Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
72194b21
Commit
72194b21
authored
Feb 02, 2015
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #3651 from mshabunin:shape-test
parents
bbf3607f
cf0a29ce
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
184 additions
and
694 deletions
+184
-694
test_emdl1.cpp
modules/shape/test/test_emdl1.cpp
+0
-263
test_hausdorff.cpp
modules/shape/test/test_hausdorff.cpp
+0
-280
test_precomp.cpp
modules/shape/test/test_precomp.cpp
+0
-1
test_precomp.hpp
modules/shape/test/test_precomp.hpp
+0
-2
test_shape.cpp
modules/shape/test/test_shape.cpp
+184
-148
No files found.
modules/shape/test/test_emdl1.cpp
deleted
100644 → 0
View file @
bbf3607f
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using
namespace
cv
;
using
namespace
std
;
const
int
angularBins
=
12
;
const
int
radialBins
=
4
;
const
float
minRad
=
0.2
f
;
const
float
maxRad
=
2
;
const
int
NSN
=
5
;
//10;//20; //number of shapes per class
const
int
NP
=
100
;
//number of points sympliying the contour
const
float
CURRENT_MAX_ACCUR
=
95
;
//98% and 99% reached in several tests, 95 is fixed as minimum boundary
class
CV_ShapeEMDTest
:
public
cvtest
::
BaseTest
{
public
:
CV_ShapeEMDTest
();
~
CV_ShapeEMDTest
();
protected
:
void
run
(
int
);
private
:
void
mpegTest
();
void
listShapeNames
(
vector
<
string
>
&
listHeaders
);
vector
<
Point2f
>
convertContourType
(
const
Mat
&
,
int
n
=
0
);
float
computeShapeDistance
(
vector
<
Point2f
>&
queryNormal
,
vector
<
Point2f
>&
queryFlipped1
,
vector
<
Point2f
>&
queryFlipped2
,
vector
<
Point2f
>&
testq
);
void
displayMPEGResults
();
};
CV_ShapeEMDTest
::
CV_ShapeEMDTest
()
{
}
CV_ShapeEMDTest
::~
CV_ShapeEMDTest
()
{
}
vector
<
Point2f
>
CV_ShapeEMDTest
::
convertContourType
(
const
Mat
&
currentQuery
,
int
n
)
{
vector
<
vector
<
Point
>
>
_contoursQuery
;
vector
<
Point2f
>
contoursQuery
;
findContours
(
currentQuery
,
_contoursQuery
,
RETR_LIST
,
CHAIN_APPROX_NONE
);
for
(
size_t
border
=
0
;
border
<
_contoursQuery
.
size
();
border
++
)
{
for
(
size_t
p
=
0
;
p
<
_contoursQuery
[
border
].
size
();
p
++
)
{
contoursQuery
.
push_back
(
Point2f
((
float
)
_contoursQuery
[
border
][
p
].
x
,
(
float
)
_contoursQuery
[
border
][
p
].
y
));
}
}
// In case actual number of points is less than n
int
dum
=
0
;
for
(
int
add
=
(
int
)
contoursQuery
.
size
()
-
1
;
add
<
n
;
add
++
)
{
contoursQuery
.
push_back
(
contoursQuery
[
dum
++
]);
//adding dummy values
}
// Uniformly sampling
random_shuffle
(
contoursQuery
.
begin
(),
contoursQuery
.
end
());
int
nStart
=
n
;
vector
<
Point2f
>
cont
;
for
(
int
i
=
0
;
i
<
nStart
;
i
++
)
{
cont
.
push_back
(
contoursQuery
[
i
]);
}
return
cont
;
}
void
CV_ShapeEMDTest
::
listShapeNames
(
vector
<
string
>
&
listHeaders
)
{
listHeaders
.
push_back
(
"apple"
);
//ok
listHeaders
.
push_back
(
"children"
);
// ok
listHeaders
.
push_back
(
"device7"
);
// ok
listHeaders
.
push_back
(
"Heart"
);
// ok
listHeaders
.
push_back
(
"teddy"
);
// ok
}
float
CV_ShapeEMDTest
::
computeShapeDistance
(
vector
<
Point2f
>&
query1
,
vector
<
Point2f
>&
query2
,
vector
<
Point2f
>&
query3
,
vector
<
Point2f
>&
testq
)
{
//waitKey(0);
Ptr
<
ShapeContextDistanceExtractor
>
mysc
=
createShapeContextDistanceExtractor
(
angularBins
,
radialBins
,
minRad
,
maxRad
);
//Ptr <HistogramCostExtractor> cost = createNormHistogramCostExtractor(cv::DIST_L1);
//Ptr <HistogramCostExtractor> cost = createChiHistogramCostExtractor(30,0.15);
//Ptr <HistogramCostExtractor> cost = createEMDHistogramCostExtractor();
// Ptr <HistogramCostExtractor> cost = createEMDL1HistogramCostExtractor();
mysc
->
setIterations
(
1
);
//(3)
mysc
->
setCostExtractor
(
createEMDL1HistogramCostExtractor
()
);
//mysc->setTransformAlgorithm(createAffineTransformer(true));
mysc
->
setTransformAlgorithm
(
createThinPlateSplineShapeTransformer
()
);
//mysc->setImageAppearanceWeight(1.6);
//mysc->setImageAppearanceWeight(0.0);
//mysc->setImages(im1,imtest);
return
(
std
::
min
(
mysc
->
computeDistance
(
query1
,
testq
),
std
::
min
(
mysc
->
computeDistance
(
query2
,
testq
),
mysc
->
computeDistance
(
query3
,
testq
)
)));
}
void
CV_ShapeEMDTest
::
mpegTest
()
{
string
baseTestFolder
=
"shape/mpeg_test/"
;
string
path
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
baseTestFolder
;
vector
<
string
>
namesHeaders
;
listShapeNames
(
namesHeaders
);
// distance matrix //
Mat
distanceMat
=
Mat
::
zeros
(
NSN
*
(
int
)
namesHeaders
.
size
(),
NSN
*
(
int
)
namesHeaders
.
size
(),
CV_32F
);
// query contours (normal v flipped, h flipped) and testing contour //
vector
<
Point2f
>
contoursQuery1
,
contoursQuery2
,
contoursQuery3
,
contoursTesting
;
// reading query and computing its properties //
int
counter
=
0
;
const
int
loops
=
NSN
*
(
int
)
namesHeaders
.
size
()
*
NSN
*
(
int
)
namesHeaders
.
size
();
for
(
size_t
n
=
0
;
n
<
namesHeaders
.
size
();
n
++
)
{
for
(
int
i
=
1
;
i
<=
NSN
;
i
++
)
{
// read current image //
stringstream
thepathandname
;
thepathandname
<<
path
+
namesHeaders
[
n
]
<<
"-"
<<
i
<<
".png"
;
Mat
currentQuery
,
flippedHQuery
,
flippedVQuery
;
currentQuery
=
imread
(
thepathandname
.
str
(),
IMREAD_GRAYSCALE
);
flip
(
currentQuery
,
flippedHQuery
,
0
);
flip
(
currentQuery
,
flippedVQuery
,
1
);
// compute border of the query and its flipped versions //
vector
<
Point2f
>
origContour
;
contoursQuery1
=
convertContourType
(
currentQuery
,
NP
);
origContour
=
contoursQuery1
;
contoursQuery2
=
convertContourType
(
flippedHQuery
,
NP
);
contoursQuery3
=
convertContourType
(
flippedVQuery
,
NP
);
// compare with all the rest of the images: testing //
for
(
size_t
nt
=
0
;
nt
<
namesHeaders
.
size
();
nt
++
)
{
for
(
int
it
=
1
;
it
<=
NSN
;
it
++
)
{
// skip self-comparisson //
counter
++
;
if
(
nt
==
n
&&
it
==
i
)
{
distanceMat
.
at
<
float
>
(
NSN
*
(
int
)
n
+
i
-
1
,
NSN
*
(
int
)
nt
+
it
-
1
)
=
0
;
continue
;
}
// read testing image //
stringstream
thetestpathandname
;
thetestpathandname
<<
path
+
namesHeaders
[
nt
]
<<
"-"
<<
it
<<
".png"
;
Mat
currentTest
;
currentTest
=
imread
(
thetestpathandname
.
str
().
c_str
(),
0
);
// compute border of the testing //
contoursTesting
=
convertContourType
(
currentTest
,
NP
);
// compute shape distance //
std
::
cout
<<
std
::
endl
<<
"Progress: "
<<
counter
<<
"/"
<<
loops
<<
": "
<<
100
*
double
(
counter
)
/
loops
<<
"% *******"
<<
std
::
endl
;
std
::
cout
<<
"Computing shape distance between "
<<
namesHeaders
[
n
]
<<
i
<<
" and "
<<
namesHeaders
[
nt
]
<<
it
<<
": "
;
distanceMat
.
at
<
float
>
(
NSN
*
(
int
)
n
+
i
-
1
,
NSN
*
(
int
)
nt
+
it
-
1
)
=
computeShapeDistance
(
contoursQuery1
,
contoursQuery2
,
contoursQuery3
,
contoursTesting
);
std
::
cout
<<
distanceMat
.
at
<
float
>
(
NSN
*
(
int
)
n
+
i
-
1
,
NSN
*
(
int
)
nt
+
it
-
1
)
<<
std
::
endl
;
}
}
}
}
// save distance matrix //
FileStorage
fs
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
baseTestFolder
+
"distanceMatrixMPEGTest.yml"
,
FileStorage
::
WRITE
);
fs
<<
"distanceMat"
<<
distanceMat
;
}
const
int
FIRST_MANY
=
2
*
NSN
;
void
CV_ShapeEMDTest
::
displayMPEGResults
()
{
string
baseTestFolder
=
"shape/mpeg_test/"
;
Mat
distanceMat
;
FileStorage
fs
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
baseTestFolder
+
"distanceMatrixMPEGTest.yml"
,
FileStorage
::
READ
);
vector
<
string
>
namesHeaders
;
listShapeNames
(
namesHeaders
);
// Read generated MAT //
fs
[
"distanceMat"
]
>>
distanceMat
;
int
corrects
=
0
;
int
divi
=
0
;
for
(
int
row
=
0
;
row
<
distanceMat
.
rows
;
row
++
)
{
if
(
row
%
NSN
==
0
)
//another group
{
divi
+=
NSN
;
}
for
(
int
col
=
divi
-
NSN
;
col
<
divi
;
col
++
)
{
int
nsmall
=
0
;
for
(
int
i
=
0
;
i
<
distanceMat
.
cols
;
i
++
)
{
if
(
distanceMat
.
at
<
float
>
(
row
,
col
)
>
distanceMat
.
at
<
float
>
(
row
,
i
))
{
nsmall
++
;
}
}
if
(
nsmall
<=
FIRST_MANY
)
{
corrects
++
;
}
}
}
float
porc
=
100
*
float
(
corrects
)
/
(
NSN
*
distanceMat
.
rows
);
std
::
cout
<<
"%="
<<
porc
<<
std
::
endl
;
if
(
porc
>=
CURRENT_MAX_ACCUR
)
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
else
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
}
void
CV_ShapeEMDTest
::
run
(
int
/*start_from*/
)
{
mpegTest
();
displayMPEGResults
();
}
TEST
(
ShapeEMD_SCD
,
regression
)
{
CV_ShapeEMDTest
test
;
test
.
safe_run
();
}
modules/shape/test/test_hausdorff.cpp
deleted
100644 → 0
View file @
bbf3607f
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <stdlib.h>
using
namespace
cv
;
using
namespace
std
;
const
int
NSN
=
5
;
//10;//20; //number of shapes per class
const
float
CURRENT_MAX_ACCUR
=
85
;
//90% and 91% reached in several tests, 85 is fixed as minimum boundary
class
CV_HaussTest
:
public
cvtest
::
BaseTest
{
public
:
CV_HaussTest
();
~
CV_HaussTest
();
protected
:
void
run
(
int
);
private
:
float
computeShapeDistance
(
vector
<
Point
>
&
query1
,
vector
<
Point
>
&
query2
,
vector
<
Point
>
&
query3
,
vector
<
Point
>
&
testq
);
vector
<
Point
>
convertContourType
(
const
Mat
&
currentQuery
,
int
n
=
180
);
vector
<
Point2f
>
normalizeContour
(
const
vector
<
Point
>&
contour
);
void
listShapeNames
(
vector
<
string
>
&
listHeaders
);
void
mpegTest
();
void
displayMPEGResults
();
};
CV_HaussTest
::
CV_HaussTest
()
{
}
CV_HaussTest
::~
CV_HaussTest
()
{
}
vector
<
Point2f
>
CV_HaussTest
::
normalizeContour
(
const
vector
<
Point
>
&
contour
)
{
vector
<
Point2f
>
output
(
contour
.
size
());
Mat
disMat
((
int
)
contour
.
size
(),(
int
)
contour
.
size
(),
CV_32F
);
Point2f
meanpt
(
0
,
0
);
float
meanVal
=
1
;
for
(
int
ii
=
0
,
end1
=
(
int
)
contour
.
size
();
ii
<
end1
;
ii
++
)
{
for
(
int
jj
=
0
,
end2
=
(
int
)
contour
.
size
();
end2
;
jj
++
)
{
if
(
ii
==
jj
)
disMat
.
at
<
float
>
(
ii
,
jj
)
=
0
;
else
{
disMat
.
at
<
float
>
(
ii
,
jj
)
=
float
(
fabs
(
double
(
contour
[
ii
].
x
*
contour
[
jj
].
x
)))
+
float
(
fabs
(
double
(
contour
[
ii
].
y
*
contour
[
jj
].
y
)));
}
}
meanpt
.
x
+=
contour
[
ii
].
x
;
meanpt
.
y
+=
contour
[
ii
].
y
;
}
meanpt
.
x
/=
contour
.
size
();
meanpt
.
y
/=
contour
.
size
();
meanVal
=
float
(
cv
::
mean
(
disMat
)[
0
]);
for
(
size_t
ii
=
0
;
ii
<
contour
.
size
();
ii
++
)
{
output
[
ii
].
x
=
(
contour
[
ii
].
x
-
meanpt
.
x
)
/
meanVal
;
output
[
ii
].
y
=
(
contour
[
ii
].
y
-
meanpt
.
y
)
/
meanVal
;
}
return
output
;
}
void
CV_HaussTest
::
listShapeNames
(
vector
<
string
>
&
listHeaders
)
{
listHeaders
.
push_back
(
"apple"
);
//ok
listHeaders
.
push_back
(
"children"
);
// ok
listHeaders
.
push_back
(
"device7"
);
// ok
listHeaders
.
push_back
(
"Heart"
);
// ok
listHeaders
.
push_back
(
"teddy"
);
// ok
}
vector
<
Point
>
CV_HaussTest
::
convertContourType
(
const
Mat
&
currentQuery
,
int
n
)
{
vector
<
vector
<
Point
>
>
_contoursQuery
;
vector
<
Point
>
contoursQuery
;
findContours
(
currentQuery
,
_contoursQuery
,
RETR_LIST
,
CHAIN_APPROX_NONE
);
for
(
size_t
border
=
0
;
border
<
_contoursQuery
.
size
();
border
++
)
{
for
(
size_t
p
=
0
;
p
<
_contoursQuery
[
border
].
size
();
p
++
)
{
contoursQuery
.
push_back
(
_contoursQuery
[
border
][
p
]);
}
}
// In case actual number of points is less than n
for
(
int
add
=
(
int
)
contoursQuery
.
size
()
-
1
;
add
<
n
;
add
++
)
{
contoursQuery
.
push_back
(
contoursQuery
[
contoursQuery
.
size
()
-
add
+
1
]);
//adding dummy values
}
// Uniformly sampling
random_shuffle
(
contoursQuery
.
begin
(),
contoursQuery
.
end
());
int
nStart
=
n
;
vector
<
Point
>
cont
;
for
(
int
i
=
0
;
i
<
nStart
;
i
++
)
{
cont
.
push_back
(
contoursQuery
[
i
]);
}
return
cont
;
}
float
CV_HaussTest
::
computeShapeDistance
(
vector
<
Point
>&
query1
,
vector
<
Point
>&
query2
,
vector
<
Point
>&
query3
,
vector
<
Point
>&
testq
)
{
Ptr
<
HausdorffDistanceExtractor
>
haus
=
createHausdorffDistanceExtractor
();
return
std
::
min
(
haus
->
computeDistance
(
query1
,
testq
),
std
::
min
(
haus
->
computeDistance
(
query2
,
testq
),
haus
->
computeDistance
(
query3
,
testq
)));
}
void
CV_HaussTest
::
mpegTest
()
{
string
baseTestFolder
=
"shape/mpeg_test/"
;
string
path
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
baseTestFolder
;
vector
<
string
>
namesHeaders
;
listShapeNames
(
namesHeaders
);
// distance matrix //
Mat
distanceMat
=
Mat
::
zeros
(
NSN
*
(
int
)
namesHeaders
.
size
(),
NSN
*
(
int
)
namesHeaders
.
size
(),
CV_32F
);
// query contours (normal v flipped, h flipped) and testing contour //
vector
<
Point
>
contoursQuery1
,
contoursQuery2
,
contoursQuery3
,
contoursTesting
;
// reading query and computing its properties //
int
counter
=
0
;
const
int
loops
=
NSN
*
(
int
)
namesHeaders
.
size
()
*
NSN
*
(
int
)
namesHeaders
.
size
();
for
(
size_t
n
=
0
;
n
<
namesHeaders
.
size
();
n
++
)
{
for
(
int
i
=
1
;
i
<=
NSN
;
i
++
)
{
// read current image //
stringstream
thepathandname
;
thepathandname
<<
path
+
namesHeaders
[
n
]
<<
"-"
<<
i
<<
".png"
;
Mat
currentQuery
,
flippedHQuery
,
flippedVQuery
;
currentQuery
=
imread
(
thepathandname
.
str
(),
IMREAD_GRAYSCALE
);
flip
(
currentQuery
,
flippedHQuery
,
0
);
flip
(
currentQuery
,
flippedVQuery
,
1
);
// compute border of the query and its flipped versions //
vector
<
Point
>
origContour
;
contoursQuery1
=
convertContourType
(
currentQuery
);
origContour
=
contoursQuery1
;
contoursQuery2
=
convertContourType
(
flippedHQuery
);
contoursQuery3
=
convertContourType
(
flippedVQuery
);
// compare with all the rest of the images: testing //
for
(
size_t
nt
=
0
;
nt
<
namesHeaders
.
size
();
nt
++
)
{
for
(
int
it
=
1
;
it
<=
NSN
;
it
++
)
{
/* skip self-comparisson */
counter
++
;
if
(
nt
==
n
&&
it
==
i
)
{
distanceMat
.
at
<
float
>
(
NSN
*
(
int
)
n
+
i
-
1
,
NSN
*
(
int
)
nt
+
it
-
1
)
=
0
;
continue
;
}
// read testing image //
stringstream
thetestpathandname
;
thetestpathandname
<<
path
+
namesHeaders
[
nt
]
<<
"-"
<<
it
<<
".png"
;
Mat
currentTest
;
currentTest
=
imread
(
thetestpathandname
.
str
().
c_str
(),
0
);
// compute border of the testing //
contoursTesting
=
convertContourType
(
currentTest
);
// compute shape distance //
std
::
cout
<<
std
::
endl
<<
"Progress: "
<<
counter
<<
"/"
<<
loops
<<
": "
<<
100
*
double
(
counter
)
/
loops
<<
"% *******"
<<
std
::
endl
;
std
::
cout
<<
"Computing shape distance between "
<<
namesHeaders
[
n
]
<<
i
<<
" and "
<<
namesHeaders
[
nt
]
<<
it
<<
": "
;
distanceMat
.
at
<
float
>
(
NSN
*
(
int
)
n
+
i
-
1
,
NSN
*
(
int
)
nt
+
it
-
1
)
=
computeShapeDistance
(
contoursQuery1
,
contoursQuery2
,
contoursQuery3
,
contoursTesting
);
std
::
cout
<<
distanceMat
.
at
<
float
>
(
NSN
*
(
int
)
n
+
i
-
1
,
NSN
*
(
int
)
nt
+
it
-
1
)
<<
std
::
endl
;
}
}
}
}
// save distance matrix //
FileStorage
fs
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
baseTestFolder
+
"distanceMatrixMPEGTest.yml"
,
FileStorage
::
WRITE
);
fs
<<
"distanceMat"
<<
distanceMat
;
}
const
int
FIRST_MANY
=
2
*
NSN
;
void
CV_HaussTest
::
displayMPEGResults
()
{
string
baseTestFolder
=
"shape/mpeg_test/"
;
Mat
distanceMat
;
FileStorage
fs
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
baseTestFolder
+
"distanceMatrixMPEGTest.yml"
,
FileStorage
::
READ
);
vector
<
string
>
namesHeaders
;
listShapeNames
(
namesHeaders
);
// Read generated MAT //
fs
[
"distanceMat"
]
>>
distanceMat
;
int
corrects
=
0
;
int
divi
=
0
;
for
(
int
row
=
0
;
row
<
distanceMat
.
rows
;
row
++
)
{
if
(
row
%
NSN
==
0
)
//another group
{
divi
+=
NSN
;
}
for
(
int
col
=
divi
-
NSN
;
col
<
divi
;
col
++
)
{
int
nsmall
=
0
;
for
(
int
i
=
0
;
i
<
distanceMat
.
cols
;
i
++
)
{
if
(
distanceMat
.
at
<
float
>
(
row
,
col
)
>
distanceMat
.
at
<
float
>
(
row
,
i
))
{
nsmall
++
;
}
}
if
(
nsmall
<=
FIRST_MANY
)
{
corrects
++
;
}
}
}
float
porc
=
100
*
float
(
corrects
)
/
(
NSN
*
distanceMat
.
rows
);
std
::
cout
<<
"%="
<<
porc
<<
std
::
endl
;
if
(
porc
>=
CURRENT_MAX_ACCUR
)
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
else
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
}
void
CV_HaussTest
::
run
(
int
/* */
)
{
mpegTest
();
displayMPEGResults
();
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
}
TEST
(
Hauss
,
regression
)
{
CV_HaussTest
test
;
test
.
safe_run
();
}
modules/shape/test/test_precomp.cpp
deleted
100644 → 0
View file @
bbf3607f
#include "test_precomp.hpp"
modules/shape/test/test_precomp.hpp
View file @
72194b21
...
...
@@ -16,6 +16,4 @@
#include "opencv2/imgcodecs.hpp"
#include "opencv2/shape.hpp"
#include "opencv2/opencv_modules.hpp"
#endif
modules/shape/test/test_shape.cpp
View file @
72194b21
...
...
@@ -44,183 +44,116 @@
using
namespace
cv
;
using
namespace
std
;
const
int
angularBins
=
12
;
const
int
radialBins
=
4
;
const
float
minRad
=
0.2
f
;
const
float
maxRad
=
2
;
const
int
NSN
=
5
;
//10;//20; //number of shapes per class
const
int
NP
=
120
;
//number of points sympliying the contour
const
float
CURRENT_MAX_ACCUR
=
95
;
//99% and 100% reached in several tests, 95 is fixed as minimum boundary
class
CV_ShapeTest
:
public
cvtest
::
BaseTest
template
<
typename
T
,
typename
compute
>
class
ShapeBaseTest
:
public
cvtest
::
BaseTest
{
public
:
CV_ShapeTest
();
~
CV_ShapeTest
();
protected
:
void
run
(
int
);
private
:
void
mpegTest
();
void
listShapeNames
(
vector
<
string
>
&
listHeaders
);
vector
<
Point2f
>
convertContourType
(
const
Mat
&
,
int
n
=
0
);
float
computeShapeDistance
(
vector
<
Point2f
>&
queryNormal
,
vector
<
Point2f
>&
queryFlipped1
,
vector
<
Point2f
>&
queryFlipped2
,
vector
<
Point2f
>&
testq
);
void
displayMPEGResults
();
};
typedef
Point_
<
T
>
PointType
;
ShapeBaseTest
(
int
_NSN
,
int
_NP
,
float
_CURRENT_MAX_ACCUR
)
:
NSN
(
_NSN
),
NP
(
_NP
),
CURRENT_MAX_ACCUR
(
_CURRENT_MAX_ACCUR
)
{
// generate file list
vector
<
string
>
shapeNames
;
shapeNames
.
push_back
(
"apple"
);
//ok
shapeNames
.
push_back
(
"children"
);
// ok
shapeNames
.
push_back
(
"device7"
);
// ok
shapeNames
.
push_back
(
"Heart"
);
// ok
shapeNames
.
push_back
(
"teddy"
);
// ok
for
(
vector
<
string
>::
const_iterator
i
=
shapeNames
.
begin
();
i
!=
shapeNames
.
end
();
++
i
)
{
for
(
int
j
=
0
;
j
<
NSN
;
++
j
)
{
stringstream
filename
;
filename
<<
cvtest
::
TS
::
ptr
()
->
get_data_path
()
<<
"shape/mpeg_test/"
<<
*
i
<<
"-"
<<
j
+
1
<<
".png"
;
filenames
.
push_back
(
filename
.
str
());
}
}
// distance matrix
const
int
totalCount
=
(
int
)
filenames
.
size
();
distanceMat
=
Mat
::
zeros
(
totalCount
,
totalCount
,
CV_32F
);
}
CV_ShapeTest
::
CV_ShapeTest
()
{
}
CV_ShapeTest
::~
CV_ShapeTest
()
{
}
protected
:
void
run
(
int
)
{
mpegTest
();
displayMPEGResults
();
}
vector
<
Point2f
>
CV_ShapeTest
::
convertContourType
(
const
Mat
&
currentQuery
,
int
n
)
{
vector
<
PointType
>
convertContourType
(
const
Mat
&
currentQuery
)
const
{
vector
<
vector
<
Point
>
>
_contoursQuery
;
vector
<
Point2f
>
contoursQuery
;
findContours
(
currentQuery
,
_contoursQuery
,
RETR_LIST
,
CHAIN_APPROX_NONE
);
vector
<
PointType
>
contoursQuery
;
for
(
size_t
border
=
0
;
border
<
_contoursQuery
.
size
();
border
++
)
{
for
(
size_t
p
=
0
;
p
<
_contoursQuery
[
border
].
size
();
p
++
)
{
contoursQuery
.
push_back
(
Point2f
((
float
)
_contoursQuery
[
border
][
p
].
x
,
(
float
)
_contoursQuery
[
border
][
p
].
y
));
contoursQuery
.
push_back
(
PointType
((
T
)
_contoursQuery
[
border
][
p
].
x
,
(
T
)
_contoursQuery
[
border
][
p
].
y
));
}
}
// In case actual number of points is less than n
for
(
int
add
=
(
int
)
contoursQuery
.
size
()
-
1
;
add
<
n
;
add
++
)
for
(
int
add
=
(
int
)
contoursQuery
.
size
()
-
1
;
add
<
NP
;
add
++
)
{
contoursQuery
.
push_back
(
contoursQuery
[
contoursQuery
.
size
()
-
add
+
1
]);
//adding dummy values
}
// Uniformly sampling
random_shuffle
(
contoursQuery
.
begin
(),
contoursQuery
.
end
());
int
nStart
=
n
;
vector
<
Point2f
>
cont
;
int
nStart
=
NP
;
vector
<
PointType
>
cont
;
for
(
int
i
=
0
;
i
<
nStart
;
i
++
)
{
cont
.
push_back
(
contoursQuery
[
i
]);
}
return
cont
;
}
void
CV_ShapeTest
::
listShapeNames
(
vector
<
string
>
&
listHeaders
)
{
listHeaders
.
push_back
(
"apple"
);
//ok
listHeaders
.
push_back
(
"children"
);
// ok
listHeaders
.
push_back
(
"device7"
);
// ok
listHeaders
.
push_back
(
"Heart"
);
// ok
listHeaders
.
push_back
(
"teddy"
);
// ok
}
float
CV_ShapeTest
::
computeShapeDistance
(
vector
<
Point2f
>&
query1
,
vector
<
Point2f
>&
query2
,
vector
<
Point2f
>&
query3
,
vector
<
Point2f
>&
testq
)
{
//waitKey(0);
Ptr
<
ShapeContextDistanceExtractor
>
mysc
=
createShapeContextDistanceExtractor
(
angularBins
,
radialBins
,
minRad
,
maxRad
);
//Ptr <HistogramCostExtractor> cost = createNormHistogramCostExtractor(cv::DIST_L1);
Ptr
<
HistogramCostExtractor
>
cost
=
createChiHistogramCostExtractor
(
30
,
0.15
f
);
//Ptr <HistogramCostExtractor> cost = createEMDHistogramCostExtractor();
//Ptr <HistogramCostExtractor> cost = createEMDL1HistogramCostExtractor();
mysc
->
setIterations
(
1
);
mysc
->
setCostExtractor
(
cost
);
//mysc->setTransformAlgorithm(createAffineTransformer(true));
mysc
->
setTransformAlgorithm
(
createThinPlateSplineShapeTransformer
()
);
//mysc->setImageAppearanceWeight(1.6);
//mysc->setImageAppearanceWeight(0.0);
//mysc->setImages(im1,imtest);
return
(
std
::
min
(
mysc
->
computeDistance
(
query1
,
testq
),
std
::
min
(
mysc
->
computeDistance
(
query2
,
testq
),
mysc
->
computeDistance
(
query3
,
testq
)
)));
}
void
CV_ShapeTest
::
mpegTest
()
{
string
baseTestFolder
=
"shape/mpeg_test/"
;
string
path
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
baseTestFolder
;
vector
<
string
>
namesHeaders
;
listShapeNames
(
namesHeaders
);
// distance matrix //
Mat
distanceMat
=
Mat
::
zeros
(
NSN
*
(
int
)
namesHeaders
.
size
(),
NSN
*
(
int
)
namesHeaders
.
size
(),
CV_32F
);
// query contours (normal v flipped, h flipped) and testing contour //
vector
<
Point2f
>
contoursQuery1
,
contoursQuery2
,
contoursQuery3
,
contoursTesting
;
}
// reading query and computing its properties //
int
counter
=
0
;
const
int
loops
=
NSN
*
(
int
)
namesHeaders
.
size
()
*
NSN
*
(
int
)
namesHeaders
.
size
();
for
(
size_t
n
=
0
;
n
<
namesHeaders
.
size
();
n
++
)
void
mpegTest
()
{
for
(
int
i
=
1
;
i
<=
NSN
;
i
++
)
// query contours (normal v flipped, h flipped) and testing contour
vector
<
PointType
>
contoursQuery1
,
contoursQuery2
,
contoursQuery3
,
contoursTesting
;
// reading query and computing its properties
for
(
vector
<
string
>::
const_iterator
a
=
filenames
.
begin
();
a
!=
filenames
.
end
();
++
a
)
{
// read current image //
stringstream
thepathandname
;
thepathandname
<<
path
+
namesHeaders
[
n
]
<<
"-"
<<
i
<<
".png"
;
Mat
currentQuery
,
flippedHQuery
,
flippedVQuery
;
currentQuery
=
imread
(
thepathandname
.
str
(),
IMREAD_GRAYSCALE
);
Mat
currentQueryBuf
=
currentQuery
.
clone
();
// read current image
int
aIndex
=
(
int
)(
a
-
filenames
.
begin
());
Mat
currentQuery
=
imread
(
*
a
,
IMREAD_GRAYSCALE
);
Mat
flippedHQuery
,
flippedVQuery
;
flip
(
currentQuery
,
flippedHQuery
,
0
);
flip
(
currentQuery
,
flippedVQuery
,
1
);
// compute border of the query and its flipped versions //
vector
<
Point2f
>
origContour
;
contoursQuery1
=
convertContourType
(
currentQuery
,
NP
);
origContour
=
contoursQuery1
;
contoursQuery2
=
convertContourType
(
flippedHQuery
,
NP
);
contoursQuery3
=
convertContourType
(
flippedVQuery
,
NP
);
// compare with all the rest of the images: testing //
for
(
size_t
nt
=
0
;
nt
<
namesHeaders
.
size
();
nt
++
)
// compute border of the query and its flipped versions
contoursQuery1
=
convertContourType
(
currentQuery
);
contoursQuery2
=
convertContourType
(
flippedHQuery
);
contoursQuery3
=
convertContourType
(
flippedVQuery
);
// compare with all the rest of the images: testing
for
(
vector
<
string
>::
const_iterator
b
=
filenames
.
begin
();
b
!=
filenames
.
end
();
++
b
)
{
for
(
int
it
=
1
;
it
<=
NSN
;
it
++
)
int
bIndex
=
(
int
)(
b
-
filenames
.
begin
());
float
distance
=
0
;
// skip self-comparisson
if
(
a
!=
b
)
{
// skip self-comparisson //
counter
++
;
if
(
nt
==
n
&&
it
==
i
)
{
distanceMat
.
at
<
float
>
(
NSN
*
(
int
)
n
+
i
-
1
,
NSN
*
(
int
)
nt
+
it
-
1
)
=
0
;
continue
;
}
// read testing image //
stringstream
thetestpathandname
;
thetestpathandname
<<
path
+
namesHeaders
[
nt
]
<<
"-"
<<
it
<<
".png"
;
Mat
currentTest
;
currentTest
=
imread
(
thetestpathandname
.
str
().
c_str
(),
0
);
// compute border of the testing //
contoursTesting
=
convertContourType
(
currentTest
,
NP
);
// compute shape distance //
std
::
cout
<<
std
::
endl
<<
"Progress: "
<<
counter
<<
"/"
<<
loops
<<
": "
<<
100
*
double
(
counter
)
/
loops
<<
"% *******"
<<
std
::
endl
;
std
::
cout
<<
"Computing shape distance between "
<<
namesHeaders
[
n
]
<<
i
<<
" and "
<<
namesHeaders
[
nt
]
<<
it
<<
": "
;
distanceMat
.
at
<
float
>
(
NSN
*
(
int
)
n
+
i
-
1
,
NSN
*
(
int
)
nt
+
it
-
1
)
=
computeShapeDistance
(
contoursQuery1
,
contoursQuery2
,
contoursQuery3
,
contoursTesting
);
std
::
cout
<<
distanceMat
.
at
<
float
>
(
NSN
*
(
int
)
n
+
i
-
1
,
NSN
*
(
int
)
nt
+
it
-
1
)
<<
std
::
endl
;
// read testing image
Mat
currentTest
=
imread
(
*
b
,
IMREAD_GRAYSCALE
);
// compute border of the testing
contoursTesting
=
convertContourType
(
currentTest
);
// compute shape distance
distance
=
cmp
(
contoursQuery1
,
contoursQuery2
,
contoursQuery3
,
contoursTesting
);
}
distanceMat
.
at
<
float
>
(
aIndex
,
bIndex
)
=
distance
;
}
}
}
// save distance matrix //
FileStorage
fs
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
baseTestFolder
+
"distanceMatrixMPEGTest.yml"
,
FileStorage
::
WRITE
);
fs
<<
"distanceMat"
<<
distanceMat
;
}
const
int
FIRST_MANY
=
2
*
NSN
;
void
CV_ShapeTest
::
displayMPEGResults
()
{
string
baseTestFolder
=
"shape/mpeg_test/"
;
Mat
distanceMat
;
FileStorage
fs
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
baseTestFolder
+
"distanceMatrixMPEGTest.yml"
,
FileStorage
::
READ
);
vector
<
string
>
namesHeaders
;
listShapeNames
(
namesHeaders
);
// Read generated MAT //
fs
[
"distanceMat"
]
>>
distanceMat
;
void
displayMPEGResults
()
{
const
int
FIRST_MANY
=
2
*
NSN
;
int
corrects
=
0
;
int
divi
=
0
;
...
...
@@ -235,7 +168,7 @@ void CV_ShapeTest::displayMPEGResults()
int
nsmall
=
0
;
for
(
int
i
=
0
;
i
<
distanceMat
.
cols
;
i
++
)
{
if
(
distanceMat
.
at
<
float
>
(
row
,
col
)
>
distanceMat
.
at
<
float
>
(
row
,
i
))
if
(
distanceMat
.
at
<
float
>
(
row
,
col
)
>
distanceMat
.
at
<
float
>
(
row
,
i
))
{
nsmall
++
;
}
...
...
@@ -247,19 +180,122 @@ void CV_ShapeTest::displayMPEGResults()
}
}
float
porc
=
100
*
float
(
corrects
)
/
(
NSN
*
distanceMat
.
rows
);
std
::
cout
<<
"%="
<<
porc
<<
std
::
endl
;
std
::
cout
<<
"Test result: "
<<
porc
<<
"%"
<<
std
::
endl
;
if
(
porc
>=
CURRENT_MAX_ACCUR
)
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
else
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
//done
}
protected
:
int
NSN
;
int
NP
;
float
CURRENT_MAX_ACCUR
;
vector
<
string
>
filenames
;
Mat
distanceMat
;
compute
cmp
;
};
//------------------------------------------------------------------------
// Test Shape_SCD.regression
//------------------------------------------------------------------------
class
computeShapeDistance_Chi
{
Ptr
<
ShapeContextDistanceExtractor
>
mysc
;
public
:
computeShapeDistance_Chi
()
{
const
int
angularBins
=
12
;
const
int
radialBins
=
4
;
const
float
minRad
=
0.2
f
;
const
float
maxRad
=
2
;
mysc
=
createShapeContextDistanceExtractor
(
angularBins
,
radialBins
,
minRad
,
maxRad
);
mysc
->
setIterations
(
1
);
mysc
->
setCostExtractor
(
createChiHistogramCostExtractor
(
30
,
0.15
f
));
mysc
->
setTransformAlgorithm
(
createThinPlateSplineShapeTransformer
()
);
}
float
operator
()(
vector
<
Point2f
>&
query1
,
vector
<
Point2f
>&
query2
,
vector
<
Point2f
>&
query3
,
vector
<
Point2f
>&
testq
)
{
return
std
::
min
(
mysc
->
computeDistance
(
query1
,
testq
),
std
::
min
(
mysc
->
computeDistance
(
query2
,
testq
),
mysc
->
computeDistance
(
query3
,
testq
)));
}
};
TEST
(
Shape_SCD
,
regression
)
{
const
int
NSN_val
=
5
;
//10;//20; //number of shapes per class
const
int
NP_val
=
120
;
//number of points simplifying the contour
const
float
CURRENT_MAX_ACCUR_val
=
95
;
//99% and 100% reached in several tests, 95 is fixed as minimum boundary
ShapeBaseTest
<
float
,
computeShapeDistance_Chi
>
test
(
NSN_val
,
NP_val
,
CURRENT_MAX_ACCUR_val
);
test
.
safe_run
();
}
void
CV_ShapeTest
::
run
(
int
/*start_from*/
)
//------------------------------------------------------------------------
// Test ShapeEMD_SCD.regression
//------------------------------------------------------------------------
class
computeShapeDistance_EMD
{
mpegTest
();
displayMPEGResults
();
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
Ptr
<
ShapeContextDistanceExtractor
>
mysc
;
public
:
computeShapeDistance_EMD
()
{
const
int
angularBins
=
12
;
const
int
radialBins
=
4
;
const
float
minRad
=
0.2
f
;
const
float
maxRad
=
2
;
mysc
=
createShapeContextDistanceExtractor
(
angularBins
,
radialBins
,
minRad
,
maxRad
);
mysc
->
setIterations
(
1
);
mysc
->
setCostExtractor
(
createEMDL1HistogramCostExtractor
()
);
mysc
->
setTransformAlgorithm
(
createThinPlateSplineShapeTransformer
()
);
}
float
operator
()(
vector
<
Point2f
>&
query1
,
vector
<
Point2f
>&
query2
,
vector
<
Point2f
>&
query3
,
vector
<
Point2f
>&
testq
)
{
return
std
::
min
(
mysc
->
computeDistance
(
query1
,
testq
),
std
::
min
(
mysc
->
computeDistance
(
query2
,
testq
),
mysc
->
computeDistance
(
query3
,
testq
)));
}
};
TEST
(
ShapeEMD_SCD
,
regression
)
{
const
int
NSN_val
=
5
;
//10;//20; //number of shapes per class
const
int
NP_val
=
100
;
//number of points simplifying the contour
const
float
CURRENT_MAX_ACCUR_val
=
95
;
//98% and 99% reached in several tests, 95 is fixed as minimum boundary
ShapeBaseTest
<
float
,
computeShapeDistance_EMD
>
test
(
NSN_val
,
NP_val
,
CURRENT_MAX_ACCUR_val
);
test
.
safe_run
();
}
TEST
(
Shape_SCD
,
regression
)
{
CV_ShapeTest
test
;
test
.
safe_run
();
}
//------------------------------------------------------------------------
// Test Hauss.regression
//------------------------------------------------------------------------
class
computeShapeDistance_Haussdorf
{
Ptr
<
HausdorffDistanceExtractor
>
haus
;
public
:
computeShapeDistance_Haussdorf
()
{
haus
=
createHausdorffDistanceExtractor
();
}
float
operator
()(
vector
<
Point
>
&
query1
,
vector
<
Point
>
&
query2
,
vector
<
Point
>
&
query3
,
vector
<
Point
>
&
testq
)
{
return
std
::
min
(
haus
->
computeDistance
(
query1
,
testq
),
std
::
min
(
haus
->
computeDistance
(
query2
,
testq
),
haus
->
computeDistance
(
query3
,
testq
)));
}
};
TEST
(
Hauss
,
regression
)
{
const
int
NSN_val
=
5
;
//10;//20; //number of shapes per class
const
int
NP_val
=
180
;
//number of points simplifying the contour
const
float
CURRENT_MAX_ACCUR_val
=
85
;
//90% and 91% reached in several tests, 85 is fixed as minimum boundary
ShapeBaseTest
<
int
,
computeShapeDistance_Haussdorf
>
test
(
NSN_val
,
NP_val
,
CURRENT_MAX_ACCUR_val
);
test
.
safe_run
();
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment