Commit 73e1d64a authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #6956 from mshabunin:fix-chessboard-bug

parents f4b84dd4 b8bce552
......@@ -76,6 +76,9 @@
#include <stdarg.h>
#include <vector>
using namespace cv;
using namespace std;
//#define ENABLE_TRIM_COL_ROW
//#define DEBUG_CHESSBOARD
......@@ -88,13 +91,9 @@ static int PRINTF( const char* fmt, ... )
return vprintf(fmt, args);
}
#else
static int PRINTF( const char*, ... )
{
return 0;
}
#define PRINTF(...)
#endif
//=====================================================================================
// Implementation for the enhanced calibration object detection
//=====================================================================================
......@@ -155,10 +154,42 @@ struct CvCBQuad
//=====================================================================================
//static CvMat* debug_img = 0;
#ifdef DEBUG_CHESSBOARD
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
static void SHOW(const std::string & name, Mat & img)
{
imshow(name, img);
while ((uchar)waitKey(0) != 'q') {}
}
static void SHOW_QUADS(const std::string & name, const Mat & img_, CvCBQuad * quads, int quads_count)
{
Mat img = img_.clone();
if (img.channels() == 1)
cvtColor(img, img, COLOR_GRAY2BGR);
for (int i = 0; i < quads_count; ++i)
{
CvCBQuad & quad = quads[i];
for (int j = 0; j < 4; ++j)
{
line(img, quad.corners[j]->pt, quad.corners[(j + 1) % 4]->pt, Scalar(0, 240, 0), 1, LINE_AA);
}
}
imshow(name, img);
while ((uchar)waitKey(0) != 'q') {}
}
#else
#define SHOW(...)
#define SHOW_QUADS(...)
#endif
//=====================================================================================
static int icvGenerateQuads( CvCBQuad **quads, CvCBCorner **corners,
CvMemStorage *storage, CvMat *image, int flags, int *max_quad_buf_size);
CvMemStorage *storage, const Mat &image_, int flags, int *max_quad_buf_size);
static bool processQuads(CvCBQuad *quads, int quad_count, CvSize pattern_size, int max_quad_buf_size,
CvMemStorage * storage, CvCBCorner *corners, CvPoint2D32f *out_corners, int *out_corner_count, int & prev_sqr_size);
/*static int
icvGenerateQuadsEx( CvCBQuad **out_quads, CvCBCorner **out_corners,
......@@ -195,203 +226,198 @@ static void icvRemoveQuadFromGroup(CvCBQuad **quads, int count, CvCBQuad *q0);
static int icvCheckBoardMonotony( CvPoint2D32f* corners, CvSize pattern_size );
int cvCheckChessboardBinary(IplImage* src, CvSize size);
/***************************************************************************************************/
//COMPUTE INTENSITY HISTOGRAM OF INPUT IMAGE
static int icvGetIntensityHistogram( unsigned char* pucImage, int iSizeCols, int iSizeRows, std::vector<int>& piHist );
//SMOOTH HISTOGRAM USING WINDOW OF SIZE 2*iWidth+1
static int icvSmoothHistogram( const std::vector<int>& piHist, std::vector<int>& piHistSmooth, int iWidth );
//COMPUTE FAST HISTOGRAM GRADIENT
static int icvGradientOfHistogram( const std::vector<int>& piHist, std::vector<int>& piHistGrad );
//PERFORM SMART IMAGE THRESHOLDING BASED ON ANALYSIS OF INTENSTY HISTOGRAM
static bool icvBinarizationHistogramBased( unsigned char* pucImg, int iCols, int iRows );
/***************************************************************************************************/
int icvGetIntensityHistogram( unsigned char* pucImage, int iSizeCols, int iSizeRows, std::vector<int>& piHist )
static int icvGetIntensityHistogram( const Mat & img, std::vector<int>& piHist )
{
int iVal;
// sum up all pixel in row direction and divide by number of columns
for ( int j=0; j<iSizeRows; j++ )
{
for ( int i=0; i<iSizeCols; i++ )
// sum up all pixel in row direction and divide by number of columns
for ( int j=0; j<img.rows; j++ )
{
iVal = (int)pucImage[j*iSizeCols+i];
piHist[iVal]++;
const uchar * row = img.ptr(j);
for ( int i=0; i<img.cols; i++ )
{
piHist[row[i]]++;
}
}
}
return 0;
return 0;
}
/***************************************************************************************************/
int icvSmoothHistogram( const std::vector<int>& piHist, std::vector<int>& piHistSmooth, int iWidth )
//SMOOTH HISTOGRAM USING WINDOW OF SIZE 2*iWidth+1
static int icvSmoothHistogram( const std::vector<int>& piHist, std::vector<int>& piHistSmooth, int iWidth )
{
int iIdx;
for ( int i=0; i<256; i++)
{
int iSmooth = 0;
for ( int ii=-iWidth; ii<=iWidth; ii++)
int iIdx;
for ( int i=0; i<256; i++)
{
iIdx = i+ii;
if (iIdx > 0 && iIdx < 256)
{
iSmooth += piHist[iIdx];
}
int iSmooth = 0;
for ( int ii=-iWidth; ii<=iWidth; ii++)
{
iIdx = i+ii;
if (iIdx > 0 && iIdx < 256)
{
iSmooth += piHist[iIdx];
}
}
piHistSmooth[i] = iSmooth/(2*iWidth+1);
}
piHistSmooth[i] = iSmooth/(2*iWidth+1);
}
return 0;
return 0;
}
/***************************************************************************************************/
int icvGradientOfHistogram( const std::vector<int>& piHist, std::vector<int>& piHistGrad )
//COMPUTE FAST HISTOGRAM GRADIENT
static int icvGradientOfHistogram( const std::vector<int>& piHist, std::vector<int>& piHistGrad )
{
piHistGrad[0] = 0;
for ( int i=1; i<255; i++)
{
piHistGrad[i] = piHist[i-1] - piHist[i+1];
if ( abs(piHistGrad[i]) < 100 )
piHistGrad[0] = 0;
for ( int i=1; i<255; i++)
{
if ( piHistGrad[i-1] == 0)
piHistGrad[i] = -100;
else
piHistGrad[i] = piHistGrad[i-1];
piHistGrad[i] = piHist[i-1] - piHist[i+1];
if ( abs(piHistGrad[i]) < 100 )
{
if ( piHistGrad[i-1] == 0)
piHistGrad[i] = -100;
else
piHistGrad[i] = piHistGrad[i-1];
}
}
}
return 0;
return 0;
}
/***************************************************************************************************/
bool icvBinarizationHistogramBased( unsigned char* pucImg, int iCols, int iRows )
//PERFORM SMART IMAGE THRESHOLDING BASED ON ANALYSIS OF INTENSTY HISTOGRAM
static bool icvBinarizationHistogramBased( Mat & img )
{
int iMaxPix = iCols*iRows;
int iMaxPix1 = iMaxPix/100;
const int iNumBins = 256;
std::vector<int> piHistIntensity(iNumBins, 0);
std::vector<int> piHistSmooth(iNumBins, 0);
std::vector<int> piHistGrad(iNumBins, 0);
std::vector<int> piAccumSum(iNumBins, 0);
std::vector<int> piMaxPos(20, 0);
int iThresh = 0;
int iIdx;
int iWidth = 1;
icvGetIntensityHistogram( pucImg, iCols, iRows, piHistIntensity );
// get accumulated sum starting from bright
piAccumSum[iNumBins-1] = piHistIntensity[iNumBins-1];
for ( int i=iNumBins-2; i>=0; i-- )
{
piAccumSum[i] = piHistIntensity[i] + piAccumSum[i+1];
}
// first smooth the distribution
icvSmoothHistogram( piHistIntensity, piHistSmooth, iWidth );
// compute gradient
icvGradientOfHistogram( piHistSmooth, piHistGrad );
// check for zeros
int iCntMaxima = 0;
for ( int i=iNumBins-2; (i>2) && (iCntMaxima<20); i--)
{
if ( (piHistGrad[i-1] < 0) && (piHistGrad[i] > 0) )
{
piMaxPos[iCntMaxima] = i;
iCntMaxima++;
}
}
iIdx = 0;
int iSumAroundMax = 0;
for ( int i=0; i<iCntMaxima; i++ )
{
iIdx = piMaxPos[i];
iSumAroundMax = piHistSmooth[iIdx-1] + piHistSmooth[iIdx] + piHistSmooth[iIdx+1];
if ( iSumAroundMax < iMaxPix1 && iIdx < 64 )
CV_Assert(img.channels() == 1 && img.depth() == CV_8U);
int iCols = img.cols;
int iRows = img.rows;
int iMaxPix = iCols*iRows;
int iMaxPix1 = iMaxPix/100;
const int iNumBins = 256;
std::vector<int> piHistIntensity(iNumBins, 0);
std::vector<int> piHistSmooth(iNumBins, 0);
std::vector<int> piHistGrad(iNumBins, 0);
std::vector<int> piAccumSum(iNumBins, 0);
std::vector<int> piMaxPos(20, 0);
int iThresh = 0;
int iIdx;
int iWidth = 1;
icvGetIntensityHistogram( img, piHistIntensity );
// get accumulated sum starting from bright
piAccumSum[iNumBins-1] = piHistIntensity[iNumBins-1];
for ( int i=iNumBins-2; i>=0; i-- )
{
for ( int j=i; j<iCntMaxima-1; j++ )
{
piMaxPos[j] = piMaxPos[j+1];
}
iCntMaxima--;
i--;
piAccumSum[i] = piHistIntensity[i] + piAccumSum[i+1];
}
}
if ( iCntMaxima == 1)
{
iThresh = piMaxPos[0]/2;
}
else if ( iCntMaxima == 2)
{
iThresh = (piMaxPos[0] + piMaxPos[1])/2;
}
else // iCntMaxima >= 3
{
// CHECKING THRESHOLD FOR WHITE
int iIdxAccSum = 0, iAccum = 0;
for (int i=iNumBins-1; i>0; i--)
// first smooth the distribution
icvSmoothHistogram( piHistIntensity, piHistSmooth, iWidth );
// compute gradient
icvGradientOfHistogram( piHistSmooth, piHistGrad );
// check for zeros
int iCntMaxima = 0;
for ( int i=iNumBins-2; (i>2) && (iCntMaxima<20); i--)
{
iAccum += piHistIntensity[i];
// iMaxPix/18 is about 5,5%, minimum required number of pixels required for white part of chessboard
if ( iAccum > (iMaxPix/18) )
{
iIdxAccSum = i;
break;
}
if ( (piHistGrad[i-1] < 0) && (piHistGrad[i] > 0) )
{
piMaxPos[iCntMaxima] = i;
iCntMaxima++;
}
}
int iIdxBGMax = 0;
int iBrightMax = piMaxPos[0];
// printf("iBrightMax = %d\n", iBrightMax);
for ( int n=0; n<iCntMaxima-1; n++)
iIdx = 0;
int iSumAroundMax = 0;
for ( int i=0; i<iCntMaxima; i++ )
{
iIdxBGMax = n+1;
if ( piMaxPos[n] < iIdxAccSum )
{
break;
}
iBrightMax = piMaxPos[n];
iIdx = piMaxPos[i];
iSumAroundMax = piHistSmooth[iIdx-1] + piHistSmooth[iIdx] + piHistSmooth[iIdx+1];
if ( iSumAroundMax < iMaxPix1 && iIdx < 64 )
{
for ( int j=i; j<iCntMaxima-1; j++ )
{
piMaxPos[j] = piMaxPos[j+1];
}
iCntMaxima--;
i--;
}
}
// CHECKING THRESHOLD FOR BLACK
int iMaxVal = piHistIntensity[piMaxPos[iIdxBGMax]];
//IF TOO CLOSE TO 255, jump to next maximum
if ( piMaxPos[iIdxBGMax] >= 250 && iIdxBGMax < iCntMaxima )
if ( iCntMaxima == 1)
{
iIdxBGMax++;
iMaxVal = piHistIntensity[piMaxPos[iIdxBGMax]];
iThresh = piMaxPos[0]/2;
}
for ( int n=iIdxBGMax + 1; n<iCntMaxima; n++)
else if ( iCntMaxima == 2)
{
if ( piHistIntensity[piMaxPos[n]] >= iMaxVal )
{
iMaxVal = piHistIntensity[piMaxPos[n]];
iIdxBGMax = n;
}
iThresh = (piMaxPos[0] + piMaxPos[1])/2;
}
else // iCntMaxima >= 3
{
// CHECKING THRESHOLD FOR WHITE
int iIdxAccSum = 0, iAccum = 0;
for (int i=iNumBins-1; i>0; i--)
{
iAccum += piHistIntensity[i];
// iMaxPix/18 is about 5,5%, minimum required number of pixels required for white part of chessboard
if ( iAccum > (iMaxPix/18) )
{
iIdxAccSum = i;
break;
}
}
//SETTING THRESHOLD FOR BINARIZATION
int iDist2 = (iBrightMax - piMaxPos[iIdxBGMax])/2;
iThresh = iBrightMax - iDist2;
PRINTF("THRESHOLD SELECTED = %d, BRIGHTMAX = %d, DARKMAX = %d\n", iThresh, iBrightMax, piMaxPos[iIdxBGMax]);
}
int iIdxBGMax = 0;
int iBrightMax = piMaxPos[0];
// printf("iBrightMax = %d\n", iBrightMax);
for ( int n=0; n<iCntMaxima-1; n++)
{
iIdxBGMax = n+1;
if ( piMaxPos[n] < iIdxAccSum )
{
break;
}
iBrightMax = piMaxPos[n];
}
// CHECKING THRESHOLD FOR BLACK
int iMaxVal = piHistIntensity[piMaxPos[iIdxBGMax]];
//IF TOO CLOSE TO 255, jump to next maximum
if ( piMaxPos[iIdxBGMax] >= 250 && iIdxBGMax < iCntMaxima )
{
iIdxBGMax++;
iMaxVal = piHistIntensity[piMaxPos[iIdxBGMax]];
}
if ( iThresh > 0 )
{
for ( int jj=0; jj<iRows; jj++)
for ( int n=iIdxBGMax + 1; n<iCntMaxima; n++)
{
if ( piHistIntensity[piMaxPos[n]] >= iMaxVal )
{
iMaxVal = piHistIntensity[piMaxPos[n]];
iIdxBGMax = n;
}
}
//SETTING THRESHOLD FOR BINARIZATION
int iDist2 = (iBrightMax - piMaxPos[iIdxBGMax])/2;
iThresh = iBrightMax - iDist2;
PRINTF("THRESHOLD SELECTED = %d, BRIGHTMAX = %d, DARKMAX = %d\n", iThresh, iBrightMax, piMaxPos[iIdxBGMax]);
}
if ( iThresh > 0 )
{
for ( int ii=0; ii<iCols; ii++)
{
if ( pucImg[jj*iCols+ii]< iThresh )
pucImg[jj*iCols+ii] = 0;
else
pucImg[jj*iCols+ii] = 255;
}
for ( int jj=0; jj<iRows; jj++)
{
uchar * row = img.ptr(jj);
for ( int ii=0; ii<iCols; ii++)
{
if ( row[ii] < iThresh )
row[ii] = 0;
else
row[ii] = 255;
}
}
}
}
return true;
return true;
}
CV_IMPL
......@@ -400,39 +426,24 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
int flags )
{
int found = 0;
CvCBQuad *quads = 0, **quad_group = 0;
CvCBCorner *corners = 0, **corner_group = 0;
IplImage* cImgSeg = 0;
CvCBQuad *quads = 0;
CvCBCorner *corners = 0;
cv::Ptr<CvMemStorage> storage;
try
{
int k = 0;
const int min_dilations = 0;
const int max_dilations = 7;
cv::Ptr<CvMat> norm_img, thresh_img;
cv::Ptr<CvMemStorage> storage;
CvMat stub, *img = (CvMat*)arr;
cImgSeg = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1 );
memcpy( cImgSeg->imageData, cvPtr1D( img, 0), img->rows*img->cols );
CvMat stub2, *thresh_img_new;
thresh_img_new = cvGetMat( cImgSeg, &stub2, 0, 0 );
int expected_corners_num = (pattern_size.width/2+1)*(pattern_size.height/2+1);
int prev_sqr_size = 0;
if( out_corner_count )
*out_corner_count = 0;
int quad_count = 0, group_idx = 0, dilations = 0;
img = cvGetMat( img, &stub );
//debug_img = img;
Mat img = cvarrToMat((CvMat*)arr).clone();
if( CV_MAT_DEPTH( img->type ) != CV_8U || CV_MAT_CN( img->type ) == 2 )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit grayscale or color images are supported" );
if( img.depth() != CV_8U || (img.channels() != 1 && img.channels() != 3) )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit grayscale or color images are supported" );
if( pattern_size.width <= 2 || pattern_size.height <= 2 )
CV_Error( CV_StsOutOfRange, "Both width and height of the pattern should have bigger than 2" );
......@@ -440,273 +451,124 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
if( !out_corners )
CV_Error( CV_StsNullPtr, "Null pointer to corners" );
storage.reset(cvCreateMemStorage(0));
thresh_img.reset(cvCreateMat( img->rows, img->cols, CV_8UC1 ));
if( CV_MAT_CN(img->type) != 1 || (flags & CV_CALIB_CB_NORMALIZE_IMAGE) )
if (img.channels() != 1)
{
// equalize the input image histogram -
// that should make the contrast between "black" and "white" areas big enough
norm_img.reset(cvCreateMat( img->rows, img->cols, CV_8UC1 ));
cvtColor(img, img, COLOR_BGR2GRAY);
}
if( CV_MAT_CN(img->type) != 1 )
{
cvCvtColor( img, norm_img, CV_BGR2GRAY );
img = norm_img;
}
if( flags & CV_CALIB_CB_NORMALIZE_IMAGE )
{
cvEqualizeHist( img, norm_img );
img = norm_img;
}
}
Mat thresh_img_new = img.clone();
icvBinarizationHistogramBased( thresh_img_new ); // process image in-place
SHOW("New binarization", thresh_img_new);
if( flags & CV_CALIB_CB_FAST_CHECK)
{
//perform new method for checking chessboard using a binary image.
//image is binarised using a threshold dependent on the image histogram
icvBinarizationHistogramBased( (unsigned char*) cImgSeg->imageData, cImgSeg->width, cImgSeg->height );
int check_chessboard_result = cvCheckChessboardBinary(cImgSeg, pattern_size);
if(check_chessboard_result <= 0) //fall back to the old method
if (checkChessboardBinary(thresh_img_new, pattern_size) <= 0) //fall back to the old method
{
IplImage _img;
cvGetImage(img, &_img);
check_chessboard_result = cvCheckChessboard(&_img, pattern_size);
if(check_chessboard_result <= 0)
if (checkChessboard(img, pattern_size) <= 0)
{
return 0;
return found;
}
}
}
storage.reset(cvCreateMemStorage(0));
int prev_sqr_size = 0;
// Try our standard "1" dilation, but if the pattern is not found, iterate the whole procedure with higher dilations.
// This is necessary because some squares simply do not separate properly with a single dilation. However,
// we want to use the minimum number of dilations possible since dilations cause the squares to become smaller,
// making it difficult to detect smaller squares.
for( dilations = min_dilations; dilations <= max_dilations; dilations++ )
for( int dilations = min_dilations; dilations <= max_dilations; dilations++ )
{
if (found)
break; // already found it
cvFree(&quads);
cvFree(&corners);
int max_quad_buf_size = 0;
//USE BINARY IMAGE COMPUTED USING icvBinarizationHistogramBased METHOD
cvDilate( thresh_img_new, thresh_img_new, 0, 1 );
// So we can find rectangles that go to the edge, we draw a white line around the image edge.
// Otherwise FindContours will miss those clipped rectangle contours.
// The border color will be the image mean, because otherwise we risk screwing up filters like cvSmooth()...
cvRectangle( thresh_img_new, cvPoint(0,0), cvPoint(thresh_img_new->cols-1, thresh_img_new->rows-1), CV_RGB(255,255,255), 3, 8);
quad_count = icvGenerateQuads( &quads, &corners, storage, thresh_img_new, flags, &max_quad_buf_size );
PRINTF("Quad count: %d/%d\n", quad_count, expected_corners_num);
if( quad_count <= 0 )
{
continue;
}
// Find quad's neighbors
icvFindQuadNeighbors( quads, quad_count );
// allocate extra for adding in icvOrderFoundQuads
cvFree(&quad_group);
cvFree(&corner_group);
quad_group = (CvCBQuad**)cvAlloc( sizeof(quad_group[0]) * max_quad_buf_size);
corner_group = (CvCBCorner**)cvAlloc( sizeof(corner_group[0]) * max_quad_buf_size * 4 );
for( group_idx = 0; ; group_idx++ )
{
int count = 0;
count = icvFindConnectedQuads( quads, quad_count, quad_group, group_idx, storage );
int icount = count;
if( count == 0 )
break;
// order the quad corners globally
// maybe delete or add some
PRINTF("Starting ordering of inner quads\n");
count = icvOrderFoundConnectedQuads(count, quad_group, &quad_count, &quads, &corners, pattern_size, max_quad_buf_size, storage );
PRINTF("Orig count: %d After ordering: %d\n", icount, count);
if (count == 0)
continue; // haven't found inner quads
// If count is more than it should be, this will remove those quads
// which cause maximum deviation from a nice square pattern.
count = icvCleanFoundConnectedQuads( count, quad_group, pattern_size );
PRINTF("Connected group: %d orig count: %d cleaned: %d\n", group_idx, icount, count);
count = icvCheckQuadGroup( quad_group, count, corner_group, pattern_size );
PRINTF("Connected group: %d count: %d cleaned: %d\n", group_idx, icount, count);
int n = count > 0 ? pattern_size.width * pattern_size.height : -count;
n = MIN( n, pattern_size.width * pattern_size.height );
float sum_dist = 0;
int total = 0;
if (found)
break; // already found it
for(int i = 0; i < n; i++ )
{
int ni = 0;
float avgi = corner_group[i]->meanDist(&ni);
sum_dist += avgi*ni;
total += ni;
}
prev_sqr_size = cvRound(sum_dist/MAX(total, 1));
//USE BINARY IMAGE COMPUTED USING icvBinarizationHistogramBased METHOD
dilate( thresh_img_new, thresh_img_new, Mat(), Point(-1, -1), 1 );
if( count > 0 || (out_corner_count && -count > *out_corner_count) )
{
// copy corners to output array
for(int i = 0; i < n; i++ )
out_corners[i] = corner_group[i]->pt;
if( out_corner_count )
*out_corner_count = n;
if( count == pattern_size.width*pattern_size.height &&
icvCheckBoardMonotony( out_corners, pattern_size ))
{
found = 1;
break;
}
}
}
}//dilations
// So we can find rectangles that go to the edge, we draw a white line around the image edge.
// Otherwise FindContours will miss those clipped rectangle contours.
// The border color will be the image mean, because otherwise we risk screwing up filters like cvSmooth()...
rectangle( thresh_img_new, Point(0,0), Point(thresh_img_new.cols-1, thresh_img_new.rows-1), Scalar(255,255,255), 3, LINE_8);
int max_quad_buf_size = 0;
cvFree(&quads);
cvFree(&corners);
int quad_count = icvGenerateQuads( &quads, &corners, storage, thresh_img_new, flags, &max_quad_buf_size );
PRINTF("Quad count: %d/%d\n", quad_count, (pattern_size.width/2+1)*(pattern_size.height/2+1));
SHOW_QUADS("New quads", thresh_img_new, quads, quad_count);
if (processQuads(quads, quad_count, pattern_size, max_quad_buf_size, storage, corners, out_corners, out_corner_count, prev_sqr_size))
found = 1;
}
PRINTF("Chessboard detection result 0: %d\n", found);
// revert to old, slower, method if detection failed
if (!found)
{
PRINTF("Fallback to old algorithm\n");
// empiric threshold level
// thresholding performed here and not inside the cycle to save processing time
int thresh_level;
if ( !(flags & CV_CALIB_CB_ADAPTIVE_THRESH) )
{
double mean = cvAvg( img ).val[0];
thresh_level = cvRound( mean - 10 );
thresh_level = MAX( thresh_level, 10 );
cvThreshold( img, thresh_img, thresh_level, 255, CV_THRESH_BINARY );
}
for( k = 0; k < 6; k++ )
{
int max_quad_buf_size = 0;
for( dilations = min_dilations; dilations <= max_dilations; dilations++ )
if( flags & CV_CALIB_CB_NORMALIZE_IMAGE )
{
if (found)
break; // already found it
cvFree(&quads);
cvFree(&corners);
// convert the input grayscale image to binary (black-n-white)
if( flags & CV_CALIB_CB_ADAPTIVE_THRESH )
{
int block_size = cvRound(prev_sqr_size == 0 ?
MIN(img->cols,img->rows)*(k%2 == 0 ? 0.2 : 0.1): prev_sqr_size*2)|1;
// convert to binary
cvAdaptiveThreshold( img, thresh_img, 255,
CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, block_size, (k/2)*5 );
if (dilations > 0)
cvDilate( thresh_img, thresh_img, 0, dilations-1 );
}
//if flag CV_CALIB_CB_ADAPTIVE_THRESH is not set it doesn't make sense
//to iterate over k
else
{
k = 6;
cvDilate( thresh_img, thresh_img, 0, 1 );
}
// So we can find rectangles that go to the edge, we draw a white line around the image edge.
// Otherwise FindContours will miss those clipped rectangle contours.
// The border color will be the image mean, because otherwise we risk screwing up filters like cvSmooth()...
cvRectangle( thresh_img, cvPoint(0,0), cvPoint(thresh_img->cols-1,
thresh_img->rows-1), CV_RGB(255,255,255), 3, 8);
quad_count = icvGenerateQuads( &quads, &corners, storage, thresh_img, flags, &max_quad_buf_size);
PRINTF("Quad count: %d/%d\n", quad_count, expected_corners_num);
if( quad_count <= 0 )
{
continue;
}
// Find quad's neighbors
icvFindQuadNeighbors( quads, quad_count );
// allocate extra for adding in icvOrderFoundQuads
cvFree(&quad_group);
cvFree(&corner_group);
quad_group = (CvCBQuad**)cvAlloc( sizeof(quad_group[0]) * max_quad_buf_size);
corner_group = (CvCBCorner**)cvAlloc( sizeof(corner_group[0]) * max_quad_buf_size * 4 );
for( group_idx = 0; ; group_idx++ )
{
int count = 0;
count = icvFindConnectedQuads( quads, quad_count, quad_group, group_idx, storage );
int icount = count;
if( count == 0 )
break;
// order the quad corners globally
// maybe delete or add some
PRINTF("Starting ordering of inner quads\n");
count = icvOrderFoundConnectedQuads(count, quad_group, &quad_count, &quads, &corners, pattern_size, max_quad_buf_size, storage );
PRINTF("Orig count: %d After ordering: %d\n", icount, count);
if (count == 0)
continue; // haven't found inner quads
// If count is more than it should be, this will remove those quads
// which cause maximum deviation from a nice square pattern.
count = icvCleanFoundConnectedQuads( count, quad_group, pattern_size );
PRINTF("Connected group: %d orig count: %d cleaned: %d\n", group_idx, icount, count);
count = icvCheckQuadGroup( quad_group, count, corner_group, pattern_size );
PRINTF("Connected group: %d count: %d cleaned: %d\n", group_idx, icount, count);
int n = count > 0 ? pattern_size.width * pattern_size.height : -count;
n = MIN( n, pattern_size.width * pattern_size.height );
float sum_dist = 0;
int total = 0;
equalizeHist( img, img );
}
for(int i = 0; i < n; i++ )
{
int ni = 0;
float avgi = corner_group[i]->meanDist(&ni);
sum_dist += avgi*ni;
total += ni;
}
prev_sqr_size = cvRound(sum_dist/MAX(total, 1));
Mat thresh_img;
prev_sqr_size = 0;
if( count > 0 || (out_corner_count && -count > *out_corner_count) )
PRINTF("Fallback to old algorithm\n");
const bool useAdaptive = flags & CV_CALIB_CB_ADAPTIVE_THRESH;
if (!useAdaptive)
{
// empiric threshold level
// thresholding performed here and not inside the cycle to save processing time
double mean = cv::mean(img).val[0];
int thresh_level = MAX(cvRound( mean - 10 ), 10);
threshold( img, thresh_img, thresh_level, 255, THRESH_BINARY );
}
//if flag CV_CALIB_CB_ADAPTIVE_THRESH is not set it doesn't make sense to iterate over k
int max_k = useAdaptive ? 6 : 1;
for( k = 0; k < max_k; k++ )
{
for( int dilations = min_dilations; dilations <= max_dilations; dilations++ )
{
// copy corners to output array
for(int i = 0; i < n; i++ )
out_corners[i] = corner_group[i]->pt;
if (found)
break; // already found it
if( out_corner_count )
*out_corner_count = n;
// convert the input grayscale image to binary (black-n-white)
if (useAdaptive)
{
int block_size = cvRound(prev_sqr_size == 0
? MIN(img.cols, img.rows) * (k % 2 == 0 ? 0.2 : 0.1)
: prev_sqr_size * 2);
block_size = block_size | 1;
// convert to binary
adaptiveThreshold( img, thresh_img, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, block_size, (k/2)*5 );
if (dilations > 0)
dilate( thresh_img, thresh_img, Mat(), Point(-1, -1), dilations-1 );
if( count == pattern_size.width*pattern_size.height && icvCheckBoardMonotony( out_corners, pattern_size ))
{
found = 1;
break;
}
}
else
{
dilate( thresh_img, thresh_img, Mat(), Point(-1, -1), 1 );
}
SHOW("Old binarization", thresh_img);
// So we can find rectangles that go to the edge, we draw a white line around the image edge.
// Otherwise FindContours will miss those clipped rectangle contours.
// The border color will be the image mean, because otherwise we risk screwing up filters like cvSmooth()...
rectangle( thresh_img, Point(0,0), Point(thresh_img.cols-1, thresh_img.rows-1), Scalar(255,255,255), 3, LINE_8);
int max_quad_buf_size = 0;
cvFree(&quads);
cvFree(&corners);
int quad_count = icvGenerateQuads( &quads, &corners, storage, thresh_img, flags, &max_quad_buf_size);
PRINTF("Quad count: %d/%d\n", quad_count, (pattern_size.width/2+1)*(pattern_size.height/2+1));
SHOW_QUADS("Old quads", thresh_img, quads, quad_count);
if (processQuads(quads, quad_count, pattern_size, max_quad_buf_size, storage, corners, out_corners, out_corner_count, prev_sqr_size))
found = 1;
}
}
}//dilations
}// for k = 0 -> 6
}
}
PRINTF("Chessboard detection result 1: %d\n", found);
......@@ -722,8 +584,8 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
const int BORDER = 8;
for( k = 0; k < pattern_size.width*pattern_size.height; k++ )
{
if( out_corners[k].x <= BORDER || out_corners[k].x > img->cols - BORDER ||
out_corners[k].y <= BORDER || out_corners[k].y > img->rows - BORDER )
if( out_corners[k].x <= BORDER || out_corners[k].x > img.cols - BORDER ||
out_corners[k].y <= BORDER || out_corners[k].y > img.rows - BORDER )
break;
}
......@@ -734,51 +596,35 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
if( found )
{
if ( pattern_size.height % 2 == 0 && pattern_size.width % 2 == 0 )
{
int last_row = (pattern_size.height-1)*pattern_size.width;
double dy0 = out_corners[last_row].y - out_corners[0].y;
if( dy0 < 0 )
if ( pattern_size.height % 2 == 0 && pattern_size.width % 2 == 0 )
{
int n = pattern_size.width*pattern_size.height;
for(int i = 0; i < n/2; i++ )
{
CvPoint2D32f temp;
CV_SWAP(out_corners[i], out_corners[n-i-1], temp);
}
int last_row = (pattern_size.height-1)*pattern_size.width;
double dy0 = out_corners[last_row].y - out_corners[0].y;
if( dy0 < 0 )
{
int n = pattern_size.width*pattern_size.height;
for(int i = 0; i < n/2; i++ )
{
CvPoint2D32f temp;
CV_SWAP(out_corners[i], out_corners[n-i-1], temp);
}
}
}
}
cv::Ptr<CvMat> gray;
if( CV_MAT_CN(img->type) != 1 )
{
gray.reset(cvCreateMat(img->rows, img->cols, CV_8UC1));
cvCvtColor(img, gray, CV_BGR2GRAY);
}
else
{
gray.reset(cvCloneMat(img));
}
int wsize = 2;
cvFindCornerSubPix( gray, out_corners, pattern_size.width*pattern_size.height,
cvSize(wsize, wsize), cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 15, 0.1));
int wsize = 2;
CvMat old_img(img);
cvFindCornerSubPix( &old_img, out_corners, pattern_size.width*pattern_size.height,
cvSize(wsize, wsize), cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 15, 0.1));
}
}
catch(...)
{
cvFree(&quads);
cvFree(&corners);
cvFree(&quad_group);
cvFree(&corner_group);
cvFree(&cImgSeg);
throw;
}
cvFree(&quads);
cvFree(&corners);
cvFree(&quad_group);
cvFree(&corner_group);
cvFree(&cImgSeg);
return found;
}
......@@ -1866,8 +1712,9 @@ static void icvFindQuadNeighbors( CvCBQuad *quads, int quad_count )
static int
icvGenerateQuads( CvCBQuad **out_quads, CvCBCorner **out_corners,
CvMemStorage *storage, CvMat *image, int flags, int *max_quad_buf_size )
CvMemStorage *storage, const cv::Mat & image_, int flags, int *max_quad_buf_size )
{
CvMat image_old(image_), *image = &image_old;
int quad_count = 0;
cv::Ptr<CvMemStorage> temp_storage;
......@@ -2011,6 +1858,88 @@ icvGenerateQuads( CvCBQuad **out_quads, CvCBCorner **out_corners,
return quad_count;
}
static bool processQuads(CvCBQuad *quads, int quad_count, CvSize pattern_size, int max_quad_buf_size,
CvMemStorage * storage, CvCBCorner *corners, CvPoint2D32f *out_corners, int *out_corner_count, int & prev_sqr_size)
{
if( quad_count <= 0 )
return false;
bool found = false;
// Find quad's neighbors
icvFindQuadNeighbors( quads, quad_count );
// allocate extra for adding in icvOrderFoundQuads
CvCBQuad **quad_group = 0;
CvCBCorner **corner_group = 0;
quad_group = (CvCBQuad**)cvAlloc( sizeof(quad_group[0]) * max_quad_buf_size);
corner_group = (CvCBCorner**)cvAlloc( sizeof(corner_group[0]) * max_quad_buf_size * 4 );
for( int group_idx = 0; ; group_idx++ )
{
int count = icvFindConnectedQuads( quads, quad_count, quad_group, group_idx, storage );
if( count == 0 )
break;
// order the quad corners globally
// maybe delete or add some
PRINTF("Starting ordering of inner quads (%d)\n", count);
count = icvOrderFoundConnectedQuads(count, quad_group, &quad_count, &quads, &corners,
pattern_size, max_quad_buf_size, storage );
PRINTF("Finished ordering of inner quads (%d)\n", count);
if (count == 0)
continue; // haven't found inner quads
// If count is more than it should be, this will remove those quads
// which cause maximum deviation from a nice square pattern.
count = icvCleanFoundConnectedQuads( count, quad_group, pattern_size );
PRINTF("Connected group: %d, count: %d\n", group_idx, count);
count = icvCheckQuadGroup( quad_group, count, corner_group, pattern_size );
PRINTF("Connected group: %d, count: %d\n", group_idx, count);
int n = count > 0 ? pattern_size.width * pattern_size.height : -count;
n = MIN( n, pattern_size.width * pattern_size.height );
float sum_dist = 0;
int total = 0;
for(int i = 0; i < n; i++ )
{
int ni = 0;
float avgi = corner_group[i]->meanDist(&ni);
sum_dist += avgi*ni;
total += ni;
}
prev_sqr_size = cvRound(sum_dist/MAX(total, 1));
if( count > 0 || (out_corner_count && -count > *out_corner_count) )
{
// copy corners to output array
for(int i = 0; i < n; i++ )
out_corners[i] = corner_group[i]->pt;
if( out_corner_count )
*out_corner_count = n;
if( count == pattern_size.width*pattern_size.height
&& icvCheckBoardMonotony( out_corners, pattern_size ))
{
found = true;
break;
}
}
}
cvFree(&quad_group);
cvFree(&corner_group);
return found;
}
//==================================================================================================
CV_IMPL void
cvDrawChessboardCorners( CvArr* _image, CvSize pattern_size,
......
......@@ -46,28 +46,26 @@
#include <vector>
#include <algorithm>
//#define DEBUG_WINDOWS
using namespace cv;
using namespace std;
#if defined(DEBUG_WINDOWS)
# include "opencv2/opencv_modules.hpp"
# ifdef HAVE_OPENCV_HIGHGUI
# include "opencv2/highgui.hpp"
# else
# undef DEBUG_WINDOWS
# endif
#endif
int cvCheckChessboardBinary(IplImage* src, CvSize size);
static void icvGetQuadrangleHypotheses(CvSeq* contours, std::vector<std::pair<float, int> >& quads, int class_id)
static void icvGetQuadrangleHypotheses(const std::vector<std::vector< cv::Point > > & contours, const std::vector< cv::Vec4i > & hierarchy, std::vector<std::pair<float, int> >& quads, int class_id)
{
const float min_aspect_ratio = 0.3f;
const float max_aspect_ratio = 3.0f;
const float min_box_size = 10.0f;
for(CvSeq* seq = contours; seq != NULL; seq = seq->h_next)
typedef std::vector< std::vector< cv::Point > >::const_iterator iter_t;
iter_t i;
for (i = contours.begin(); i != contours.end(); ++i)
{
CvBox2D box = cvMinAreaRect2(seq);
const iter_t::difference_type idx = i - contours.begin();
if (hierarchy.at(idx)[3] != -1)
continue; // skip holes
const std::vector< cv::Point > & c = *i;
cv::RotatedRect box = cv::minAreaRect(c);
float box_size = MAX(box.size.width, box.size.height);
if(box_size < min_box_size)
{
......@@ -98,113 +96,98 @@ inline bool less_pred(const std::pair<float, int>& p1, const std::pair<float, in
return p1.first < p2.first;
}
// does a fast check if a chessboard is in the input image. This is a workaround to
// a problem of cvFindChessboardCorners being slow on images with no chessboard
// - src: input image
// - size: chessboard size
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
// 0 if there is no chessboard, -1 in case of error
int cvCheckChessboard(IplImage* src, CvSize size)
static void fillQuads(Mat & white, Mat & black, double white_thresh, double black_thresh, vector<pair<float, int> > & quads)
{
if(src->nChannels > 1)
Mat thresh;
{
cvError(CV_BadNumChannels, "cvCheckChessboard", "supports single-channel images only",
__FILE__, __LINE__);
vector< vector<Point> > contours;
vector< Vec4i > hierarchy;
threshold(white, thresh, white_thresh, 255, THRESH_BINARY);
findContours(thresh, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
icvGetQuadrangleHypotheses(contours, hierarchy, quads, 1);
}
if(src->depth != 8)
{
cvError(CV_BadDepth, "cvCheckChessboard", "supports depth=8 images only",
__FILE__, __LINE__);
vector< vector<Point> > contours;
vector< Vec4i > hierarchy;
threshold(black, thresh, black_thresh, 255, THRESH_BINARY_INV);
findContours(thresh, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
icvGetQuadrangleHypotheses(contours, hierarchy, quads, 0);
}
}
const int erosion_count = 1;
const float black_level = 20.f;
const float white_level = 130.f;
const float black_white_gap = 70.f;
#if defined(DEBUG_WINDOWS)
cvNamedWindow("1", 1);
cvShowImage("1", src);
cvWaitKey(0);
#endif //DEBUG_WINDOWS
CvMemStorage* storage = cvCreateMemStorage();
IplImage* white = cvCloneImage(src);
IplImage* black = cvCloneImage(src);
static bool checkQuads(vector<pair<float, int> > & quads, const cv::Size & size)
{
const size_t min_quads_count = size.width*size.height/2;
std::sort(quads.begin(), quads.end(), less_pred);
cvErode(white, white, NULL, erosion_count);
cvDilate(black, black, NULL, erosion_count);
IplImage* thresh = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
// now check if there are many hypotheses with similar sizes
// do this by floodfill-style algorithm
const float size_rel_dev = 0.4f;
int result = 0;
for(float thresh_level = black_level; thresh_level < white_level && !result; thresh_level += 20.0f)
for(size_t i = 0; i < quads.size(); i++)
{
cvThreshold(white, thresh, thresh_level + black_white_gap, 255, CV_THRESH_BINARY);
#if defined(DEBUG_WINDOWS)
cvShowImage("1", thresh);
cvWaitKey(0);
#endif //DEBUG_WINDOWS
CvSeq* first = 0;
std::vector<std::pair<float, int> > quads;
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP);
icvGetQuadrangleHypotheses(first, quads, 1);
cvThreshold(black, thresh, thresh_level, 255, CV_THRESH_BINARY_INV);
#if defined(DEBUG_WINDOWS)
cvShowImage("1", thresh);
cvWaitKey(0);
#endif //DEBUG_WINDOWS
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP);
icvGetQuadrangleHypotheses(first, quads, 0);
const size_t min_quads_count = size.width*size.height/2;
std::sort(quads.begin(), quads.end(), less_pred);
// now check if there are many hypotheses with similar sizes
// do this by floodfill-style algorithm
const float size_rel_dev = 0.4f;
for(size_t i = 0; i < quads.size(); i++)
size_t j = i + 1;
for(; j < quads.size(); j++)
{
size_t j = i + 1;
for(; j < quads.size(); j++)
if(quads[j].first/quads[i].first > 1.0f + size_rel_dev)
{
if(quads[j].first/quads[i].first > 1.0f + size_rel_dev)
{
break;
}
break;
}
}
if(j + 1 > min_quads_count + i)
if(j + 1 > min_quads_count + i)
{
// check the number of black and white squares
std::vector<int> counts;
countClasses(quads, i, j, counts);
const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0));
const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0));
if(counts[0] < black_count*0.75 ||
counts[1] < white_count*0.75)
{
// check the number of black and white squares
std::vector<int> counts;
countClasses(quads, i, j, counts);
const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0));
const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0));
if(counts[0] < black_count*0.75 ||
counts[1] < white_count*0.75)
{
continue;
}
result = 1;
break;
continue;
}
return true;
}
}
return false;
}
// does a fast check if a chessboard is in the input image. This is a workaround to
// a problem of cvFindChessboardCorners being slow on images with no chessboard
// - src: input image
// - size: chessboard size
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
// 0 if there is no chessboard, -1 in case of error
int cvCheckChessboard(IplImage* src, CvSize size)
{
cv::Mat img = cv::cvarrToMat(src);
return checkChessboard(img, size);
}
cvReleaseImage(&thresh);
cvReleaseImage(&white);
cvReleaseImage(&black);
cvReleaseMemStorage(&storage);
int checkChessboard(const cv::Mat & img, const cv::Size & size)
{
CV_Assert(img.channels() == 1 && img.depth() == CV_8U);
const int erosion_count = 1;
const float black_level = 20.f;
const float white_level = 130.f;
const float black_white_gap = 70.f;
Mat white;
Mat black;
erode(img, white, Mat(), Point(-1, -1), erosion_count);
dilate(img, black, Mat(), Point(-1, -1), erosion_count);
int result = 0;
for(float thresh_level = black_level; thresh_level < white_level && !result; thresh_level += 20.0f)
{
vector<pair<float, int> > quads;
fillQuads(white, black, thresh_level + black_white_gap, thresh_level, quads);
if (checkQuads(quads, size))
result = 1;
}
return result;
}
......@@ -214,90 +197,29 @@ int cvCheckChessboard(IplImage* src, CvSize size)
// - size: chessboard size
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
// 0 if there is no chessboard, -1 in case of error
int cvCheckChessboardBinary(IplImage* src, CvSize size)
int checkChessboardBinary(const cv::Mat & img, const cv::Size & size)
{
if(src->nChannels > 1)
{
cvError(CV_BadNumChannels, "cvCheckChessboard", "supports single-channel images only",
__FILE__, __LINE__);
}
if(src->depth != 8)
{
cvError(CV_BadDepth, "cvCheckChessboard", "supports depth=8 images only",
__FILE__, __LINE__);
}
CvMemStorage* storage = cvCreateMemStorage();
CV_Assert(img.channels() == 1 && img.depth() == CV_8U);
IplImage* white = cvCloneImage(src);
IplImage* black = cvCloneImage(src);
IplImage* thresh = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
Mat white = img.clone();
Mat black = img.clone();
int result = 0;
for ( int erosion_count = 0; erosion_count <= 3; erosion_count++ )
{
if ( 1 == result )
break;
if ( 0 != erosion_count ) // first iteration keeps original images
{
cvErode(white, white, NULL, 1);
cvDilate(black, black, NULL, 1);
}
cvThreshold(white, thresh, 128, 255, CV_THRESH_BINARY);
CvSeq* first = 0;
std::vector<std::pair<float, int> > quads;
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP);
icvGetQuadrangleHypotheses(first, quads, 1);
if ( 1 == result )
break;
cvThreshold(black, thresh, 128, 255, CV_THRESH_BINARY_INV);
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP);
icvGetQuadrangleHypotheses(first, quads, 0);
const size_t min_quads_count = size.width*size.height/2;
std::sort(quads.begin(), quads.end(), less_pred);
// now check if there are many hypotheses with similar sizes
// do this by floodfill-style algorithm
const float size_rel_dev = 0.4f;
for(size_t i = 0; i < quads.size(); i++)
{
size_t j = i + 1;
for(; j < quads.size(); j++)
{
if(quads[j].first/quads[i].first > 1.0f + size_rel_dev)
{
break;
}
}
if ( 0 != erosion_count ) // first iteration keeps original images
{
erode(white, white, Mat(), Point(-1, -1), 1);
dilate(black, black, Mat(), Point(-1, -1), 1);
}
if(j + 1 > min_quads_count + i)
{
// check the number of black and white squares
std::vector<int> counts;
countClasses(quads, i, j, counts);
const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0));
const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0));
if(counts[0] < black_count*0.75 ||
counts[1] < white_count*0.75)
{
continue;
}
result = 1;
break;
}
}
vector<pair<float, int> > quads;
fillQuads(white, black, 128, 128, quads);
if (checkQuads(quads, size))
result = 1;
}
cvReleaseImage(&thresh);
cvReleaseImage(&white);
cvReleaseImage(&black);
cvReleaseMemStorage(&storage);
return result;
}
\ No newline at end of file
}
......@@ -117,4 +117,7 @@ template<typename T> inline int compressElems( T* ptr, const uchar* mask, int ms
}
int checkChessboard(const cv::Mat & img, const cv::Size & size);
int checkChessboardBinary(const cv::Mat & img, const cv::Size & size);
#endif
......@@ -51,29 +51,31 @@ using namespace cv;
#define _L2_ERR
void show_points( const Mat& gray, const Mat& u, const vector<Point2f>& v, Size pattern_size, bool was_found )
//#define DEBUG_CHESSBOARD
#ifdef DEBUG_CHESSBOARD
#include "opencv2/highgui.hpp"
void show_points( const Mat& gray, const Mat& expected, const vector<Point2f>& actual, bool was_found )
{
Mat rgb( gray.size(), CV_8U);
merge(vector<Mat>(3, gray), rgb);
for(size_t i = 0; i < v.size(); i++ )
circle( rgb, v[i], 3, Scalar(255, 0, 0), FILLED);
for(size_t i = 0; i < actual.size(); i++ )
circle( rgb, actual[i], 5, Scalar(0, 0, 200), 1, LINE_AA);
if( !u.empty() )
if( !expected.empty() )
{
const Point2f* u_data = u.ptr<Point2f>();
size_t count = u.cols * u.rows;
const Point2f* u_data = expected.ptr<Point2f>();
size_t count = expected.cols * expected.rows;
for(size_t i = 0; i < count; i++ )
circle( rgb, u_data[i], 3, Scalar(0, 255, 0), FILLED);
}
if (!v.empty())
{
Mat corners((int)v.size(), 1, CV_32FC2, (void*)&v[0]);
drawChessboardCorners( rgb, pattern_size, corners, was_found );
circle(rgb, u_data[i], 4, Scalar(0, 240, 0), 1, LINE_AA);
}
//namedWindow( "test", 0 ); imshow( "test", rgb ); waitKey(0);
putText(rgb, was_found ? "FOUND !!!" : "NOT FOUND", Point(5, 20), FONT_HERSHEY_PLAIN, 1, Scalar(0, 240, 0));
imshow( "test", rgb ); while ((uchar)waitKey(0) != 'q') {};
}
#else
#define show_points(...)
#endif
enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
......@@ -253,7 +255,6 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
result = findCirclesGrid(gray, pattern_size, v, CALIB_CB_ASYMMETRIC_GRID | algorithmFlags);
break;
}
show_points( gray, Mat(), v, pattern_size, result );
if( result ^ doesContatinChessboard || v.size() != count_exp )
{
......@@ -280,7 +281,7 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
if( pattern == CHESSBOARD )
cornerSubPix( gray, v, Size(5, 5), Size(-1,-1), TermCriteria(TermCriteria::EPS|TermCriteria::MAX_ITER, 30, 0.1));
//find4QuadCornerSubpix(gray, v, Size(5, 5));
show_points( gray, expected, v, pattern_size, result );
show_points( gray, expected, v, result );
#ifndef WRITE_POINTS
// printf("called find4QuadCornerSubpix\n");
err = calcError(v, expected);
......@@ -298,6 +299,10 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
max_precise_error = MAX( max_precise_error, err );
#endif
}
else
{
show_points( gray, Mat(), v, result );
}
#ifdef WRITE_POINTS
Mat mat_v(pattern_size, CV_32FC2, (void*)&v[0]);
......
......@@ -57,7 +57,7 @@ class calibration_test(NewOpenCVTests):
eps = 0.01
normCamEps = 10.0
normDistEps = 0.001
normDistEps = 0.05
cameraMatrixTest = [[ 532.80992189, 0., 342.4952186 ],
[ 0., 532.93346422, 233.8879292 ],
......@@ -68,4 +68,4 @@ class calibration_test(NewOpenCVTests):
self.assertLess(abs(rms - 0.196334638034), eps)
self.assertLess(cv2.norm(camera_matrix - cameraMatrixTest, cv2.NORM_L1), normCamEps)
self.assertLess(cv2.norm(dist_coefs - distCoeffsTest, cv2.NORM_L1), normDistEps)
\ No newline at end of file
self.assertLess(cv2.norm(dist_coefs - distCoeffsTest, cv2.NORM_L1), normDistEps)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment