be shared
// between warps. This is done by each warp
// having a thread store to shared memory, then
// having some other warp load the values and
// compute a prefix sum, again by using __shfl_up.
// The results are uniformly added back to the warps.
// last thread in the warp holding sum of the warp
// places that in shared
if (threadIdx.x % warpSize == warpSize - 1)
sums[warp_id] = result[15];
__syncthreads();
if (warp_id == 0)
{
int warp_sum = sums[lane_id];
#pragma unroll
for (int i = 1; i <= 32; i *= 2)
{
const int n = __shfl_up(warp_sum, i, 32);
if (lane_id >= i)
warp_sum += n;
}
sums[lane_id] = warp_sum;
}
__syncthreads();
int blockSum = 0;
// fold in unused warp
if (warp_id > 0)
{
blockSum = sums[warp_id - 1];
#pragma unroll
for (int i = 0; i < 16; ++i)
result[i] += blockSum;
}
// assemble result
// Each thread has 16 values to write, which are
// now integer data (to avoid overflow). Instead of
// each thread writing consecutive uint4s, the
// approach shown here experiments using
// the shuffle command to reformat the data
// inside the registers so that each thread holds
// consecutive data to be written so larger contiguous
// segments can be assembled for writing.
/*
For example data that needs to be written as
GMEM[16] <- x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 w0 w1 w2 w3
but is stored in registers (r0..r3), in four threads (0..3) as:
threadId 0 1 2 3
r0 x0 y0 z0 w0
r1 x1 y1 z1 w1
r2 x2 y2 z2 w2
r3 x3 y3 z3 w3
after apply __shfl_xor operations to move data between registers r1..r3:
threadId 00 01 10 11
x0 y0 z0 w0
xor(01)->y1 x1 w1 z1
xor(10)->z2 w2 x2 y2
xor(11)->w3 z3 y3 x3
and now x0..x3, and z0..z3 can be written out in order by all threads.
In the current code, each register above is actually representing
four integers to be written as uint4's to GMEM.
*/
result[4] = __shfl_xor(result[4] , 1, 32);
result[5] = __shfl_xor(result[5] , 1, 32);
result[6] = __shfl_xor(result[6] , 1, 32);
result[7] = __shfl_xor(result[7] , 1, 32);
result[8] = __shfl_xor(result[8] , 2, 32);
result[9] = __shfl_xor(result[9] , 2, 32);
result[10] = __shfl_xor(result[10], 2, 32);
result[11] = __shfl_xor(result[11], 2, 32);
result[12] = __shfl_xor(result[12], 3, 32);
result[13] = __shfl_xor(result[13], 3, 32);
result[14] = __shfl_xor(result[14], 3, 32);
result[15] = __shfl_xor(result[15], 3, 32);
uint4* integral_row = integral.ptr(blockIdx.x);
uint4 output;
///////
if (threadIdx.x % 4 == 0)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 2)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16] = output;
///////
if (threadIdx.x % 4 == 2)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[4], result[5], result[6], result[7]);
#error "opencv_cudev is required"
if (threadIdx.x % 4 == 0)
output = make_uint4(result[8], result[9], result[10], result[11]);
#else
if (threadIdx.x % 4 == 1)
output = make_uint4(result[12], result[13], result[14], result[15]);
#include "opencv2/cudaarithm.hpp"
#include "opencv2/cudev.hpp"
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 8] = output
;
using namespace cv::cudev
;
// continuning from the above example,
// this use of __shfl_xor() places the y0..y3 and w0..w3 data
// in order.
////////////////////////////////////////////////////////////////////////
// integral
#pragma unroll
for (int i = 0; i < 16; ++i)
result[i] = __shfl_xor(result[i], 1, 32);
if (threadIdx.x % 4 == 0)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 2)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16 + 4] = output;
///////
if (threadIdx.x % 4 == 2)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 0)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 12] = output;
#endif
}
// This kernel computes columnwise prefix sums. When the data input is
// the row sums from above, this completes the integral image.
// The approach here is to have each block compute a local set of sums.
// First , the data covered by the block is loaded into shared memory,
// then instead of performing a sum in shared memory using __syncthreads
// between stages, the data is reformatted so that the necessary sums
// occur inside warps and the shuffle scan operation is used.
// The final set of sums from the block is then propgated, with the block
// computing "down" the image and adding the running sum to the local
// block sums.
__global__ void shfl_integral_vertical(PtrStepSz<unsigned int> integral)
{
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
__shared__ unsigned int sums[32][9];
const int tidx = blockIdx.x * blockDim.x + threadIdx.x;
const int lane_id = tidx % 8;
if (tidx >= integral.cols)
return;
sums[threadIdx.x][threadIdx.y] = 0;
__syncthreads();
unsigned int stepSum = 0;
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y)
{
unsigned int* p = integral.ptr(y) + tidx;
unsigned int sum = *p;
sums[threadIdx.x][threadIdx.y] = sum;
__syncthreads();
// place into SMEM
// shfl scan reduce the SMEM, reformating so the column
// sums are computed in a warp
// then read out properly
const int j = threadIdx.x % 8;
const int k = threadIdx.x / 8 + threadIdx.y * 4;
int partial_sum = sums[k][j];
for (int i = 1; i <= 8; i *= 2)
{
int n = __shfl_up(partial_sum, i, 32);
if (lane_id >= i)
partial_sum += n;
}
sums[k][j] = partial_sum;
__syncthreads();
if (threadIdx.y > 0)
sum += sums[threadIdx.x][threadIdx.y - 1];
sum += stepSum;
stepSum += sums[threadIdx.x][blockDim.y - 1];
__syncthreads();
*p = sum;
}
#endif
}
void shfl_integral_gpu(const PtrStepSzb& img, PtrStepSz<unsigned int> integral, cudaStream_t stream)
{
{
// each thread handles 16 values, use 1 block/row
// save, becouse step is actually can't be less 512 bytes
int block = integral.cols / 16;
// launch 1 block / row
const int grid = img.rows;
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) );
shfl_integral_horizontal<<<grid, block, 0, stream>>>((const PtrStepSz<uint4>) img, (PtrStepSz<uint4>) integral);
cudaSafeCall( cudaGetLastError() );
}
{
const dim3 block(32, 8);
const dim3 grid(divUp(integral.cols, block.x), 1);
shfl_integral_vertical<<<grid, block, 0, stream>>>(integral);
cudaSafeCall( cudaGetLastError() );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void shfl_integral_vertical(PtrStepSz<unsigned int> buffer, PtrStepSz<unsigned int> integral)
{
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
__shared__ unsigned int sums[32][9];
const int tidx = blockIdx.x * blockDim.x + threadIdx.x;
const int lane_id = tidx % 8;
if (tidx >= integral.cols)
return;
sums[threadIdx.x][threadIdx.y] = 0;
__syncthreads();
unsigned int stepSum = 0;
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y)
{
unsigned int* p = buffer.ptr(y) + tidx;
unsigned int* dst = integral.ptr(y + 1) + tidx + 1;
unsigned int sum = *p;
sums[threadIdx.x][threadIdx.y] = sum;
__syncthreads();
void cv::cuda::integral(InputArray _src, OutputArray _dst, GpuMat& buffer, Stream& stream)
{
GpuMat src = _src.getGpuMat();
// place into SMEM
// shfl scan reduce the SMEM, reformating so the column
// sums are computed in a warp
// then read out properly
const int j = threadIdx.x % 8;
const int k = threadIdx.x / 8 + threadIdx.y * 4;
CV_Assert( src.type() == CV_8UC1 );
int partial_sum = sums[k][j]
;
GpuMat_<int>& res = (GpuMat_<int>&) buffer
;
for (int i = 1; i <= 8; i *= 2)
{
int n = __shfl_up(partial_sum, i, 32);
gridIntegral(globPtr<uchar>(src), res, stream);
if (lane_id >= i)
partial_sum += n;
}
_dst.create(src.rows + 1, src.cols + 1, CV_32SC1);
GpuMat dst = _dst.getGpuMat();
sums[k][j] = partial_sum;
__syncthreads();
dst.setTo(Scalar::all(0), stream);
if (threadIdx.y > 0)
sum += sums[threadIdx.x][threadIdx.y - 1];
GpuMat inner = dst(Rect(1, 1, src.cols, src.rows));
res.copyTo(inner, stream);
}
sum += stepSum;
stepSum += sums[threadIdx.x][blockDim.y - 1];
//////////////////////////////////////////////////////////////////////////////
// sqrIntegral
__syncthreads();
void cv::cuda::sqrIntegral(InputArray _src, OutputArray _dst, GpuMat& buf, Stream& stream)
{
GpuMat src = _src.getGpuMat();
*dst = sum;
}
#endif
}
CV_Assert( src.type() == CV_8UC1 );
// used for frame preprocessing before Soft Cascade evaluation: no synchronization needed
void shfl_integral_gpu_buffered(PtrStepSzb img, PtrStepSz<uint4> buffer, PtrStepSz<unsigned int> integral,
int blockStep, cudaStream_t stream)
{
{
const int block = blockStep;
const int grid = img.rows;
GpuMat_<double>& res = (GpuMat_<double>&) buf;
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1)
);
gridIntegral(sqr_(cvt_<int>(globPtr<uchar>(src))), res, stream
);
shfl_integral_horizontal<<<grid, block, 0, stream>>>((PtrStepSz<uint4>) img, buffer);
cudaSafeCall( cudaGetLastError() );
}
_dst.create(src.rows + 1, src.cols + 1, CV_64FC1);
GpuMat dst = _dst.getGpuMat();
{
const dim3 block(32, 8);
const dim3 grid(divUp(integral.cols, block.x), 1);
dst.setTo(Scalar::all(0), stream);
shfl_integral_vertical<<<grid, block, 0, stream>>>((PtrStepSz<uint>)buffer, integral);
cudaSafeCall( cudaGetLastError() );
}
}
}
}}}
GpuMat inner = dst(Rect(1, 1, src.cols, src.rows));
res.copyTo(inner, stream);
}
#endif
/* CUDA_DISABLER */
#endif
modules/cudaarithm/src/reductions.cpp
View file @
7839dbd2
...
...
@@ -294,116 +294,4 @@ void cv::cuda::normalize(InputArray _src, OutputArray dst, double a, double b, i
}
}
////////////////////////////////////////////////////////////////////////
// integral
namespace
cv
{
namespace
cuda
{
namespace
device
{
namespace
imgproc
{
void
shfl_integral_gpu
(
const
PtrStepSzb
&
img
,
PtrStepSz
<
unsigned
int
>
integral
,
cudaStream_t
stream
);
}
}}}
void
cv
::
cuda
::
integral
(
InputArray
_src
,
OutputArray
_dst
,
GpuMat
&
buffer
,
Stream
&
_stream
)
{
GpuMat
src
=
_src
.
getGpuMat
();
CV_Assert
(
src
.
type
()
==
CV_8UC1
);
cudaStream_t
stream
=
StreamAccessor
::
getStream
(
_stream
);
cv
::
Size
whole
;
cv
::
Point
offset
;
src
.
locateROI
(
whole
,
offset
);
if
(
deviceSupports
(
WARP_SHUFFLE_FUNCTIONS
)
&&
src
.
cols
<=
2048
&&
offset
.
x
%
16
==
0
&&
((
src
.
cols
+
63
)
/
64
)
*
64
<=
(
static_cast
<
int
>
(
src
.
step
)
-
offset
.
x
))
{
ensureSizeIsEnough
(((
src
.
rows
+
7
)
/
8
)
*
8
,
((
src
.
cols
+
63
)
/
64
)
*
64
,
CV_32SC1
,
buffer
);
cv
::
cuda
::
device
::
imgproc
::
shfl_integral_gpu
(
src
,
buffer
,
stream
);
_dst
.
create
(
src
.
rows
+
1
,
src
.
cols
+
1
,
CV_32SC1
);
GpuMat
dst
=
_dst
.
getGpuMat
();
dst
.
setTo
(
Scalar
::
all
(
0
),
_stream
);
GpuMat
inner
=
dst
(
Rect
(
1
,
1
,
src
.
cols
,
src
.
rows
));
GpuMat
res
=
buffer
(
Rect
(
0
,
0
,
src
.
cols
,
src
.
rows
));
res
.
copyTo
(
inner
,
_stream
);
}
else
{
#ifndef HAVE_OPENCV_CUDALEGACY
throw_no_cuda
();
#else
_dst
.
create
(
src
.
rows
+
1
,
src
.
cols
+
1
,
CV_32SC1
);
GpuMat
dst
=
_dst
.
getGpuMat
();
NcvSize32u
roiSize
;
roiSize
.
width
=
src
.
cols
;
roiSize
.
height
=
src
.
rows
;
cudaDeviceProp
prop
;
cudaSafeCall
(
cudaGetDeviceProperties
(
&
prop
,
cv
::
cuda
::
getDevice
())
);
Ncv32u
bufSize
;
ncvSafeCall
(
nppiStIntegralGetSize_8u32u
(
roiSize
,
&
bufSize
,
prop
)
);
ensureSizeIsEnough
(
1
,
bufSize
,
CV_8UC1
,
buffer
);
NppStStreamHandler
h
(
stream
);
ncvSafeCall
(
nppiStIntegral_8u32u_C1R
(
const_cast
<
Ncv8u
*>
(
src
.
ptr
<
Ncv8u
>
()),
static_cast
<
int
>
(
src
.
step
),
dst
.
ptr
<
Ncv32u
>
(),
static_cast
<
int
>
(
dst
.
step
),
roiSize
,
buffer
.
ptr
<
Ncv8u
>
(),
bufSize
,
prop
)
);
if
(
stream
==
0
)
cudaSafeCall
(
cudaDeviceSynchronize
()
);
#endif
}
}
//////////////////////////////////////////////////////////////////////////////
// sqrIntegral
void
cv
::
cuda
::
sqrIntegral
(
InputArray
_src
,
OutputArray
_dst
,
GpuMat
&
buf
,
Stream
&
_stream
)
{
#ifndef HAVE_OPENCV_CUDALEGACY
(
void
)
_src
;
(
void
)
_dst
;
(
void
)
_stream
;
throw_no_cuda
();
#else
GpuMat
src
=
_src
.
getGpuMat
();
CV_Assert
(
src
.
type
()
==
CV_8U
);
NcvSize32u
roiSize
;
roiSize
.
width
=
src
.
cols
;
roiSize
.
height
=
src
.
rows
;
cudaDeviceProp
prop
;
cudaSafeCall
(
cudaGetDeviceProperties
(
&
prop
,
cv
::
cuda
::
getDevice
())
);
Ncv32u
bufSize
;
ncvSafeCall
(
nppiStSqrIntegralGetSize_8u64u
(
roiSize
,
&
bufSize
,
prop
));
ensureSizeIsEnough
(
1
,
bufSize
,
CV_8U
,
buf
);
cudaStream_t
stream
=
StreamAccessor
::
getStream
(
_stream
);
NppStStreamHandler
h
(
stream
);
_dst
.
create
(
src
.
rows
+
1
,
src
.
cols
+
1
,
CV_64F
);
GpuMat
dst
=
_dst
.
getGpuMat
();
ncvSafeCall
(
nppiStSqrIntegral_8u64u_C1R
(
const_cast
<
Ncv8u
*>
(
src
.
ptr
<
Ncv8u
>
(
0
)),
static_cast
<
int
>
(
src
.
step
),
dst
.
ptr
<
Ncv64u
>
(
0
),
static_cast
<
int
>
(
dst
.
step
),
roiSize
,
buf
.
ptr
<
Ncv8u
>
(
0
),
bufSize
,
prop
));
if
(
stream
==
0
)
cudaSafeCall
(
cudaDeviceSynchronize
()
);
#endif
}
#endif
modules/cudaarithm/test/test_arithm.cpp
View file @
7839dbd2
...
...
@@ -125,43 +125,6 @@ INSTANTIATE_TEST_CASE_P(CUDA_Arithm, GEMM, testing::Combine(
ALL_GEMM_FLAGS
,
WHOLE_SUBMAT
));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Integral
PARAM_TEST_CASE
(
Integral
,
cv
::
cuda
::
DeviceInfo
,
cv
::
Size
,
UseRoi
)
{
cv
::
cuda
::
DeviceInfo
devInfo
;
cv
::
Size
size
;
bool
useRoi
;
virtual
void
SetUp
()
{
devInfo
=
GET_PARAM
(
0
);
size
=
GET_PARAM
(
1
);
useRoi
=
GET_PARAM
(
2
);
cv
::
cuda
::
setDevice
(
devInfo
.
deviceID
());
}
};
CUDA_TEST_P
(
Integral
,
Accuracy
)
{
cv
::
Mat
src
=
randomMat
(
size
,
CV_8UC1
);
cv
::
cuda
::
GpuMat
dst
=
createMat
(
cv
::
Size
(
src
.
cols
+
1
,
src
.
rows
+
1
),
CV_32SC1
,
useRoi
);
cv
::
cuda
::
integral
(
loadMat
(
src
,
useRoi
),
dst
);
cv
::
Mat
dst_gold
;
cv
::
integral
(
src
,
dst_gold
,
CV_32S
);
EXPECT_MAT_NEAR
(
dst_gold
,
dst
,
0.0
);
}
INSTANTIATE_TEST_CASE_P
(
CUDA_Arithm
,
Integral
,
testing
::
Combine
(
ALL_DEVICES
,
DIFFERENT_SIZES
,
WHOLE_SUBMAT
));
////////////////////////////////////////////////////////////////////////////
// MulSpectrums
...
...
modules/cudaarithm/test/test_reductions.cpp
View file @
7839dbd2
...
...
@@ -816,4 +816,78 @@ INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MeanStdDev, testing::Combine(
DIFFERENT_SIZES
,
WHOLE_SUBMAT
));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Integral
PARAM_TEST_CASE
(
Integral
,
cv
::
cuda
::
DeviceInfo
,
cv
::
Size
,
UseRoi
)
{
cv
::
cuda
::
DeviceInfo
devInfo
;
cv
::
Size
size
;
bool
useRoi
;
virtual
void
SetUp
()
{
devInfo
=
GET_PARAM
(
0
);
size
=
GET_PARAM
(
1
);
useRoi
=
GET_PARAM
(
2
);
cv
::
cuda
::
setDevice
(
devInfo
.
deviceID
());
}
};
CUDA_TEST_P
(
Integral
,
Accuracy
)
{
cv
::
Mat
src
=
randomMat
(
size
,
CV_8UC1
);
cv
::
cuda
::
GpuMat
dst
=
createMat
(
cv
::
Size
(
src
.
cols
+
1
,
src
.
rows
+
1
),
CV_32SC1
,
useRoi
);
cv
::
cuda
::
integral
(
loadMat
(
src
,
useRoi
),
dst
);
cv
::
Mat
dst_gold
;
cv
::
integral
(
src
,
dst_gold
,
CV_32S
);
EXPECT_MAT_NEAR
(
dst_gold
,
dst
,
0.0
);
}
INSTANTIATE_TEST_CASE_P
(
CUDA_Arithm
,
Integral
,
testing
::
Combine
(
ALL_DEVICES
,
DIFFERENT_SIZES
,
WHOLE_SUBMAT
));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// IntegralSqr
PARAM_TEST_CASE
(
IntegralSqr
,
cv
::
cuda
::
DeviceInfo
,
cv
::
Size
,
UseRoi
)
{
cv
::
cuda
::
DeviceInfo
devInfo
;
cv
::
Size
size
;
bool
useRoi
;
virtual
void
SetUp
()
{
devInfo
=
GET_PARAM
(
0
);
size
=
GET_PARAM
(
1
);
useRoi
=
GET_PARAM
(
2
);
cv
::
cuda
::
setDevice
(
devInfo
.
deviceID
());
}
};
CUDA_TEST_P
(
IntegralSqr
,
Accuracy
)
{
cv
::
Mat
src
=
randomMat
(
size
,
CV_8UC1
);
cv
::
cuda
::
GpuMat
dst
=
createMat
(
cv
::
Size
(
src
.
cols
+
1
,
src
.
rows
+
1
),
CV_64FC1
,
useRoi
);
cv
::
cuda
::
sqrIntegral
(
loadMat
(
src
,
useRoi
),
dst
);
cv
::
Mat
dst_gold
,
temp
;
cv
::
integral
(
src
,
temp
,
dst_gold
);
EXPECT_MAT_NEAR
(
dst_gold
,
dst
,
0.0
);
}
INSTANTIATE_TEST_CASE_P
(
CUDA_Arithm
,
IntegralSqr
,
testing
::
Combine
(
ALL_DEVICES
,
DIFFERENT_SIZES
,
WHOLE_SUBMAT
));
#endif // HAVE_CUDA
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment