Commit 778f42ad authored by Lubov Batanina's avatar Lubov Batanina Committed by Maksim Shabunin

Add high level API (Merge pull request #14780)

* Add high level API

* Fix Model

* Add DetectionModel

* Add ClassificationModel

* Fix classify

* Add python test

* Fix pytest

* Fix comments to review

* Fix detect

* Fix docs

* Modify DetectionOutput postprocessing

* Fix test

* Extract ref boxes

* Fix draw rect

* fix test

* Add rect wrap

* Fix wrap

* Fix detect

* Fix Rect wrap

* Fix OCL_FP16

* Fix MyriadX

* Fix nms

* Fix NMS

* Fix coords
parent f482050f
......@@ -992,6 +992,155 @@ CV__DNN_INLINE_NS_BEGIN
CV_OUT std::vector<int>& indices,
const float eta = 1.f, const int top_k = 0);
/** @brief This class is presented high-level API for neural networks.
*
* Model allows to set params for preprocessing input image.
* Model creates net from file with trained weights and config,
* sets preprocessing input and runs forward pass.
*/
class CV_EXPORTS_W Model : public Net
{
public:
/**
* @brief Create model from deep learning network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param[in] model Binary file contains trained weights.
* @param[in] config Text file contains network configuration.
*/
CV_WRAP Model(const String& model, const String& config = "");
/**
* @brief Create model from deep learning network.
* @param[in] network Net object.
*/
CV_WRAP Model(const Net& network);
/** @brief Set input size for frame.
* @param[in] size New input size.
* @note If shape of the new blob less than 0, then frame size not change.
*/
Model& setInputSize(const Size& size);
/** @brief Set input size for frame.
* @param[in] width New input width.
* @param[in] height New input height.
* @note If shape of the new blob less than 0,
* then frame size not change.
*/
Model& setInputSize(int width, int height);
/** @brief Set mean value for frame.
* @param[in] mean Scalar with mean values which are subtracted from channels.
*/
Model& setInputMean(const Scalar& mean);
/** @brief Set scalefactor value for frame.
* @param[in] scale Multiplier for frame values.
*/
Model& setInputScale(double scale);
/** @brief Set flag crop for frame.
* @param[in] crop Flag which indicates whether image will be cropped after resize or not.
*/
Model& setInputCrop(bool crop);
/** @brief Set flag swapRB for frame.
* @param[in] swapRB Flag which indicates that swap first and last channels.
*/
Model& setInputSwapRB(bool swapRB);
/** @brief Set preprocessing parameters for frame.
* @param[in] size New input size.
* @param[in] mean Scalar with mean values which are subtracted from channels.
* @param[in] scale Multiplier for frame values.
* @param[in] swapRB Flag which indicates that swap first and last channels.
* @param[in] crop Flag which indicates whether image will be cropped after resize or not.
* blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
*/
CV_WRAP void setInputParams(double scale = 1.0, const Size& size = Size(),
const Scalar& mean = Scalar(), bool swapRB = false, bool crop = false);
/** @brief Given the @p input frame, create input blob, run net and return the output @p blobs.
* @param[in] frame The input image.
* @param[out] outs Allocated output blobs, which will store results of the computation.
*/
CV_WRAP void predict(InputArray frame, OutputArrayOfArrays outs);
protected:
struct Impl;
Ptr<Impl> impl;
};
/** @brief This class represents high-level API for classification models.
*
* ClassificationModel allows to set params for preprocessing input image.
* ClassificationModel creates net from file with trained weights and config,
* sets preprocessing input, runs forward pass and return top-1 prediction.
*/
class CV_EXPORTS_W ClassificationModel : public Model
{
public:
/**
* @brief Create classification model from network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param[in] model Binary file contains trained weights.
* @param[in] config Text file contains network configuration.
*/
CV_WRAP ClassificationModel(const String& model, const String& config = "");
/**
* @brief Create model from deep learning network.
* @param[in] network Net object.
*/
CV_WRAP ClassificationModel(const Net& network);
/** @brief Given the @p input frame, create input blob, run net and return top-1 prediction.
* @param[in] frame The input image.
*/
std::pair<int, float> classify(InputArray frame);
/** @overload */
CV_WRAP void classify(InputArray frame, CV_OUT int& classId, CV_OUT float& conf);
};
/** @brief This class represents high-level API for object detection networks.
*
* DetectionModel allows to set params for preprocessing input image.
* DetectionModel creates net from file with trained weights and config,
* sets preprocessing input, runs forward pass and return result detections.
* For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.
*/
class CV_EXPORTS_W DetectionModel : public Model
{
public:
/**
* @brief Create detection model from network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param[in] model Binary file contains trained weights.
* @param[in] config Text file contains network configuration.
*/
CV_WRAP DetectionModel(const String& model, const String& config = "");
/**
* @brief Create model from deep learning network.
* @param[in] network Net object.
*/
CV_WRAP DetectionModel(const Net& network);
/** @brief Given the @p input frame, create input blob, run net and return result detections.
* @param[in] frame The input image.
* @param[out] classIds Class indexes in result detection.
* @param[out] confidences A set of corresponding confidences.
* @param[out] boxes A set of bounding boxes.
* @param[in] confThreshold A threshold used to filter boxes by confidences.
* @param[in] nmsThreshold A threshold used in non maximum suppression.
*/
CV_WRAP void detect(InputArray frame, CV_OUT std::vector<int>& classIds,
CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes,
float confThreshold = 0.5f, float nmsThreshold = 0.0f);
};
//! @}
CV__DNN_INLINE_NS_END
}
......
......@@ -21,15 +21,11 @@ def box2str(box):
width, height = box[2] - left, box[3] - top
return '[%f x %f from (%f, %f)]' % (width, height, left, top)
def normAssertDetections(test, ref, out, confThreshold=0.0, scores_diff=1e-5, boxes_iou_diff=1e-4):
ref = np.array(ref, np.float32)
refClassIds, testClassIds = ref[:, 1], out[:, 1]
refScores, testScores = ref[:, 2], out[:, 2]
refBoxes, testBoxes = ref[:, 3:], out[:, 3:]
def normAssertDetections(test, refClassIds, refScores, refBoxes, testClassIds, testScores, testBoxes,
confThreshold=0.0, scores_diff=1e-5, boxes_iou_diff=1e-4):
matchedRefBoxes = [False] * len(refBoxes)
errMsg = ''
for i in range(len(refBoxes)):
for i in range(len(testBoxes)):
testScore = testScores[i]
if testScore < confThreshold:
continue
......@@ -136,6 +132,38 @@ class dnn_test(NewOpenCVTests):
normAssert(self, blob, target)
def test_model(self):
img_path = self.find_dnn_file("dnn/street.png")
weights = self.find_dnn_file("dnn/MobileNetSSD_deploy.caffemodel")
config = self.find_dnn_file("dnn/MobileNetSSD_deploy.prototxt")
frame = cv.imread(img_path)
model = cv.dnn_DetectionModel(weights, config)
size = (300, 300)
mean = (127.5, 127.5, 127.5)
scale = 1.0 / 127.5
model.setInputParams(size=size, mean=mean, scale=scale)
iouDiff = 0.05
confThreshold = 0.0001
nmsThreshold = 0
scoreDiff = 1e-3
classIds, confidences, boxes = model.detect(frame, confThreshold, nmsThreshold)
refClassIds = (7, 15)
refConfidences = (0.9998, 0.8793)
refBoxes = ((328, 238, 85, 102), (101, 188, 34, 138))
normAssertDetections(self, refClassIds, refConfidences, refBoxes,
classIds, confidences, boxes,confThreshold, scoreDiff, iouDiff)
for box in boxes:
cv.rectangle(frame, box, (0, 255, 0))
cv.rectangle(frame, np.array(box), (0, 255, 0))
cv.rectangle(frame, tuple(box), (0, 255, 0))
cv.rectangle(frame, list(box), (0, 255, 0))
def test_face_detection(self):
testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False))
proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt', required=testdata_required)
......@@ -166,7 +194,13 @@ class dnn_test(NewOpenCVTests):
scoresDiff = 4e-3 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-5
iouDiff = 2e-2 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-4
normAssertDetections(self, ref, out, 0.5, scoresDiff, iouDiff)
ref = np.array(ref, np.float32)
refClassIds, testClassIds = ref[:, 1], out[:, 1]
refScores, testScores = ref[:, 2], out[:, 2]
refBoxes, testBoxes = ref[:, 3:], out[:, 3:]
normAssertDetections(self, refClassIds, refScores, refBoxes, testClassIds,
testScores, testBoxes, 0.5, scoresDiff, iouDiff)
def test_async(self):
timeout = 500*10**6 # in nanoseconds (500ms)
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <algorithm>
#include <iostream>
#include <utility>
#include <iterator>
#include <opencv2/imgproc.hpp>
namespace cv {
namespace dnn {
struct Model::Impl
{
Size size;
Scalar mean;
double scale = 1.0;
bool swapRB = false;
bool crop = false;
Mat blob;
std::vector<String> outNames;
void predict(Net& net, const Mat& frame, std::vector<Mat>& outs)
{
if (size.empty())
CV_Error(Error::StsBadSize, "Input size not specified");
blob = blobFromImage(frame, scale, size, mean, swapRB, crop);
net.setInput(blob);
// Faster-RCNN or R-FCN
if (net.getLayer(0)->outputNameToIndex("im_info") != -1)
{
Mat imInfo = (Mat_<float>(1, 3) << size.height, size.width, 1.6f);
net.setInput(imInfo, "im_info");
}
net.forward(outs, outNames);
}
};
Model::Model(const String& model, const String& config)
: Net(readNet(model, config)), impl(new Impl)
{
impl->outNames = getUnconnectedOutLayersNames();
};
Model::Model(const Net& network) : Net(network), impl(new Impl)
{
impl->outNames = getUnconnectedOutLayersNames();
};
Model& Model::setInputSize(const Size& size)
{
impl->size = size;
return *this;
}
Model& Model::setInputSize(int width, int height)
{
impl->size = Size(width, height);
return *this;
}
Model& Model::setInputMean(const Scalar& mean)
{
impl->mean = mean;
return *this;
}
Model& Model::setInputScale(double scale)
{
impl->scale = scale;
return *this;
}
Model& Model::setInputCrop(bool crop)
{
impl->crop = crop;
return *this;
}
Model& Model::setInputSwapRB(bool swapRB)
{
impl->swapRB = swapRB;
return *this;
}
void Model::setInputParams(double scale, const Size& size, const Scalar& mean,
bool swapRB, bool crop)
{
impl->size = size;
impl->mean = mean;
impl->scale = scale;
impl->crop = crop;
impl->swapRB = swapRB;
}
void Model::predict(InputArray frame, OutputArrayOfArrays outs)
{
std::vector<Mat> outputs;
outs.getMatVector(outputs);
impl->predict(*this, frame.getMat(), outputs);
}
ClassificationModel::ClassificationModel(const String& model, const String& config)
: Model(model, config) {};
ClassificationModel::ClassificationModel(const Net& network) : Model(network) {};
std::pair<int, float> ClassificationModel::classify(InputArray frame)
{
std::vector<Mat> outs;
impl->predict(*this, frame.getMat(), outs);
CV_Assert(outs.size() == 1);
double conf;
cv::Point maxLoc;
minMaxLoc(outs[0].reshape(1, 1), nullptr, &conf, nullptr, &maxLoc);
return {maxLoc.x, static_cast<float>(conf)};
}
void ClassificationModel::classify(InputArray frame, int& classId, float& conf)
{
std::tie(classId, conf) = classify(frame);
}
DetectionModel::DetectionModel(const String& model, const String& config)
: Model(model, config) {};
DetectionModel::DetectionModel(const Net& network) : Model(network) {};
void DetectionModel::detect(InputArray frame, CV_OUT std::vector<int>& classIds,
CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes,
float confThreshold, float nmsThreshold)
{
std::vector<Mat> detections;
impl->predict(*this, frame.getMat(), detections);
boxes.clear();
confidences.clear();
classIds.clear();
int frameWidth = frame.cols();
int frameHeight = frame.rows();
if (getLayer(0)->outputNameToIndex("im_info") != -1)
{
frameWidth = impl->size.width;
frameHeight = impl->size.height;
}
std::vector<String> layerNames = getLayerNames();
int lastLayerId = getLayerId(layerNames.back());
Ptr<Layer> lastLayer = getLayer(lastLayerId);
std::vector<int> predClassIds;
std::vector<Rect> predBoxes;
std::vector<float> predConf;
if (lastLayer->type == "DetectionOutput")
{
// Network produces output blob with a shape 1x1xNx7 where N is a number of
// detections and an every detection is a vector of values
// [batchId, classId, confidence, left, top, right, bottom]
for (int i = 0; i < detections.size(); ++i)
{
float* data = (float*)detections[i].data;
for (int j = 0; j < detections[i].total(); j += 7)
{
float conf = data[j + 2];
if (conf < confThreshold)
continue;
int left = data[j + 3];
int top = data[j + 4];
int right = data[j + 5];
int bottom = data[j + 6];
int width = right - left + 1;
int height = bottom - top + 1;
if (width * height <= 1)
{
left = data[j + 3] * frameWidth;
top = data[j + 4] * frameHeight;
right = data[j + 5] * frameWidth;
bottom = data[j + 6] * frameHeight;
width = right - left + 1;
height = bottom - top + 1;
}
left = std::max(0, std::min(left, frameWidth - 1));
top = std::max(0, std::min(top, frameHeight - 1));
width = std::max(1, std::min(width, frameWidth - left));
height = std::max(1, std::min(height, frameHeight - top));
predBoxes.emplace_back(left, top, width, height);
predClassIds.push_back(static_cast<int>(data[j + 1]));
predConf.push_back(conf);
}
}
}
else if (lastLayer->type == "Region")
{
for (int i = 0; i < detections.size(); ++i)
{
// Network produces output blob with a shape NxC where N is a number of
// detected objects and C is a number of classes + 4 where the first 4
// numbers are [center_x, center_y, width, height]
float* data = (float*)detections[i].data;
for (int j = 0; j < detections[i].rows; ++j, data += detections[i].cols)
{
Mat scores = detections[i].row(j).colRange(5, detections[i].cols);
Point classIdPoint;
double conf;
minMaxLoc(scores, nullptr, &conf, nullptr, &classIdPoint);
if (static_cast<float>(conf) < confThreshold)
continue;
int centerX = data[0] * frameWidth;
int centerY = data[1] * frameHeight;
int width = data[2] * frameWidth;
int height = data[3] * frameHeight;
int left = std::max(0, std::min(centerX - width / 2, frameWidth - 1));
int top = std::max(0, std::min(centerY - height / 2, frameHeight - 1));
width = std::max(1, std::min(width, frameWidth - left));
height = std::max(1, std::min(height, frameHeight - top));
predClassIds.push_back(classIdPoint.x);
predConf.push_back(static_cast<float>(conf));
predBoxes.emplace_back(left, top, width, height);
}
}
}
else
CV_Error(Error::StsNotImplemented, "Unknown output layer type: \"" + lastLayer->type + "\"");
if (nmsThreshold)
{
std::vector<int> indices;
NMSBoxes(predBoxes, predConf, confThreshold, nmsThreshold, indices);
boxes.reserve(indices.size());
confidences.reserve(indices.size());
classIds.reserve(indices.size());
for (int idx : indices)
{
boxes.push_back(predBoxes[idx]);
confidences.push_back(predConf[idx]);
classIds.push_back(predClassIds[idx]);
}
}
else
{
boxes = std::move(predBoxes);
classIds = std::move(predClassIds);
confidences = std::move(predConf);
}
}
}} // namespace
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "npy_blob.hpp"
namespace opencv_test { namespace {
template<typename TString>
static std::string _tf(TString filename)
{
String rootFolder = "dnn/";
return findDataFile(rootFolder + filename);
}
class Test_Model : public DNNTestLayer
{
public:
void testDetectModel(const std::string& weights, const std::string& cfg,
const std::string& imgPath, const std::vector<int>& refClassIds,
const std::vector<float>& refConfidences,
const std::vector<Rect2d>& refBoxes,
double scoreDiff, double iouDiff,
double confThreshold = 0.24, double nmsThreshold = 0.0,
const Size& size = {-1, -1}, Scalar mean = Scalar(),
double scale = 1.0, bool swapRB = false, bool crop = false)
{
checkBackend();
Mat frame = imread(imgPath);
DetectionModel model(weights, cfg);
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
.setInputSwapRB(swapRB).setInputCrop(crop);
model.setPreferableBackend(backend);
model.setPreferableTarget(target);
std::vector<int> classIds;
std::vector<float> confidences;
std::vector<Rect> boxes;
model.detect(frame, classIds, confidences, boxes, confThreshold, nmsThreshold);
std::vector<Rect2d> boxesDouble(boxes.size());
for (int i = 0; i < boxes.size(); i++) {
boxesDouble[i] = boxes[i];
}
normAssertDetections(refClassIds, refConfidences, refBoxes, classIds,
confidences, boxesDouble, "",
confThreshold, scoreDiff, iouDiff);
}
void testClassifyModel(const std::string& weights, const std::string& cfg,
const std::string& imgPath, std::pair<int, float> ref, float norm,
const Size& size = {-1, -1}, Scalar mean = Scalar(),
double scale = 1.0, bool swapRB = false, bool crop = false)
{
checkBackend();
Mat frame = imread(imgPath);
ClassificationModel model(weights, cfg);
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
.setInputSwapRB(swapRB).setInputCrop(crop);
std::pair<int, float> prediction = model.classify(frame);
EXPECT_EQ(prediction.first, ref.first);
ASSERT_NEAR(prediction.second, ref.second, norm);
}
};
TEST_P(Test_Model, Classify)
{
std::pair<int, float> ref(652, 0.641789);
std::string img_path = _tf("grace_hopper_227.png");
std::string config_file = _tf("bvlc_alexnet.prototxt");
std::string weights_file = _tf("bvlc_alexnet.caffemodel");
Size size{227, 227};
float norm = 1e-4;
testClassifyModel(weights_file, config_file, img_path, ref, norm, size);
}
TEST_P(Test_Model, DetectRegion)
{
applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_MEMORY_1GB);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
#endif
#if defined(INF_ENGINE_RELEASE)
if (target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
std::vector<int> refClassIds = {6, 1, 11};
std::vector<float> refConfidences = {0.750469f, 0.780879f, 0.901615f};
std::vector<Rect2d> refBoxes = {Rect2d(240, 53, 135, 72),
Rect2d(112, 109, 192, 200),
Rect2d(58, 141, 117, 249)};
std::string img_path = _tf("dog416.png");
std::string weights_file = _tf("yolo-voc.weights");
std::string config_file = _tf("yolo-voc.cfg");
double scale = 1.0 / 255.0;
Size size{416, 416};
bool swapRB = true;
double confThreshold = 0.24;
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-2 : 8e-5;
double iouDiff = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 1.6e-2 : 1e-5;
double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4;
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences,
refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size,
Scalar(), scale, swapRB);
}
TEST_P(Test_Model, DetectionOutput)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
#endif
std::vector<int> refClassIds = {7, 12};
std::vector<float> refConfidences = {0.991359f, 0.94786f};
std::vector<Rect2d> refBoxes = {Rect2d(491, 81, 212, 98),
Rect2d(132, 223, 207, 344)};
std::string img_path = _tf("dog416.png");
std::string weights_file = _tf("resnet50_rfcn_final.caffemodel");
std::string config_file = _tf("rfcn_pascal_voc_resnet50.prototxt");
Scalar mean = Scalar(102.9801, 115.9465, 122.7717);
Size size{800, 600};
double scoreDiff = (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ?
4e-3 : default_l1;
double iouDiff = (target == DNN_TARGET_OPENCL_FP16) ? 1.8e-1 : 1e-5;
float confThreshold = 0.8;
double nmsThreshold = 0.0;
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean);
}
TEST_P(Test_Model, DetectionMobilenetSSD)
{
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy"));
ref = ref.reshape(1, ref.size[2]);
std::string img_path = _tf("street.png");
Mat frame = imread(img_path);
int frameWidth = frame.cols;
int frameHeight = frame.rows;
std::vector<int> refClassIds;
std::vector<float> refConfidences;
std::vector<Rect2d> refBoxes;
for (int i = 0; i < ref.rows; i++)
{
refClassIds.emplace_back(ref.at<float>(i, 1));
refConfidences.emplace_back(ref.at<float>(i, 2));
int left = ref.at<float>(i, 3) * frameWidth;
int top = ref.at<float>(i, 4) * frameHeight;
int right = ref.at<float>(i, 5) * frameWidth;
int bottom = ref.at<float>(i, 6) * frameHeight;
int width = right - left + 1;
int height = bottom - top + 1;
refBoxes.emplace_back(left, top, width, height);
}
std::string weights_file = _tf("MobileNetSSD_deploy.caffemodel");
std::string config_file = _tf("MobileNetSSD_deploy.prototxt");
Scalar mean = Scalar(127.5, 127.5, 127.5);
double scale = 1.0 / 127.5;
Size size{300, 300};
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1.7e-2 : 1e-5;
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || (target == DNN_TARGET_MYRIAD &&
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)) ? 6.91e-2 : 1e-5;
float confThreshold = FLT_MIN;
double nmsThreshold = 0.0;
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Model, dnnBackendsAndTargets());
}} // namespace
......@@ -752,15 +752,6 @@ PyObject* pyopencv_from(const Size_<float>& sz)
return Py_BuildValue("(ff)", sz.width, sz.height);
}
template<>
bool pyopencv_to(PyObject* obj, Rect& r, const char* name)
{
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0;
}
template<>
PyObject* pyopencv_from(const Rect& r)
{
......@@ -1366,6 +1357,25 @@ template<> struct pyopencvVecConverter<RotatedRect>
}
};
template<>
bool pyopencv_to(PyObject* obj, Rect& r, const char* name)
{
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
if (PyTuple_Check(obj))
return PyArg_ParseTuple(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0;
else
{
std::vector<int> value(4);
pyopencvVecConverter<int>::to(obj, value, ArgInfo(name, 0));
r = Rect(value[0], value[1], value[2], value[3]);
return true;
}
}
template<>
bool pyopencv_to(PyObject *obj, TermCriteria& dst, const char *name)
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment