Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
767ac9aa
Commit
767ac9aa
authored
Aug 08, 2011
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added gpu::Canny function
parent
0a2c7803
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
754 additions
and
3 deletions
+754
-3
gpu.hpp
modules/gpu/include/opencv2/gpu/gpu.hpp
+26
-1
canny.cu
modules/gpu/src/cuda/canny.cu
+489
-0
imgproc_gpu.cpp
modules/gpu/src/imgproc_gpu.cpp
+150
-2
test_imgproc.cpp
modules/gpu/test/test_imgproc.cpp
+67
-0
tests.cpp
samples/gpu/performance/tests.cpp
+22
-0
No files found.
modules/gpu/include/opencv2/gpu/gpu.hpp
View file @
767ac9aa
...
@@ -976,7 +976,32 @@ namespace cv
...
@@ -976,7 +976,32 @@ namespace cv
//! performs linear blending of two images
//! performs linear blending of two images
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
CV_EXPORTS
void
blendLinear
(
const
GpuMat
&
img1
,
const
GpuMat
&
img2
,
const
GpuMat
&
weights1
,
const
GpuMat
&
weights2
,
CV_EXPORTS
void
blendLinear
(
const
GpuMat
&
img1
,
const
GpuMat
&
img2
,
const
GpuMat
&
weights1
,
const
GpuMat
&
weights2
,
GpuMat
&
result
,
Stream
&
stream
=
Stream
::
Null
());
GpuMat
&
result
,
Stream
&
stream
=
Stream
::
Null
());
struct
CV_EXPORTS
CannyBuf
;
CV_EXPORTS
void
Canny
(
const
GpuMat
&
image
,
GpuMat
&
edges
,
double
low_thresh
,
double
high_thresh
,
int
apperture_size
=
3
,
bool
L2gradient
=
false
);
CV_EXPORTS
void
Canny
(
const
GpuMat
&
image
,
CannyBuf
&
buf
,
GpuMat
&
edges
,
double
low_thresh
,
double
high_thresh
,
int
apperture_size
=
3
,
bool
L2gradient
=
false
);
CV_EXPORTS
void
Canny
(
const
GpuMat
&
dx
,
const
GpuMat
&
dy
,
GpuMat
&
edges
,
double
low_thresh
,
double
high_thresh
,
bool
L2gradient
=
false
);
CV_EXPORTS
void
Canny
(
const
GpuMat
&
dx
,
const
GpuMat
&
dy
,
CannyBuf
&
buf
,
GpuMat
&
edges
,
double
low_thresh
,
double
high_thresh
,
bool
L2gradient
=
false
);
struct
CV_EXPORTS
CannyBuf
{
CannyBuf
()
{}
explicit
CannyBuf
(
const
Size
&
image_size
,
int
apperture_size
=
3
)
{
create
(
image_size
,
apperture_size
);}
CannyBuf
(
const
GpuMat
&
dx_
,
const
GpuMat
&
dy_
);
void
create
(
const
Size
&
image_size
,
int
apperture_size
=
3
);
void
release
();
GpuMat
dx
,
dy
;
GpuMat
dx_buf
,
dy_buf
;
GpuMat
edgeBuf
;
GpuMat
trackBuf1
,
trackBuf2
;
Ptr
<
FilterEngine_GPU
>
filterDX
,
filterDY
;
};
////////////////////////////// Matrix reductions //////////////////////////////
////////////////////////////// Matrix reductions //////////////////////////////
...
...
modules/gpu/src/cuda/canny.cu
0 → 100644
View file @
767ac9aa
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "internal_shared.hpp"
#include "opencv2/gpu/device/utility.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
namespace cv { namespace gpu { namespace canny
{
__global__ void calcSobelRowPass(PtrStep src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
{
__shared__ int smem[16][18];
const int j = blockIdx.x * blockDim.x + threadIdx.x;
const int i = blockIdx.y * blockDim.y + threadIdx.y;
if (i < rows)
{
smem[threadIdx.y][threadIdx.x + 1] = src.ptr(i)[j];
if (threadIdx.x == 0)
{
smem[threadIdx.y][0] = src.ptr(i)[max(j - 1, 0)];
smem[threadIdx.y][17] = src.ptr(i)[min(j + 16, cols - 1)];
}
__syncthreads();
if (j < cols)
{
dx_buf.ptr(i)[j] = -smem[threadIdx.y][threadIdx.x] + smem[threadIdx.y][threadIdx.x + 2];
dy_buf.ptr(i)[j] = smem[threadIdx.y][threadIdx.x] + 2 * smem[threadIdx.y][threadIdx.x + 1] + smem[threadIdx.y][threadIdx.x + 2];
}
}
}
void calcSobelRowPass_gpu(PtrStep src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
calcSobelRowPass<<<grid, block>>>(src, dx_buf, dy_buf, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
struct L1
{
static __device__ __forceinline__ float calc(int x, int y)
{
return abs(x) + abs(y);
}
};
struct L2
{
static __device__ __forceinline__ float calc(int x, int y)
{
return sqrtf(x * x + y * y);
}
};
template <typename Norm> __global__ void calcMagnitude(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
{
__shared__ int sdx[18][16];
__shared__ int sdy[18][16];
const int j = blockIdx.x * blockDim.x + threadIdx.x;
const int i = blockIdx.y * blockDim.y + threadIdx.y;
if (j < cols)
{
sdx[threadIdx.y + 1][threadIdx.x] = dx_buf.ptr(i)[j];
sdy[threadIdx.y + 1][threadIdx.x] = dy_buf.ptr(i)[j];
if (threadIdx.y == 0)
{
sdx[0][threadIdx.x] = dx_buf.ptr(max(i - 1, 0))[j];
sdx[17][threadIdx.x] = dx_buf.ptr(min(i + 16, rows - 1))[j];
sdy[0][threadIdx.x] = dy_buf.ptr(max(i - 1, 0))[j];
sdy[17][threadIdx.x] = dy_buf.ptr(min(i + 16, rows - 1))[j];
}
__syncthreads();
if (i < rows)
{
int x = sdx[threadIdx.y][threadIdx.x] + 2 * sdx[threadIdx.y + 1][threadIdx.x] + sdx[threadIdx.y + 2][threadIdx.x];
int y = -sdy[threadIdx.y][threadIdx.x] + sdy[threadIdx.y + 2][threadIdx.x];
dx.ptr(i)[j] = x;
dy.ptr(i)[j] = y;
mag.ptr(i + 1)[j + 1] = Norm::calc(x, y);
}
}
}
void calcMagnitude_gpu(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
if (L2Grad)
calcMagnitude<L2><<<grid, block>>>(dx_buf, dy_buf, dx, dy, mag, rows, cols);
else
calcMagnitude<L1><<<grid, block>>>(dx_buf, dy_buf, dx, dy, mag, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
template <typename Norm> __global__ void calcMagnitude(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
{
const int j = blockIdx.x * blockDim.x + threadIdx.x;
const int i = blockIdx.y * blockDim.y + threadIdx.y;
if (i < rows && j < cols)
mag.ptr(i + 1)[j + 1] = Norm::calc(dx.ptr(i)[j], dy.ptr(i)[j]);
}
void calcMagnitude_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
if (L2Grad)
calcMagnitude<L2><<<grid, block>>>(dx, dy, mag, rows, cols);
else
calcMagnitude<L1><<<grid, block>>>(dx, dy, mag, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
//////////////////////////////////////////////////////////////////////////////////////////
#define CANNY_SHIFT 15
#define TG22 (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5)
__global__ void calcMap(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
{
__shared__ float smem[18][18];
const int j = blockIdx.x * 16 + threadIdx.x;
const int i = blockIdx.y * 16 + threadIdx.y;
const int tid = threadIdx.y * 16 + threadIdx.x;
const int lx = tid % 18;
const int ly = tid / 18;
if (ly < 14)
smem[ly][lx] = mag.ptr(blockIdx.y * 16 + ly)[blockIdx.x * 16 + lx];
if (ly < 4 && blockIdx.y * 16 + ly + 14 <= rows && blockIdx.x * 16 + lx <= cols)
smem[ly + 14][lx] = mag.ptr(blockIdx.y * 16 + ly + 14)[blockIdx.x * 16 + lx];
__syncthreads();
if (i < rows && j < cols)
{
int x = dx.ptr(i)[j];
int y = dy.ptr(i)[j];
const int s = (x ^ y) < 0 ? -1 : 1;
const float m = smem[threadIdx.y + 1][threadIdx.x + 1];
x = abs(x);
y = abs(y);
// 0 - the pixel can not belong to an edge
// 1 - the pixel might belong to an edge
// 2 - the pixel does belong to an edge
int edge_type = 0;
if (m > low_thresh)
{
const int tg22x = x * TG22;
const int tg67x = tg22x + ((x + x) << CANNY_SHIFT);
y <<= CANNY_SHIFT;
if (y < tg22x)
{
if (m > smem[threadIdx.y + 1][threadIdx.x] && m >= smem[threadIdx.y + 1][threadIdx.x + 2])
edge_type = 1 + (int)(m > high_thresh);
}
else if( y > tg67x )
{
if (m > smem[threadIdx.y][threadIdx.x + 1] && m >= smem[threadIdx.y + 2][threadIdx.x + 1])
edge_type = 1 + (int)(m > high_thresh);
}
else
{
if (m > smem[threadIdx.y][threadIdx.x + 1 - s] && m > smem[threadIdx.y + 2][threadIdx.x + 1 + s])
edge_type = 1 + (int)(m > high_thresh);
}
}
map.ptr(i + 1)[j + 1] = edge_type;
}
}
#undef CANNY_SHIFT
#undef TG22
void calcMap_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
calcMap<<<grid, block>>>(dx, dy, mag, map, rows, cols, low_thresh, high_thresh);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
//////////////////////////////////////////////////////////////////////////////////////////
__device__ unsigned int counter = 0;
__global__ void edgesHysteresisLocal(PtrStepi map, ushort2* st, int rows, int cols)
{
#if __CUDA_ARCH__ >= 120
__shared__ int smem[18][18];
const int j = blockIdx.x * 16 + threadIdx.x;
const int i = blockIdx.y * 16 + threadIdx.y;
const int tid = threadIdx.y * 16 + threadIdx.x;
const int lx = tid % 18;
const int ly = tid / 18;
if (ly < 14)
smem[ly][lx] = map.ptr(blockIdx.y * 16 + ly)[blockIdx.x * 16 + lx];
if (ly < 4 && blockIdx.y * 16 + ly + 14 <= rows && blockIdx.x * 16 + lx <= cols)
smem[ly + 14][lx] = map.ptr(blockIdx.y * 16 + ly + 14)[blockIdx.x * 16 + lx];
__syncthreads();
if (i < rows && j < cols)
{
int n;
#pragma unroll
for (int k = 0; k < 16; ++k)
{
n = 0;
if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1)
{
n += smem[threadIdx.y ][threadIdx.x ] == 2;
n += smem[threadIdx.y ][threadIdx.x + 1] == 2;
n += smem[threadIdx.y ][threadIdx.x + 2] == 2;
n += smem[threadIdx.y + 1][threadIdx.x ] == 2;
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2;
n += smem[threadIdx.y + 2][threadIdx.x ] == 2;
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2;
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2;
}
if (n > 0)
smem[threadIdx.y + 1][threadIdx.x + 1] = 2;
}
const int e = smem[threadIdx.y + 1][threadIdx.x + 1];
map.ptr(i + 1)[j + 1] = e;
n = 0;
if (e == 2)
{
n += smem[threadIdx.y ][threadIdx.x ] == 1;
n += smem[threadIdx.y ][threadIdx.x + 1] == 1;
n += smem[threadIdx.y ][threadIdx.x + 2] == 1;
n += smem[threadIdx.y + 1][threadIdx.x ] == 1;
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1;
n += smem[threadIdx.y + 2][threadIdx.x ] == 1;
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1;
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1;
}
if (n > 0)
{
const unsigned int ind = atomicInc(&counter, (unsigned int)(-1));
st[ind] = make_ushort2(j + 1, i + 1);
}
}
#endif
}
void edgesHysteresisLocal_gpu(PtrStepi map, ushort2* st1, int rows, int cols)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
edgesHysteresisLocal<<<grid, block>>>(map, st1, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
__constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
__constant__ int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1};
__global__ void edgesHysteresisGlobal(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols, int count)
{
#if __CUDA_ARCH__ >= 120
const int stack_size = 512;
__shared__ unsigned int s_counter;
__shared__ unsigned int s_ind;
__shared__ ushort2 s_st[stack_size];
if (threadIdx.x == 0)
s_counter = 0;
__syncthreads();
int ind = blockIdx.y * gridDim.x + blockIdx.x;
if (ind < count)
{
ushort2 pos = st1[ind];
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
{
if (threadIdx.x < 8)
{
pos.x += c_dx[threadIdx.x];
pos.y += c_dy[threadIdx.x];
if (map.ptr(pos.y)[pos.x] == 1)
{
map.ptr(pos.y)[pos.x] = 2;
ind = atomicInc(&s_counter, (unsigned int)(-1));
s_st[ind] = pos;
}
}
__syncthreads();
while (s_counter > 0 && s_counter <= stack_size - blockDim.x)
{
const int subTaskIdx = threadIdx.x >> 3;
const int portion = min(s_counter, blockDim.x >> 3);
pos.x = pos.y = 0;
if (subTaskIdx < portion)
pos = s_st[s_counter - 1 - subTaskIdx];
__syncthreads();
if (threadIdx.x == 0)
s_counter -= portion;
__syncthreads();
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
{
pos.x += c_dx[threadIdx.x & 7];
pos.y += c_dy[threadIdx.x & 7];
if (map.ptr(pos.y)[pos.x] == 1)
{
map.ptr(pos.y)[pos.x] = 2;
ind = atomicInc(&s_counter, (unsigned int)(-1));
s_st[ind] = pos;
}
}
__syncthreads();
}
if (s_counter > 0)
{
if (threadIdx.x == 0)
{
ind = atomicAdd(&counter, s_counter);
s_ind = ind - s_counter;
}
__syncthreads();
ind = s_ind;
for (int i = threadIdx.x; i < s_counter; i += blockDim.x)
{
st2[ind + i] = s_st[i];
}
}
}
}
#endif
}
void edgesHysteresisGlobal_gpu(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols)
{
void* counter_ptr;
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, "cv::gpu::canny::counter") );
unsigned int count;
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
while (count > 0)
{
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(unsigned int)) );
dim3 block(128, 1, 1);
dim3 grid(min(count, 65535u), divUp(count, 65535), 1);
edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, rows, cols, count);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
swap(st1, st2);
}
}
__global__ void getEdges(PtrStepi map, PtrStep dst, int rows, int cols)
{
const int j = blockIdx.x * 16 + threadIdx.x;
const int i = blockIdx.y * 16 + threadIdx.y;
if (i < rows && j < cols)
dst.ptr(i)[j] = (uchar)(-(map.ptr(i + 1)[j + 1] >> 1));
}
void getEdges_gpu(PtrStepi map, PtrStep dst, int rows, int cols)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
getEdges<<<grid, block>>>(map, dst, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
}}}
modules/gpu/src/imgproc_gpu.cpp
View file @
767ac9aa
...
@@ -92,8 +92,13 @@ void cv::gpu::pyrDown(const GpuMat&, GpuMat&, PyrDownBuf&, Stream&) { throw_nogp
...
@@ -92,8 +92,13 @@ void cv::gpu::pyrDown(const GpuMat&, GpuMat&, PyrDownBuf&, Stream&) { throw_nogp
void
cv
::
gpu
::
pyrUp
(
const
GpuMat
&
,
GpuMat
&
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
pyrUp
(
const
GpuMat
&
,
GpuMat
&
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
PyrUpBuf
::
create
(
Size
,
int
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
PyrUpBuf
::
create
(
Size
,
int
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
pyrUp
(
const
GpuMat
&
,
GpuMat
&
,
PyrUpBuf
&
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
pyrUp
(
const
GpuMat
&
,
GpuMat
&
,
PyrUpBuf
&
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
Canny
(
const
GpuMat
&
,
GpuMat
&
,
double
,
double
,
int
,
bool
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
Canny
(
const
GpuMat
&
,
CannyBuf
&
,
GpuMat
&
,
double
,
double
,
int
,
bool
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
Canny
(
const
GpuMat
&
,
const
GpuMat
&
,
GpuMat
&
,
double
,
double
,
bool
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
Canny
(
const
GpuMat
&
,
const
GpuMat
&
,
CannyBuf
&
,
GpuMat
&
,
double
,
double
,
bool
)
{
throw_nogpu
();
}
cv
::
gpu
::
CannyBuf
::
CannyBuf
(
const
GpuMat
&
,
const
GpuMat
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
CannyBuf
::
create
(
const
Size
&
,
int
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
CannyBuf
::
release
()
{
throw_nogpu
();
}
#else
/* !defined (HAVE_CUDA) */
#else
/* !defined (HAVE_CUDA) */
...
@@ -1627,6 +1632,149 @@ void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst, PyrUpBuf& buf, Stream& strea
...
@@ -1627,6 +1632,149 @@ void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst, PyrUpBuf& buf, Stream& strea
buf
.
filter
->
apply
(
buf
.
buf
,
dst
,
Rect
(
0
,
0
,
buf
.
buf
.
cols
,
buf
.
buf
.
rows
),
stream
);
buf
.
filter
->
apply
(
buf
.
buf
,
dst
,
Rect
(
0
,
0
,
buf
.
buf
.
cols
,
buf
.
buf
.
rows
),
stream
);
}
}
//////////////////////////////////////////////////////////////////////////////
// Canny
cv
::
gpu
::
CannyBuf
::
CannyBuf
(
const
GpuMat
&
dx_
,
const
GpuMat
&
dy_
)
:
dx
(
dx_
),
dy
(
dy_
)
{
CV_Assert
(
dx_
.
type
()
==
CV_32SC1
&&
dy_
.
type
()
==
CV_32SC1
&&
dx_
.
size
()
==
dy_
.
size
());
create
(
dx_
.
size
(),
-
1
);
}
void
cv
::
gpu
::
CannyBuf
::
create
(
const
Size
&
image_size
,
int
apperture_size
)
{
ensureSizeIsEnough
(
image_size
,
CV_32SC1
,
dx
);
ensureSizeIsEnough
(
image_size
,
CV_32SC1
,
dy
);
if
(
apperture_size
==
3
)
{
ensureSizeIsEnough
(
image_size
,
CV_32SC1
,
dx_buf
);
ensureSizeIsEnough
(
image_size
,
CV_32SC1
,
dy_buf
);
}
else
if
(
apperture_size
>
0
)
{
if
(
!
filterDX
)
filterDX
=
createDerivFilter_GPU
(
CV_8UC1
,
CV_32S
,
1
,
0
,
apperture_size
,
BORDER_REPLICATE
);
if
(
!
filterDY
)
filterDY
=
createDerivFilter_GPU
(
CV_8UC1
,
CV_32S
,
0
,
1
,
apperture_size
,
BORDER_REPLICATE
);
}
ensureSizeIsEnough
(
image_size
.
height
+
2
,
image_size
.
width
+
2
,
CV_32FC1
,
edgeBuf
);
ensureSizeIsEnough
(
1
,
image_size
.
width
*
image_size
.
height
,
CV_16UC2
,
trackBuf1
);
ensureSizeIsEnough
(
1
,
image_size
.
width
*
image_size
.
height
,
CV_16UC2
,
trackBuf2
);
}
void
cv
::
gpu
::
CannyBuf
::
release
()
{
dx
.
release
();
dy
.
release
();
dx_buf
.
release
();
dy_buf
.
release
();
edgeBuf
.
release
();
trackBuf1
.
release
();
trackBuf2
.
release
();
}
namespace
cv
{
namespace
gpu
{
namespace
canny
{
void
calcSobelRowPass_gpu
(
PtrStep
src
,
PtrStepi
dx_buf
,
PtrStepi
dy_buf
,
int
rows
,
int
cols
);
void
calcMagnitude_gpu
(
PtrStepi
dx_buf
,
PtrStepi
dy_buf
,
PtrStepi
dx
,
PtrStepi
dy
,
PtrStepf
mag
,
int
rows
,
int
cols
,
bool
L2Grad
);
void
calcMagnitude_gpu
(
PtrStepi
dx
,
PtrStepi
dy
,
PtrStepf
mag
,
int
rows
,
int
cols
,
bool
L2Grad
);
void
calcMap_gpu
(
PtrStepi
dx
,
PtrStepi
dy
,
PtrStepf
mag
,
PtrStepi
map
,
int
rows
,
int
cols
,
float
low_thresh
,
float
high_thresh
);
void
edgesHysteresisLocal_gpu
(
PtrStepi
map
,
ushort2
*
st1
,
int
rows
,
int
cols
);
void
edgesHysteresisGlobal_gpu
(
PtrStepi
map
,
ushort2
*
st1
,
ushort2
*
st2
,
int
rows
,
int
cols
);
void
getEdges_gpu
(
PtrStepi
map
,
PtrStep
dst
,
int
rows
,
int
cols
);
}}}
namespace
{
void
CannyCaller
(
CannyBuf
&
buf
,
GpuMat
&
dst
,
float
low_thresh
,
float
high_thresh
)
{
using
namespace
cv
::
gpu
::
canny
;
calcMap_gpu
(
buf
.
dx
,
buf
.
dy
,
buf
.
edgeBuf
,
buf
.
edgeBuf
,
dst
.
rows
,
dst
.
cols
,
low_thresh
,
high_thresh
);
edgesHysteresisLocal_gpu
(
buf
.
edgeBuf
,
buf
.
trackBuf1
.
ptr
<
ushort2
>
(),
dst
.
rows
,
dst
.
cols
);
edgesHysteresisGlobal_gpu
(
buf
.
edgeBuf
,
buf
.
trackBuf1
.
ptr
<
ushort2
>
(),
buf
.
trackBuf2
.
ptr
<
ushort2
>
(),
dst
.
rows
,
dst
.
cols
);
getEdges_gpu
(
buf
.
edgeBuf
,
dst
,
dst
.
rows
,
dst
.
cols
);
}
}
void
cv
::
gpu
::
Canny
(
const
GpuMat
&
src
,
GpuMat
&
dst
,
double
low_thresh
,
double
high_thresh
,
int
apperture_size
,
bool
L2gradient
)
{
CannyBuf
buf
(
src
.
size
(),
apperture_size
);
Canny
(
src
,
buf
,
dst
,
low_thresh
,
high_thresh
,
apperture_size
,
L2gradient
);
}
void
cv
::
gpu
::
Canny
(
const
GpuMat
&
src
,
CannyBuf
&
buf
,
GpuMat
&
dst
,
double
low_thresh
,
double
high_thresh
,
int
apperture_size
,
bool
L2gradient
)
{
using
namespace
cv
::
gpu
::
canny
;
CV_Assert
(
src
.
type
()
==
CV_8UC1
);
if
(
low_thresh
>
high_thresh
)
std
::
swap
(
low_thresh
,
high_thresh
);
dst
.
create
(
src
.
size
(),
CV_8U
);
dst
.
setTo
(
Scalar
::
all
(
0
));
buf
.
create
(
src
.
size
(),
apperture_size
);
buf
.
edgeBuf
.
setTo
(
Scalar
::
all
(
0
));
if
(
apperture_size
==
3
)
{
calcSobelRowPass_gpu
(
src
,
buf
.
dx_buf
,
buf
.
dy_buf
,
src
.
rows
,
src
.
cols
);
calcMagnitude_gpu
(
buf
.
dx_buf
,
buf
.
dy_buf
,
buf
.
dx
,
buf
.
dy
,
buf
.
edgeBuf
,
src
.
rows
,
src
.
cols
,
L2gradient
);
}
else
{
buf
.
filterDX
->
apply
(
src
,
buf
.
dx
,
Rect
(
0
,
0
,
src
.
cols
,
src
.
rows
));
buf
.
filterDY
->
apply
(
src
,
buf
.
dy
,
Rect
(
0
,
0
,
src
.
cols
,
src
.
rows
));
calcMagnitude_gpu
(
buf
.
dx
,
buf
.
dy
,
buf
.
edgeBuf
,
src
.
rows
,
src
.
cols
,
L2gradient
);
}
CannyCaller
(
buf
,
dst
,
static_cast
<
float
>
(
low_thresh
),
static_cast
<
float
>
(
high_thresh
));
}
void
cv
::
gpu
::
Canny
(
const
GpuMat
&
dx
,
const
GpuMat
&
dy
,
GpuMat
&
dst
,
double
low_thresh
,
double
high_thresh
,
bool
L2gradient
)
{
CannyBuf
buf
(
dx
,
dy
);
Canny
(
dx
,
dy
,
buf
,
dst
,
low_thresh
,
high_thresh
,
L2gradient
);
}
void
cv
::
gpu
::
Canny
(
const
GpuMat
&
dx
,
const
GpuMat
&
dy
,
CannyBuf
&
buf
,
GpuMat
&
dst
,
double
low_thresh
,
double
high_thresh
,
bool
L2gradient
)
{
using
namespace
cv
::
gpu
::
canny
;
CV_Assert
(
dx
.
type
()
==
CV_32SC1
&&
dy
.
type
()
==
CV_32SC1
&&
dx
.
size
()
==
dy
.
size
());
if
(
low_thresh
>
high_thresh
)
std
::
swap
(
low_thresh
,
high_thresh
);
dst
.
create
(
dx
.
size
(),
CV_8U
);
dst
.
setTo
(
Scalar
::
all
(
0
));
buf
.
dx
=
dx
;
buf
.
dy
=
dy
;
buf
.
create
(
dx
.
size
(),
-
1
);
buf
.
edgeBuf
.
setTo
(
Scalar
::
all
(
0
));
calcMagnitude_gpu
(
dx
,
dy
,
buf
.
edgeBuf
,
dx
.
rows
,
dx
.
cols
,
L2gradient
);
CannyCaller
(
buf
,
dst
,
static_cast
<
float
>
(
low_thresh
),
static_cast
<
float
>
(
high_thresh
));
}
#endif
/* !defined (HAVE_CUDA) */
#endif
/* !defined (HAVE_CUDA) */
modules/gpu/test/test_imgproc.cpp
View file @
767ac9aa
...
@@ -2217,4 +2217,71 @@ TEST_P(PyrUp, Accuracy)
...
@@ -2217,4 +2217,71 @@ TEST_P(PyrUp, Accuracy)
INSTANTIATE_TEST_CASE_P
(
ImgProc
,
PyrUp
,
testing
::
ValuesIn
(
devices
()));
INSTANTIATE_TEST_CASE_P
(
ImgProc
,
PyrUp
,
testing
::
ValuesIn
(
devices
()));
////////////////////////////////////////////////////////
// Canny
struct
Canny
:
testing
::
TestWithParam
<
std
::
tr1
::
tuple
<
cv
::
gpu
::
DeviceInfo
,
int
,
bool
>
>
{
static
cv
::
Mat
img
;
static
void
SetUpTestCase
()
{
img
=
readImage
(
"stereobm/aloe-L.png"
,
CV_LOAD_IMAGE_GRAYSCALE
);
}
static
void
TearDownTestCase
()
{
img
.
release
();
}
cv
::
gpu
::
DeviceInfo
devInfo
;
int
apperture_size
;
bool
L2gradient
;
double
low_thresh
;
double
high_thresh
;
cv
::
Mat
edges_gold
;
virtual
void
SetUp
()
{
devInfo
=
std
::
tr1
::
get
<
0
>
(
GetParam
());
apperture_size
=
std
::
tr1
::
get
<
1
>
(
GetParam
());
L2gradient
=
std
::
tr1
::
get
<
2
>
(
GetParam
());
cv
::
gpu
::
setDevice
(
devInfo
.
deviceID
());
low_thresh
=
50.0
;
high_thresh
=
100.0
;
cv
::
Canny
(
img
,
edges_gold
,
low_thresh
,
high_thresh
,
apperture_size
,
L2gradient
);
}
};
cv
::
Mat
Canny
::
img
;
TEST_P
(
Canny
,
Accuracy
)
{
PRINT_PARAM
(
devInfo
);
PRINT_PARAM
(
apperture_size
);
PRINT_PARAM
(
L2gradient
);
cv
::
Mat
edges
;
ASSERT_NO_THROW
(
cv
::
gpu
::
GpuMat
d_edges
;
cv
::
gpu
::
Canny
(
cv
::
gpu
::
GpuMat
(
img
),
d_edges
,
low_thresh
,
high_thresh
,
apperture_size
,
L2gradient
);
d_edges
.
download
(
edges
);
);
EXPECT_MAT_SIMILAR
(
edges_gold
,
edges
,
1.0
);
}
INSTANTIATE_TEST_CASE_P
(
ImgProc
,
Canny
,
testing
::
Combine
(
testing
::
ValuesIn
(
devices
()),
testing
::
Values
(
3
,
5
),
testing
::
Values
(
false
,
true
)));
#endif // HAVE_CUDA
#endif // HAVE_CUDA
samples/gpu/performance/tests.cpp
View file @
767ac9aa
...
@@ -937,3 +937,25 @@ TEST(equalizeHist)
...
@@ -937,3 +937,25 @@ TEST(equalizeHist)
GPU_OFF
;
GPU_OFF
;
}
}
}
}
TEST
(
Canny
)
{
Mat
img
=
imread
(
abspath
(
"aloeL.jpg"
),
CV_LOAD_IMAGE_GRAYSCALE
);
if
(
img
.
empty
())
throw
runtime_error
(
"can't open aloeL.jpg"
);
Mat
edges
(
img
.
size
(),
CV_8UC1
);
CPU_ON
;
Canny
(
img
,
edges
,
50.0
,
100.0
);
CPU_OFF
;
gpu
::
GpuMat
d_img
(
img
);
gpu
::
GpuMat
d_edges
(
img
.
size
(),
CV_8UC1
);
gpu
::
CannyBuf
d_buf
(
img
.
size
());
GPU_ON
;
gpu
::
Canny
(
d_img
,
d_buf
,
d_edges
,
50.0
,
100.0
);
GPU_OFF
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment